Size: 36038
Comment:
|
Size: 35439
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 74: | Line 74: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> '''2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]]''' <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>''' ''''''3.''' '''[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]'''<<BR>>''' '''Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> '''4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]]''' <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> '''5.''' '''[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]]''' <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]] <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> 2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]] <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>3.[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]<<BR>>Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> 4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]] <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> 5.[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]] <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] || |
Line 81: | Line 81: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]'''<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.''' '''<<BR>> '''2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]'''<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity'''. '''<<BR>> '''3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]'''<<BR>>''' '''Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.''' '''<<BR>> '''4.''' '''[[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] '''<<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.''' ''' <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.<<BR>> 2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity. <<BR>> 3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]<<BR>>Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.<<BR>> 4. [[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] <<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix. <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] || |
Line 88: | Line 88: |
||__Viewing__ ||'''1. ''' '''[[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]]''' <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> '''2. ''' '''[[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]]''' <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> '''3.''' '''[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]]''' <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]] <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> 2. [[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]] <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> 3.[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]] <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] || |
Line 95: | Line 95: |
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]'''<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> '''2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]'''<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> '''3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]]''' <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] || | ||__Viewing__ ||1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> 2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> 3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]] <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] || |
Line 101: | Line 101: |
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA'''+~ <<BR>> Daniel Mitchelland Máté Aller || | ||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA'''+~ <<BR>> Daniel Mitchelland Máté Aller || |
Line 107: | Line 107: |
<<BR>> <<Anchor(rsa2)>> ||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA II'''+~ <<BR>> Daniel Mitchell || ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);"> || |
<<BR>> |
Course Material for COGNESTIC 2024
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the COGNESTIC webpage.
Below you will find documents, videos and web links that will be used for the course or can be used for preparation.
Software Installation Instructions
Access to much of the COGNESTIC-23 materials is available via Virtual Machine (VM). You will need at least 70GB of free space on your local hard drive, and at least 4GB of RAM. For instructions on how to install and set up the Cognestic23 VM see section ‘1 COGNESTIC Virtual Machine (full hands-on)’ for instructions. Data for the Structural MRI and Diffusion MRI are located inside the VM.
Full installation instructions can be found here. The installation can take some time (potentially more than an hour, depending on your download speed), so please reserve some time for this ahead of the event.
Essential
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course).
(sessions below should be ordered as they will be in course, but just did my ones for an example)
Background to Open Science |
||
Viewing |
Network Analysis |
||
Viewing |
Structural MRI I and II |
||
Viewing |
Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis |
||
Viewing |
Diffusion MRI II - Tractography and the Anatomical Connectome |
||
Viewing |
fMRI I - Data Management |
||
Viewing |
fMRI Data Structure & Terminology (6:47) |
fMRI II - Pre-processing |
||
Viewing |
fMRI Artifacts and Noise (11:57) |
fMRI III - Analysis |
||
Viewing |
GLM applied to fMRI (11:21) |
EEG/MEG I – Measurement and Pre-processing |
||
Viewing |
1. Overview of EEG/MEG data processing from raw data to source estimates |
EEG/MEG II – Head Modelling and Source Estimation |
||
Viewing |
1. The EEG/MEG forward model |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Viewing |
1. Frequency spectra and the Fourier analysis |
EEG/MEG IV – Further Topics and BIDS |
||
Viewing |
1. Primer on group statistics for EEG/MEG data |
MVPA/RSA |
||
Viewing |
Excellent presentations from Martin Hebart's MVPA course, on: |
Additional Extra
If you want additional background, consider some of the below:
Background to Open Science |
||
Websites |
||
Reading |
Munafo et al, 2017, problems in science |
|
Viewing |
Statistical power in neuroimaging |
|
Slides |
Brain Network Analysis |
||
Software |
||
Datasets |
|
|
Reading |
- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575 |
|
Viewing |
Understanding your brain as a network and as art by Prof. Dani Bassett. |
|
Slides |
https://github.com/isebenius/COGNESTIC_network_analysis/ Slides |
Structural MRI I - Voxel-based morphometry |
||
Software |
||
Suggested reading |
Introduction to GLM for structural MRI analysis |
Structural MRI II - Surface-based analyses |
||
Software |
||
Suggested reading |
Dale et al, 1999, Cortical surface-based analysis I |
|
Suggested viewing |
Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis |
||
Software |
||
Suggested reading |
FSL Diffusion Toolbox Wiki |
Diffusion MRI II - Tractography and the Anatomical Connectome |
||
Software |
||
Suggested reading |
fMRI I - Data Management |
||
Software |
||
Websites |
Brain Imaging Data Structure |
|
Suggested reading |
The brain imaging data structure (BIDS), Gorgolewski et al., 2016 |
fMRI II - Pre-processing |
||
Software |
||
Suggested reading |
Functional Magnetic Resonance Imaging Methods, Chen & Glover, 2015 |
fMRI III - Analysis |
||
Software |
||
Suggested reading |
The Statistical Analysis of fMRI Data, Lindquist, 2008 |
|
Suggested viewing |
Model Building - temporal basis sets (11:08) |
EEG/MEG I – Measurement and Pre-processing |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Digitial Filtering |
|
Slides and scripts |
TBA |
EEG/MEG II – Head Modelling and Source Estimation |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
0. Overview of EEG/MEG data processing from raw data to source estimates |
|
Suggested reading |
Linear source estimation and spatial resolution |
|
Slides and scripts |
TBA |
EEG/MEG III – Time-Frequency and Functional Connectivity Analysis |
||
Software and datasets |
This will be part of a download that will become available later. |
|
Essential and suggested viewing |
1. The basics of signals in the frequency domain |
|
Suggested reading |
Tutorial on Functional Connectivity |
|
Slides and scripts |
TBA |
EEG/MEG IV – Statistics and BIDS |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Estimating subcortical sources from EEG/MEG |
|
Suggested viewing |
||
Slides and scripts |
Notebooks Exercises Slides1 Slides2 |
Primer on Python |
||
Software |
||
Datasets |
||
Useful references |
||
Slides and scripts |
To be added |
MVPA/RSA I |
||
Software |
Python 3.7+, including numpy, matplotlib, & scikit-learn. |
|
Datasets |
|
|
Reading |
||
Slides and scripts |
To be added nearer the time. |
MVPA/RSA II |
||
Software |
Python implementation of the RSA Toolbox: Version 3.0 |
|
Datasets |
Example data included with RSA toolbox |
|
Reading |
Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience |
|
Slides and scripts |
We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox. |
fMRI Connectivity |
||
Software |
||
Datasets |
||
Reading |
Resting-state functional Connectivity |
|
Viewing |
fMRI Functional Connectivity in fMRI |
|
Tutorial slides and scripts |
Functional Connectivity Nilearn Practical |