Size: 34721
Comment:
|
Size: 34964
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 59: | Line 59: |
<<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Rik Henson || ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|Functional Connectivity in fMRI]] || |
|
Line 67: | Line 69: |
Line 97: | Line 98: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA I and II'''+~ <<BR>> Daniel Mitchell & Máté Aller || | ||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA I and II'''+~ <<BR>> Daniel Mitchell & Máté Aller || |
Line 115: | Line 116: |
<<BR>> <<Anchor(pythonprimer)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<10%>__Software__ ||[[https://www.python.org/|Python]], [[https://pandas.pydata.org/|Pandas]], [[https://numpy.org/|NumPy]], [[https://matplotlib.org/|Matplotlib]], [[https://seaborn.pydata.org/|Seaborn]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Useful references__ ||[[https://www.w3schools.com/python/default.asp|Python concepts with examples]], [[https://quickref.me/python.html|Quick reference]], [[https://blog.finxter.com/python-cheat-sheets/|Cheatsheets]] || ||__Slides and scripts__ ||To be added || <<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I - Voxel-based morphometry'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[attachment:IntroductionToGLM.pdf|Introduction to GLM for structural MRI analysis]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/11525331/|Good et al, 2001, A VBM study of ageing]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/15501092/|Smith et al, 2004, Structural MRI analysis in FSL]] || <<BR>> <<Anchor(structuralmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI II - Surface-based analyses'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/9931268/|Dale et al, 1999, Cortical surface-based analysis I]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/9931269/|Fischl et al, 1999, Cortical surface-based analysis II]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=6eJMxh7PlOY|Using the command line]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis '''+~<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]], [[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT|FSL Diffusion Toolbox Wiki]] <<BR>> [[https://doi.org/10.1371/journal.pbio.1002203|Le Bihan et al, 2015, What water tells us about biological tissues]] <<BR>> [[https://doi.org/10.3389/fnins.2013.00031|Soares et al, 2013, A short guide to Diffusion Tensor Imaging]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/16624579/|Smith et al, 2006, Tract-based spatial statistics (TBSS)]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]] || ||__Suggested reading__ ||[[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] || <<BR>> <<Anchor(fmri1extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] || ||<10%>Websites ||[[https://bids.neuroimaging.io/|Brain Imaging Data Structure]] <<BR>> [[https://bids-standard.github.io/bids-starter-kit/|BIDS Starter Kit]] <<BR>> [[https://bids-specification.readthedocs.io/en/stable/|BIDS Specification v1.9.0]] || ||Suggested reading ||[[https://www.nature.com/articles/sdata201644|The brain imaging data structure (BIDS)]], Gorgolewski et al., 2016<<BR>>[[https://doi.org/10.1162/imag_a_00103|The past, present, and future of the brain imaging data structure (BIDS)]], Poldrack et al., 2024<<BR>> || <<BR>> <<Anchor(fmri2extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka || ||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|NiPype]] || ||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Functional Magnetic Resonance Imaging Methods]], Chen & Glover, 2015 <<BR>> [[https://doi.org/10.3389/fnimg.2022.1073734|Quality control in functional MRI studies with MRIQC and fMRIPrep]], Provins et al., 2023 <<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|fMRIPrep: a robust preprocessing pipeline for functional MRI]], Esteban et al., 2018 <<BR>> [[https://doi.org/10.3389/fninf.2011.00013|Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python]], Gorgolewski et al., 2011 || <<BR>> <<Anchor(fmri3extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[http://nilearn.github.io/stable/index.html|Nilearn]] || ||Suggested reading ||[[https://doi.org/10.1214/09-STS282|The Statistical Analysis of fMRI Data]], Lindquist, 2008 <<BR>> [[https://doi.org/10.1191/0962280203sm341ra|Controlling the familywise error rate in functional neuroimaging: a comparative review]], Nichols & Hayasaka, 2003 <<BR>> [[https://www.nature.com/articles/s41596-020-0327-3|Analysis of task-based functional MRI data preprocessed with fMRIPrep]], Esteban et al., 2020 <<BR>> [[https://doi.org/10.1016/j.neuroimage.2007.11.048|Guidelines for reporting an fMRI study]], Poldrack et al., 2008 || ||Suggested viewing ||[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building - temporal basis sets]] (11:08)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] (14:39) <<BR>> || <<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn]] || ||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] || ||__Reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] || ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] || ||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] || |
|
Line 128: | Line 206: |
<<BR>> <<Anchor(structuralmri)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I - Voxel-based morphometry'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[attachment:IntroductionToGLM.pdf|Introduction to GLM for structural MRI analysis]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/11525331/|Good et al, 2001, A VBM study of ageing]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/15501092/|Smith et al, 2004, Structural MRI analysis in FSL]] || <<BR>> <<Anchor(structuralmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI II - Surface-based analyses'''+~''' '''<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/9931268/|Dale et al, 1999, Cortical surface-based analysis I]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/9931269/|Fischl et al, 1999, Cortical surface-based analysis II]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=6eJMxh7PlOY|Using the command line]] || <<BR>> <<Anchor(diffusionmri1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis '''+~<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]], [[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] || ||__Suggested reading__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT|FSL Diffusion Toolbox Wiki]] <<BR>> [[https://doi.org/10.1371/journal.pbio.1002203|Le Bihan et al, 2015, What water tells us about biological tissues]] <<BR>> [[https://doi.org/10.3389/fnins.2013.00031|Soares et al, 2013, A short guide to Diffusion Tensor Imaging]] <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/16624579/|Smith et al, 2006, Tract-based spatial statistics (TBSS)]] || <<BR>> <<Anchor(diffusionmri2)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || ||<10%>__Software__ ||[[https://dipy.org/|dipy]] || ||__Suggested reading__ ||[[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] || <<BR>> <<Anchor(fmri1extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] || ||<10%>Websites ||[[https://bids.neuroimaging.io/|Brain Imaging Data Structure]] <<BR>> [[https://bids-standard.github.io/bids-starter-kit/|BIDS Starter Kit]] <<BR>> [[https://bids-specification.readthedocs.io/en/stable/|BIDS Specification v1.9.0]] || ||Suggested reading ||[[https://www.nature.com/articles/sdata201644|The brain imaging data structure (BIDS)]], Gorgolewski et al., 2016<<BR>>[[https://doi.org/10.1162/imag_a_00103|The past, present, and future of the brain imaging data structure (BIDS)]], Poldrack et al., 2024<<BR>> || <<BR>> <<Anchor(fmri2extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka || ||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|NiPype]] || ||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Functional Magnetic Resonance Imaging Methods]], Chen & Glover, 2015 <<BR>> [[https://doi.org/10.3389/fnimg.2022.1073734|Quality control in functional MRI studies with MRIQC and fMRIPrep]], Provins et al., 2023 <<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|fMRIPrep: a robust preprocessing pipeline for functional MRI]], Esteban et al., 2018 <<BR>> [[https://doi.org/10.3389/fninf.2011.00013|Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python]], Gorgolewski et al., 2011 || <<BR>> <<Anchor(fmri3extra)>> ||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka || ||<10%>Software ||[[http://nilearn.github.io/stable/index.html|Nilearn]] || ||Suggested reading ||[[https://doi.org/10.1214/09-STS282|The Statistical Analysis of fMRI Data]], Lindquist, 2008 <<BR>> [[https://doi.org/10.1191/0962280203sm341ra|Controlling the familywise error rate in functional neuroimaging: a comparative review]], Nichols & Hayasaka, 2003 <<BR>> [[https://www.nature.com/articles/s41596-020-0327-3|Analysis of task-based functional MRI data preprocessed with fMRIPrep]], Esteban et al., 2020 <<BR>> [[https://doi.org/10.1016/j.neuroimage.2007.11.048|Guidelines for reporting an fMRI study]], Poldrack et al., 2008 || ||Suggested viewing ||[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building - temporal basis sets]] (11:08)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] (14:39) <<BR>> || |
|
Line 228: | Line 246: |
<<BR>> <<Anchor(pythonprimer)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan || ||<10%>__Software__ ||[[https://www.python.org/|Python]], [[https://pandas.pydata.org/|Pandas]], [[https://numpy.org/|NumPy]], [[https://matplotlib.org/|Matplotlib]], [[https://seaborn.pydata.org/|Seaborn]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Useful references__ ||[[https://www.w3schools.com/python/default.asp|Python concepts with examples]], [[https://quickref.me/python.html|Quick reference]], [[https://blog.finxter.com/python-cheat-sheets/|Cheatsheets]] || ||__Slides and scripts__ ||To be added || |
|
Line 257: | Line 264: |
<<BR>> <<Anchor(connectivityfmri)>> ||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn]] || ||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] || ||__Reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] || ||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] || ||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] || |
Course Material for COGNESTIC 2024
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the COGNESTIC webpage.
Below you will find documents, videos and web links that will be used for the course or can be used for preparation.
Software Installation Instructions
TBA
Essential Preparation Materials
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course).
Background to Open Science |
||
Viewing |
Structural MRI I and II (VBM and surface-based analysis) |
||
Viewing |
Diffusion MRI I - The diffustion tensor model |
||
Viewing |
Diffusion MRI II - Tractography and the anatomical connectome |
||
Viewing |
fMRI I - Data Management |
||
Viewing |
fMRI Data Structure & Terminology (6:47) |
fMRI II - Preprocessing |
||
Viewing |
fMRI Artifacts and Noise (11:57) |
fMRI III - Analysis |
||
Viewing |
GLM applied to fMRI (11:21) |
fMRI Connectivity |
||
Viewing |
Network Analysis |
||
Viewing |
EEG/MEG I – Measurement and Pre-processing |
||
Viewing |
1. Overview of EEG/MEG data processing from raw data to source estimates |
EEG/MEG II – Head Modelling and Source Estimation |
||
Viewing |
1. The EEG/MEG forward model |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Viewing |
1. Frequency spectra and the Fourier analysis |
EEG/MEG IV – Further Topics and BIDS |
||
Viewing |
1. Primer on group statistics for EEG/MEG data |
MVPA/RSA I and II |
||
Viewing |
Excellent presentations from Martin Hebart's MVPA course, on: |
Additional Extra
If you want additional background, consider some of the below:
Background to Open Science |
||
Websites |
||
Reading |
Munafo et al, 2017, problems in science |
|
Viewing |
Statistical power in neuroimaging |
|
Slides |
Primer on Python |
||
Software |
||
Datasets |
||
Useful references |
||
Slides and scripts |
To be added |
Structural MRI I - Voxel-based morphometry |
||
Software |
||
Suggested reading |
Introduction to GLM for structural MRI analysis |
Structural MRI II - Surface-based analyses |
||
Software |
||
Suggested reading |
Dale et al, 1999, Cortical surface-based analysis I |
|
Suggested viewing |
Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis |
||
Software |
||
Suggested reading |
FSL Diffusion Toolbox Wiki |
Diffusion MRI II - Tractography and the Anatomical Connectome |
||
Software |
||
Suggested reading |
fMRI I - Data Management |
||
Software |
||
Websites |
Brain Imaging Data Structure |
|
Suggested reading |
The brain imaging data structure (BIDS), Gorgolewski et al., 2016 |
fMRI II - Pre-processing |
||
Software |
||
Suggested reading |
Functional Magnetic Resonance Imaging Methods, Chen & Glover, 2015 |
fMRI III - Analysis |
||
Software |
||
Suggested reading |
The Statistical Analysis of fMRI Data, Lindquist, 2008 |
|
Suggested viewing |
Model Building - temporal basis sets (11:08) |
fMRI Connectivity |
||
Software |
||
Datasets |
||
Reading |
Resting-state functional Connectivity |
|
Viewing |
fMRI Functional Connectivity in fMRI |
|
Tutorial slides and scripts |
Functional Connectivity Nilearn Practical |
Brain Network Analysis |
||
Software |
||
Datasets |
|
|
Reading |
- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575 |
|
Viewing |
Understanding your brain as a network and as art by Prof. Dani Bassett. |
|
Slides |
https://github.com/isebenius/COGNESTIC_network_analysis/ Slides |
EEG/MEG I – Measurement and Pre-processing |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Digitial Filtering |
|
Slides and scripts |
TBA |
EEG/MEG II – Head Modelling and Source Estimation |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Linear source estimation and spatial resolution |
|
Slides and scripts |
TBA |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
1. The basics of signals in the frequency domain |
|
Suggested reading |
Tutorial on Functional Connectivity |
|
Slides and scripts |
TBA |
EEG/MEG IV – Statistics and BIDS |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Estimating subcortical sources from EEG/MEG |
|
Suggested viewing |
||
Slides and scripts |
Notebooks Exercises Slides1 Slides2 |
MVPA/RSA I |
||
Software |
Python 3.7+, including numpy, matplotlib, & scikit-learn. |
|
Datasets |
|
|
Reading |
||
Slides and scripts |
To be added nearer the time. |
MVPA/RSA II |
||
Software |
Python implementation of the RSA Toolbox: Version 3.0 |
|
Datasets |
Example data included with RSA toolbox |
|
Reading |
Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience |
|
Slides and scripts |
We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox. |