Diff for "COGNESTIC2024" - Methods
location: Diff for "COGNESTIC2024"
Differences between revisions 1 and 101 (spanning 100 versions)
Revision 1 as of 2024-06-10 13:38:02
Size: 30263
Editor: OlafHauk
Comment:
Revision 101 as of 2024-07-17 15:23:36
Size: 36038
Editor: OlafHauk
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for neuroimaging analysis and related methods. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/cognestic-2023/|COGNESTIC webpage]]. The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/cognestic-2023/|COGNESTIC webpage]].
Line 11: Line 11:
== Essential ==
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course).

(sessions below should be ordered as they will be in course, but just did my ones for an example)
Line 12: Line 17:
||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Introduction and Open Science'''+~ <<BR>> Rik Henson & Olaf Hauk ||
||<10%>__Websites__ ||[[https://osf.io/|OSF]] <<BR>> [[https://www.ukrn.org/primers/|UKRN]] <<BR>> [[https://bids.neuroimaging.io/|BIDS]] ||
||__Suggested reading__ ||[[https://doi.org/10.1038/s41562-016-0021|Munafo et al, 2017, problems in science]] <<BR>> [[https://doi.org/10.1038/nrn3475|Button et al, 2013, power in neuroscience]] <<BR>> [[https://doi.org/10.1038/nrn.2016.167|Poldrack et al, 2017, reproducible neuroimaging]] <<BR>> [[https://doi.org/10.1038/s41586-022-04492-9|Marek et al, 2022, power in neuroimaging association studies]] ||
||__Suggested viewing__ ||[[https://youtu.be/kTVtc7kjVQg|Open Cognitive Neuroscience (will give this talk live on day)]] <<BR>> [[https://www.youtube.com/watch?v=D0VKyjNGvrs|Statistical power in neuroimaging]] <<BR>> [[https://www.youtube.com/watch?v=zAzTR8eq20k|PayWall: open access]] <<BR>> [[https://www.facebook.com/LastWeekTonight/videos/896755337120143|Comedian's Perspective on science and media]] ||
||__Tutorial slides and scripts__ ||[[attachment:COGNESTIC_OpenCogNeuro.pdf|Open Science Talk Slides]] ||




<<BR>> <<Anchor(pythonprimer)>>
||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Edwin Dalmijer ||
||<10%>__Websites__ ||[[https://www.python.org/|Python]], [[https://numpy.org/|NumPy]], [[https://scipy.org/|SciPy]], [[https://matplotlib.org/|Matplotlib]], [[https://psychopy.org/|PsychoPy]] ||
||__Suggested reading__ ||None ||
||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=H8Du3llCa6w|saliency-mapping of Taylor Swift music videos]] ||
||__Tutorial slides and scripts__ ||None ||
||||||<tablewidth="100%"style="text-align:center">~+'''Background to Open Science'''+~ <<BR>> Rik Henson ||
||__Viewing__ ||[[https://youtu.be/kTVtc7kjVQg|Open Cognitive Neuroscience]] ||




<<BR>> <<Anchor(networks)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Network Analysis'''+~ <<BR>> Rik Henson ||
||__Viewing__ ||[[https://www.youtube.com/watch?v=H2q3fPxiuvw|Introduction to Network Neuroscience]] ||




<<BR>> <<Anchor(structuralmri)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI I and II'''+~''' '''<<BR>> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <<BR>> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] ||




<<BR>> <<Anchor(diffusionmri1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - '''+~~+'''Preprocessing, Model Fitting and Group Analysis'''+~ <<BR>> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] ||




<<BR>> <<Anchor(diffusionmri2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] ||




<<BR>> <<Anchor(fmri1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka ||
||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<<BR>>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) ||




<<BR>> <<Anchor(fmri2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka ||
||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <<BR>> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <<BR>> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) ||




<<BR>> <<Anchor(fmri3)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka ||
||Viewing ||[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMR]]I (11:21) <<BR>> [[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building – conditions and contrasts]] (11:48) <<BR>> [[https://www.youtube.com/watch?v=DEtwsFdFwYc%20|Model Building - nuisance variables]] (13:58) <<BR>> [[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] (9:03) <<BR>> [[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] (7:05) ||




<<BR>> <<Anchor(eegmeg1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG I – Measurement and Pre-processing'''+~ <<BR>> Olaf Hauk ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>> '''2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]]''' <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>''' ''''''3.''' '''[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]'''<<BR>>''' '''Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>> '''4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]]''' <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> '''5.''' '''[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]]''' <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <<BR>> Fore more on this topic see [[#eegmeg1b|here.]] ||




<<BR>> <<Anchor(eegmeg2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG II – Head Modelling and Source Estimation'''+~ <<BR>> Olaf Hauk ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]'''<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.''' '''<<BR>> '''2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]'''<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity'''. '''<<BR>> '''3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]'''<<BR>>''' '''Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.''' '''<<BR>> '''4.''' '''[[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] '''<<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.''' ''' <<BR>> Fore more on this topic see [[#eegmeg2b|here.]] ||




<<BR>> <<Anchor(eegmeg3)>>
||||||<tablewidth="751px"style="text-align:center">~+'''EEG/MEG III – Time-Frequency and Functional Connectivity '''+~~+'''Analysis '''+~ <<BR>> Olaf Hauk ||
||__Viewing__ ||'''1. ''' '''[[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]]''' <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> '''2. ''' '''[[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]]''' <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> '''3.''' '''[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]]''' <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>> Fore more on this topic see [[#eegmeg3b|here.]] ||




<<BR>> <<Anchor(eegmeg4)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG IV – Further Topics and BIDS'''+~ <<BR>> Olaf Hauk & Máté Aller ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]'''<<BR>>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<<BR>> '''2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]'''<<BR>>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<<BR>> '''3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]]''' <<BR>> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <<BR>> Fore more on this topic see [[#eegmeg4b|here.]] ||




<<BR>> <<Anchor(rsa1)>>
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA'''+~ <<BR>> Daniel Mitchelland Máté Aller ||
||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. <<BR>> If the links don't work, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=02_lecture1_MVPA_intro.mp4|here]] and [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=03_lecture2_Classification.mp4|here]]. <<BR>> [[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]]. If the link fails, download from [[https://imaging.mrc-cbu.cam.ac.uk/methods/COGNESTIC2023?action=AttachFile&do=view&target=08_lecture6_RSA.mp4|here]]. <<BR>> [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23|Primer on decoding and RSA with EEG/MEG data]] ||




<<BR>> <<Anchor(rsa2)>>
||||||<tablewidth="100%" tablestyle="margin:0.5em 0px;border-collapse:collapse;border:1px dotted rgb(211, 211, 211); "style="padding:0.25em;border:1px dotted rgb(211, 211, 211);text-align:center;">~+'''MVPA/RSA II'''+~ <<BR>> Daniel Mitchell ||
||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);">__Viewing__ ||<style="padding:0.25em;border:1px dotted rgb(211, 211, 211);"> ||




== Additional Extra ==
If you want additional background, consider some of the below:

<<BR>>
||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Background to Open Science'''+~ <<BR>> Rik Henson ||
||__Websites__ ||[[https://osf.io/|OSF]] <<BR>> [[https://www.ukrn.org/primers/|UKRN]] <<BR>> [[https://bids.neuroimaging.io/|BIDS]] ||
||__Reading__ ||[[https://doi.org/10.1038/s41562-016-0021|Munafo et al, 2017, problems in science]] <<BR>> [[https://doi.org/10.1038/nrn3475|Button et al, 2013, power in neuroscience]] <<BR>> [[https://doi.org/10.1038/nrn.2016.167|Poldrack et al, 2017, reproducible neuroimaging]] <<BR>> [[https://doi.org/10.1038/s41586-022-04492-9|Marek et al, 2022, power in neuroimaging association studies]] ||
||__Viewing__ ||[[https://www.youtube.com/watch?v=D0VKyjNGvrs|Statistical power in neuroimaging]] <<BR>> [[https://www.youtube.com/watch?v=zAzTR8eq20k|PayWall: open access]] <<BR>> [[https://www.facebook.com/LastWeekTonight/videos/896755337120143|Comedian's Perspective on science and media]] ||
||__Slides__ ||[[attachment:COGNESTIC_OpenCogNeuro.pdf|Open Science Talk Slides]] ||




<<BR>> <<Anchor(networks)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Brain Network Analysis'''+~ <<BR>> Rik Henson ||
||__Software__ ||[[https://pypi.org/project/bctpy/|Python 3.7+,]] [[https://nxviz.readthedocs.io/en/latest/|nxviz]], [[https://python-louvain.readthedocs.io/en/latest/|python-louvain]] ||
||__Datasets__ || ||
||__Reading__ ||- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. ''Nat Rev Neurosci'' '''10''', 186–198 (2009). https://doi.org/10.1038/nrn2575 <<BR>> - (Textbook reference for more information) Alex Fornito, Andrew Zalesky, and Edward Bullmore. ''Fundamentals of brain network analysis''. Academic press, 2016. ||
||__Viewing__ ||[[https://www.youtube.com/watch?v=HjSGqwAFRcc|Understanding your brain as a network and as art]] by Prof. Dani Bassett. ||
||__Slides__ ||[[https://github.com/isebenius/COGNESTIC_network_analysis/tree/main|https://github.com/isebenius/COGNESTIC_network_analysis/]] [[attachment:COGNESTIC23-presentation_Sebenius.pdf|Slides]] ||
Line 34: Line 141:
||__Datasets__ ||Subset of the CamCAN dataset (~3GB) https://www.cam-can.org/, please sign [[attachment:CamCAN Data User Agreement_COGNESTIC.docx|data user agreement]] if using ||
Line 36: Line 142:
||__Suggested viewing__ ||[[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <<BR>> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] ||
||__Tutorial slides and scripts__ ||[[attachment:Intro_Commmand_Line_2023.docx|Intro to command line]] <<BR>> [[attachment:FSL_VBM.pdf|VBM slides]]<<BR>> [[attachment:FSLVBM_tutorials_2023.docx|FSL VBM tutorials]] <<BR>> [[attachment:FSLVBM_cognestic_all.sh|FSL VBM script]]<<BR>> [[attachment:COGNESTIC_exercises_2023.docx|Hands on exercises for structural and diffusion MRI]] ||
Line 45: Line 149:
||__Datasets__ ||[[https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Data|Freesurfer tutorial data]] ||
Line 48: Line 151:
||__Tutorial slides and scripts__ ||[[attachment:FS_CorticalThickness.pdf|Freesurfer slides]] <<BR>> [[attachment:FreeSurfer_tutorials_2023.docx|Freesurfer tutorials]] <<BR>> [[attachment:FS_check_location.sh|FS check location script]]<<BR>> [[attachment:FS_visualising_output.sh|FS visualising the output script]] <<BR>> [[attachment:FS_group_analysis.sh|FS group analysis script]] <<BR>> [[attachment:FS_ROI_analysis.sh|FS ROI analysis script]] ||
Line 54: Line 156:
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - The Diffusion Tensor Model'''+~ <<BR>> Marta Correia ||
||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] ||
||__Datasets__ ||[[https://openneuro.org/datasets/ds001226/versions/00001|BTC_preop]] ||
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis '''+~<<BR>> Marta Correia ||
||<10%>__Software__ ||[[https://dipy.org/|dipy]], [[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] ||
Line 58: Line 159:
||__Suggested viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <<BR>> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] ||
||__Tutorial slides and scripts__ ||[[attachment:FSL_DTI&TBSS.pdf|FSL DTI and TBSS slides]] <<BR>> [[attachment:FSL_FDT_DTI_tutorials_2023.docx|DTI and group analysis in TBSS tutorials]] <<BR>> [[attachment:FDT_DTI_pipeline_LiveDemo.sh|FSL DTI pipeline script]] <<BR>> [[attachment:FDT_DTI_TBSS.sh|FSL TBSS script]] <<BR>> [[attachment:FDT_DTI_group_QC.sh|FSL group QC script]] ||
Line 66: Line 165:
||<10%>__Software__ ||[[https://www.mrtrix.org/|MRtrix3]] ||
||__Datasets__ ||[[https://openneuro.org/datasets/ds001226/versions/00001|BTC_preop]] ||
||__Suggested reading__ ||[[https://mrtrix.readthedocs.io/en/latest/|MRtrix3 documentation]] <<BR>> [[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] ||
||__Suggested viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <<BR>> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] ||
||__Tutorial slides and scripts__ ||[[attachment:MRTrix_tractography.pdf|MRTrix tractography slides]] <<BR>> [[attachment:MRtrix_dMRI_tutorials_2023.docx|MRTrix tractography tutorials]] <<BR>> [[attachment:MRtrix_dMRI_preprocessing_LiveDemo.sh|MRTrix preprocessing script]] <<BR>> [[attachment:MRtrix_dMRI_CSD_tractography_LiveDemo.sh|MRTrix tractography script]] <<BR>> [[attachment:MRtrix_dMRI_connectome_LiveDemo.sh|MRTrix connectome script]] ||




<<BR>> <<Anchor(fmri1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data management, structure, manipulation'''+~ <<BR>> Dace Apšvalka ||
||<10%>__Software__ ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] ||
||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] ||
||__Suggested reading__ ||[[https://doi.org/10.1038/sdata.2016.44|Gorgolewski et al., 2016]] <<BR>>[[https://bids.neuroimaging.io/|The brain imaging data structure (BIDS)]] <<BR>>[[https://arxiv.org/abs/2309.05768|The Past, Present, and Future of the Brain Imaging Data Structure (BIDS)]] ||
||__Suggested viewing__ ||[[https://osf.io/fbj5u|BIDS for MRI: Structure and Conversion]] by Taylor Salo (13:39) <<BR>> [[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] by Martin Lindquist and Tor Wager (6:47) ||
||Slides and scripts__ __ ||https://github.com/dcdace/fMRI-COGNESTIC-23/ ||




<<BR>> <<Anchor(fmri2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Quality control & Pre-processing'''+~ <<BR>> Dace Apšvalka ||
||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]] ||
||Datasets__ __ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] ||
||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Chen & Glover (2015), Functional Magnetic Resonance Imaging Methods]]<<BR>> [[https://mriquestions.com/uploads/3/4/5/7/34572113/ch2.pdf|Ashburner J & Friston KJ (2004), Rigid body registration]]<<BR>> [[https://doi.org/10.1002/mrm.24314|Maclaren et al. (2013), Prospective Motion Correction in Brain Imaging: A Review]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2011.06.078|Sladky et al. (2011), Slice-timing effects and their correction in functional MRI]]<<BR>> [[https://doi.org/10.1006/nimg.2000.0609|Friston et al. (2000), To Smooth or Not to Smooth?: Bias and Efficiency in fMRI Time-Series Analysis]]<<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|Esteban et al., 2018, fMRIPrep: a robust preprocessing pipeline for functional MRI]] ||
||Suggested viewing__ __ ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] by Martin Lindquist and Tor Wager (11:57)<<BR>>[[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] by Martin Lindquist and Tor Wager (10:17)<<BR>>[[https://youtu.be/qamRGWSC-6g|Pre-processing II]] by Martin Lindquist and Tor Wager (7:42) ||
||Slides and scripts ||https://github.com/dcdace/fMRI-COGNESTIC-23/ ||




<<BR>> <<Anchor(fmri3)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Subject Level Analysis'''+~ <<BR>> Dace Apšvalka ||
||<10%>__Software__ ||[[http://nilearn.github.io/stable/index.html|Nilearn]] ||
||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] ||
||__Suggested reading__ ||[[https://doi.org/10.1002/hbm.460020402|Friston et al. (1994), Statistical parametric maps in functional imaging: A general linear approach]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2012.01.133|Poline & Brett (2012), Poline, J. B., & Brett, M. (2012). The general linear model and fMRI: does love last forever?]]<<BR>>[[https://doi.org/10.3389/fnhum.2011.00028|Monti (2011), Statistical analysis of fMRI time-series: a critical review of the GLM approach]]<<BR>>[[https://doi.org/10.1191/0962280203sm341ra|Nichols & Hayasaka (2003), Controlling the familywise error rate in functional neuroimaging: a comparative review]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2008.05.021|Chumbley & Friston (2009), False discovery rate revisited: FDR and topological inference using Gaussian random fields]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2013.12.058|Woo et al. (2014), Cluster-extent based thresholding in fMRI analyses: Pitfalls and recommendations]]<<BR>>[[https://doi.org/10.1214/09-STS282|Lindquist (2008), The Statistical Analysis of fMRI Data]] ||
||__Suggested viewing__ ||[[https://youtu.be/GDkLQuV4he4|The General Linear Model]] by Martin Lindquist and Tor Wager (12:24)<<BR>>[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMRI]] by Martin Lindquist and Tor Wager (11:21)<<BR>>[[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building I – conditions and contrasts]] by Martin Lindquist and Tor Wager (11:48)<<BR>>[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building II – temporal basis sets]] by Martin Lindquist and Tor Wager (11:08)<<BR>>[[https://www.youtube.com/watch?v=DEtwsFdFwYc|Model Building III- nuisance variables]] by Martin Lindquist and Tor Wager (13:58)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] by Martin Lindquist and Tor Wager (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] by Martin Lindquist and Tor Wager (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] by Martin Lindquist and Tor Wager (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] by Martin Lindquist and Tor Wager (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] by Martin Lindquist and Tor Wager (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] by Martin Lindquist and Tor Wager (14:39) ||
||Slides and scripts__ __ ||https://github.com/dcdace/fMRI-COGNESTIC-23/ ||




<<BR>> <<Anchor(fmri4)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI IV - Group Level Analysis & Reporting'''+~ <<BR>> Dace Apšvalka ||
||<10%>Software__ __ ||[[http://nilearn.github.io/stable/index.html|Nilearn]] ||
||Datasets__ __ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] ||
||Suggested reading__ __ ||[[https://doi.org/10.1109/MEMB.2006.1607668|Mumford & Nichols (2006), Modeling and inference of multisubject fMRI data]]<<BR>>[[https://www.nature.com/articles/nn.4500|Nichols et al. (2017), Best practices in data analysis and sharing in neuroimaging using MRI]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2007.11.048|Poldrack et al. (2008), Guidelines for reporting an fMRI study]]<<BR>>[[https://doi.org/10.1016/j.neuroimage.2015.04.016|Gorgolewski et al. (2016), NeuroVault.org: A repository for sharing unthresholded statistical maps, parcellations, and atlases of the human brain]]<<BR>>[[https://doi.org/10.7554/eLife.71774|Markiewicz et al. (2021), The OpenNeuro resource for sharing of neuroscience data]] ||
||Suggested viewing__ __ ||[[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] by Martin Lindquist and Tor Wager (7:05)<<BR>>[[https://youtu.be/-abMLQSjMSI|Group-level Analysis II]] by Martin Lindquist and Tor Wager (10:09)<<BR>>[[https://youtu.be/-yaHTygR9b8|Group-level Analysis III]] by Martin Lindquist and Tor Wager (14:01) ||
||Slides and scripts ||https://github.com/dcdace/fMRI-COGNESTIC-23/ ||




<<BR>> <<Anchor(connectivityfmri)>>
||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov ||
||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn Python]] ||
||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] ||
||__Suggested reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] ||
||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] ||
||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] ||




<<BR>> <<Anchor(networks)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Brain Network Analysis'''+~ <<BR>> Isaac Sebenius ||
||<10%>Software__ __ ||[[https://pypi.org/project/bctpy/|Python 3.7+,]] [[https://nxviz.readthedocs.io/en/latest/|nxviz]], [[https://python-louvain.readthedocs.io/en/latest/|python-louvain]] ||
||Datasets__ __ || ||
||Suggested reading__ __ ||- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. ''Nat Rev Neurosci'' '''10''', 186–198 (2009). https://doi.org/10.1038/nrn2575 <<BR>> - (Textbook reference for more information) Alex Fornito, Andrew Zalesky, and Edward Bullmore. ''Fundamentals of brain network analysis''. Academic press, 2016. ||
||Suggested viewing__ __ ||- [[https://www.youtube.com/watch?v=H2q3fPxiuvw|Introduction to Network Neuroscience]], minutes 0:00-48:30. A wonderful introduction to brain networks by Prof. Bratislav Misic. <<BR>>- [[https://www.youtube.com/watch?v=HjSGqwAFRcc|Understanding your brain as a network and as art]] by Prof. Dani Bassett. ||
||Slides and scripts ||[[https://github.com/isebenius/COGNESTIC_network_analysis/tree/main|https://github.com/isebenius/COGNESTIC_network_analysis/]] [[attachment:COGNESTIC23-presentation_Sebenius.pdf|Slides]] ||




<<BR>> <<Anchor(eegmeg1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG I – Pre-processing'''+~ <<BR>> Olaf Hauk ||
||<10%>__Software__ ||This will be part of a download that will become available later. [[https://mne.tools/stable/index.html|MNE-Python]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] ||
||__Datasets__ ||This will be part of a download that will become available later. Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/preprocessing/index.html|Tutorials]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] [[attachment:MNE-Python_datasets.ipynb|Download Datasets]] ||
||Essential viewing and reading ||[[https://mne.tools/stable/auto_tutorials/intro/10_overview.html#sphx-glr-auto-tutorials-intro-10-overview-py|Overview of MNE-Python processing pipeline from preprocessing to source estimation]] ||
||<10%>__Software__ ||[[https://dipy.org/|dipy]] ||
||__Suggested reading__ ||[[https://www.sciencedirect.com/science/article/pii/B9780123964601000196|MR Diffusion Tractography]] ||




<<BR>> <<Anchor(fmri1extra)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI I - Data Management'''+~ <<BR>> Dace Apšvalka ||
||<10%>Software ||[[https://heudiconv.readthedocs.io/en/latest/|HeudiConv]], [[https://bids-standard.github.io/pybids/|PyBIDS]], [[https://nipy.org/nibabel/|NiBabel]], [[https://nilearn.github.io/stable/index.html|Nilearn]] ||
||<10%>Websites ||[[https://bids.neuroimaging.io/|Brain Imaging Data Structure]] <<BR>> [[https://bids-standard.github.io/bids-starter-kit/|BIDS Starter Kit]] <<BR>> [[https://bids-specification.readthedocs.io/en/stable/|BIDS Specification v1.9.0]] ||
||Suggested reading ||[[https://www.nature.com/articles/sdata201644|The brain imaging data structure (BIDS)]], Gorgolewski et al., 2016<<BR>>[[https://doi.org/10.1162/imag_a_00103|The past, present, and future of the brain imaging data structure (BIDS)]], Poldrack et al., 2024<<BR>> ||




<<BR>> <<Anchor(fmri2extra)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI II - Pre-processing'''+~ <<BR>> Dace Apšvalka ||
||<10%>Software__ __ ||[[https://mriqc.readthedocs.io/en/latest/|MRIQC]], [[https://fmriprep.org/en/stable/|fMRIprep]], [[https://nipype.readthedocs.io/en/latest/|NiPype]] ||
||Suggested reading__ __ ||[[https://link.springer.com/article/10.1007/s11065-015-9294-9|Functional Magnetic Resonance Imaging Methods]], Chen & Glover, 2015 <<BR>> [[https://doi.org/10.3389/fnimg.2022.1073734|Quality control in functional MRI studies with MRIQC and fMRIPrep]], Provins et al., 2023 <<BR>> [[https://www.nature.com/articles/s41592-018-0235-4|fMRIPrep: a robust preprocessing pipeline for functional MRI]], Esteban et al., 2018 <<BR>> [[https://doi.org/10.3389/fninf.2011.00013|Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python]], Gorgolewski et al., 2011 ||




<<BR>> <<Anchor(fmri3extra)>>
||||||<tablewidth="100%"style="text-align:center">~+'''fMRI III - Analysis'''+~ <<BR>> Dace Apšvalka ||
||<10%>Software ||[[http://nilearn.github.io/stable/index.html|Nilearn]] ||
||Suggested reading ||[[https://doi.org/10.1214/09-STS282|The Statistical Analysis of fMRI Data]], Lindquist, 2008 <<BR>> [[https://doi.org/10.1191/0962280203sm341ra|Controlling the familywise error rate in functional neuroimaging: a comparative review]], Nichols & Hayasaka, 2003 <<BR>> [[https://www.nature.com/articles/s41596-020-0327-3|Analysis of task-based functional MRI data preprocessed with fMRIPrep]], Esteban et al., 2020 <<BR>> [[https://doi.org/10.1016/j.neuroimage.2007.11.048|Guidelines for reporting an fMRI study]], Poldrack et al., 2008 ||
||Suggested viewing ||[[https://www.youtube.com/watch?v=YfeMIcDWwko|Model Building - temporal basis sets]] (11:08)<<BR>>[[https://www.youtube.com/watch?v=Ab-5AbJ8gAs|GLM Estimation]] (9:11)<<BR>>[[https://youtu.be/Mb9LDzvhecY|Noise Models- AR models]] (9:57)<<BR>>[[https://youtu.be/NRunOo7EKD8|Inference- Contrasts and t-tests]] (11:05)<<BR>>[[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] by Martin Lindquist and Tor Wager (9:03)<<BR>>[[https://youtu.be/MxQeEdVNihg|FWER Correction]] (16:11)<<BR>>[[https://youtu.be/W9ogBO4GEzA|FDR Correction]] (5:25)<<BR>>[[https://youtu.be/N7Iittt8HrU|More about multiple comparisons]] (14:39) <<BR>> ||




<<BR>> <<Anchor(eegmeg1b)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG I – Measurement and Pre-processing'''+~ <<BR>> Olaf Hauk ||
||<10%>__Software and datasets__ ||This will be part of a download that will become available later.<<BR>> [[https://mne.tools/stable/index.html|MNE-Python]] software homepage <<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE stand-alone installation instructions for COGNESTIC]]<<BR>> [[attachment:MNE-Python_datasets.ipynb|Jupyter script to download sample datasets in MNE-Pytho]]n ||
||'''Essential''' and suggested viewing ||'''0. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>><<BR>> '''1. '''[[https://www.youtube.com/watch?v=KQoR9uXLxTg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|A brief history of timing]]<<BR>> A brief overview of the history of bioelectromagnetism, EEG and MEG'''.''' <<BR>> '''2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]]''' <<BR>>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<<BR>>''' 3. '''[[http://www.youtube.com/watch?v=tHzBtNQaoSI&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=3&pp=iAQB|Basics of EEG/MEG artefact correction]] <<BR>> Physiological and non-physiological artefacts, data decompositions, frequency/temporal/spatial filtering. <<BR>>'''4.''' '''[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]'''<<BR>>''' '''Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <<BR>>'''5.''' [[https://www.youtube.com/watch?v=mCvPlPlY9Og&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Topographical artefact correction of EEG/MEG data]] <<BR>>Independent Component Analysis (ICA), Signal Space Projection (SSP), eye movement and heart beat artefacts.<<BR>>'''6.''' [[https://www.youtube.com/watch?v=liMV6hm_uEs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Maxfiltering of MEG data]]<<BR>> Signal Space Separation, options of Maxfilter software (e.g. movement compensation).<<BR>> '''7. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]]''' <<BR>>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <<BR>> '''8.''' '''[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]]''' <<BR>>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression.<<BR>> [[https://www.youtube.com/watch?v=Bmt89hHyxuM|+ Origin, significance, and interpretation of EEG]] (Michael X Cohen) <<BR>>[[https://www.youtube.com/watch?v=z0JlHS9kulA|+ Analysing MEG data with MNE-Python and its ecosystem]] (Alex Gramfort)<<BR>> [[https://www.youtube.com/playlist?list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5|+ List of EEG/MEG lectures]]<<BR>> <<BR>> MNE-Python tutorials:<<BR>>[[http://mne.tools/stable/auto_tutorials/intro/10_overview.html#sphx-glr-auto-tutorials-intro-10-overview-py|Overview of MNE-Python processing pipeline from preprocessing to source estimation]]<<BR>> [[https://mne.tools/stable/auto_tutorials/preprocessing/index.html|Preprocessing]] ||
Line 147: Line 202:
||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=z0JlHS9kulA|Analysing MEG data with MNE-Python and its ecosystem]] (Alex Gramfort) ||
Line 153: Line 207:
<<BR>> <<Anchor(eegmeg2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG II – Source Estimation'''+~ <<BR>> Olaf Hauk ||
||<10%>Software__ __ ||[[https://mne.tools/stable/index.html|MNE-Python]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] ||
||Datasets__ __ ||Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/inverse/index.html|Tutorials]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] [[attachment:MNE-Python_datasets.ipynb|Download Datasets]] ||
||Suggested reading__ __ ||[[https://pubmed.ncbi.nlm.nih.gov/35390459/|Linear source estimation and spatial resolution]]<<BR>> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] ||
||Suggested viewing__ __ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG2_SourceEstimation.mp4|Introduction to EEG/MEG Source Estimation]] [[https://mediacentral.ucl.ac.uk/Player/2917|M/EEG Source Analysis in SPM]] ||
||Slides and scripts ||[[attachment:EEGMEG2-sourceestimation.zip|Notebooks]] [[attachment:Exercises_EEGMEG.pdf|Exercises]] [[attachment:EMEG2_1_ForwardModelling.pdf|Slides1]] [[attachment:EMEG2_2_MNE.pdf|Slides2]] [[attachment:EMEG2_3_SpatialResolution.pdf|Slides3]] ||




<<BR>> <<Anchor(eegmeg3)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG III – Time-Frequency and Functional Connectivity'''+~ <<BR>> Olaf Hauk ||
||<10%>__Software__ ||[[https://mne.tools/stable/index.html|MNE-Python]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] ||
||__Datasets__ ||Sample dataset in MNE-Python. [[https://mne.tools/stable/auto_tutorials/time-freq/index.html|Tutorials]]<<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE Installation for Cognestic]] [[attachment:MNE-Python_datasets.ipynb|Download Datasets]] ||
||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/26778976/|Tutorial on Functional Connectivity]]<<BR>> [[https://mitpress.mit.edu/books/analyzing-neural-time-series-data|Analyzing Neural Time Series Data]]<<BR>> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] ||
||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG3.mp4|Introduction to time-frequency and functional connectivity analysis]] <<BR>> [[https://www.youtube.com/watch?v=wB417SAbdak|Time-Frequency Analysis of EEG Time Series]] ||
||Slides and scripts__ __ ||[[attachment:EEGMEG3-timefrequency.zip|Notebooks]] [[attachment:Exercises_EEGMEG.pdf|Exercises]] [[attachment:EMEG3_1_TimeFrequency.pdf|Slides1]] [[attachment:EMEG3_2_FunctionalConnectivity.pdf|Slides2]][[attachment:EMEG3_3_AdvancedFunctionalConnectivity.pdf|Slides3]] ||




<<BR>> <<Anchor(eegmeg4)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG IV – Advanced Topics'''+~ <<BR>> Olaf Hauk & Máté Aller ||
<<BR>> <<Anchor(eegmeg2b)>>
||||||<tablewidth="751px" tableheight="626px"style="text-align:center">~+'''EEG/MEG II – Head Modelling and Source Estimation'''+~ <<BR>> Olaf Hauk ||
||<10%>__Software and datasets__ ||This will be part of a download that will become available later.<<BR>> [[https://mne.tools/stable/index.html|MNE-Python]] software homepage <<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE stand-alone installation instructions for COGNESTIC]]<<BR>> [[attachment:MNE-Python_datasets.ipynb|Jupyter script to download sample datasets in MNE-Pytho]]n ||
||'''Essential''' and suggested viewing ||'''0. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <<BR>>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<<BR>><<BR>> '''1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]'''<<BR>>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.''' '''<<BR>> '''2.''' [[https://www.youtube.com/watch?v=BsvKPknaSNo&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=9&pp=iAQB|Source spaces for EEG/MEG source estimation]]<<BR>> Cortical surface, volumetric source space, spatial sampling, spatial normalisation, subcortical areas, source orientation. <<BR>> '''3.''' [[https://www.youtube.com/watch?v=259MhTSCVMg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=10&pp=iAQB|Head models for EEG/MEG source estimation <<BR>>]]Volume conduction, Boundary Element Method (BEM), Finite Element Method (FEM), head model accuracy. <<BR>> '''4. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]'''<<BR>>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity'''. '''<<BR>> '''5. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]'''<<BR>>''' '''Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.''' '''<<BR>> '''6. '''[[https://www.youtube.com/watch?v=OyXzuo6gKcg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=13&pp=iAQB|Comparison of spatial resolution for linear EEG/MEG source estimation methods]] <<BR>>Point-spread functions (PSFs), cross-talk functions (CTFs), resolution metrics (localisation error, spatial deviation), combination of EEG and MEG, PSFs and CTFs for minimum-norm type methods and beamformers, comparison of resolution metrics for minimum-norm type methods and beamformers. <<BR>> '''7.''' '''[[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] '''<<BR>>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.''' '''<<BR>> + [[https://www.youtube.com/playlist?list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5|List of EEG/MEG lectures]]<<BR>> <<BR>> MNE-Python Tutorials: <<BR>> [[https://mne.tools/stable/auto_tutorials/forward/index.html|Forward Models and Source Spaces]]<<BR>> [[https://mne.tools/stable/auto_tutorials/inverse/index.html|Source Estimation]] ||
||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/35390459/|Linear source estimation and spatial resolution]]<<BR>> [[https://pubmed.ncbi.nlm.nih.gov/24434678/|Comparison of common head models]] (e.g. BEM)<<BR>> [[https://pubmed.ncbi.nlm.nih.gov/24971512/|Guidelines for head modelling]] (incl. FEM)<<BR>> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] ||
||Slides and scripts__ __ ||TBA ||




<<BR>> <<Anchor(eegmeg3b)>>
||||||<tablewidth="751px"style="text-align:center">~+'''EEG/MEG III – Time-Frequency and Functional Connectivity '''+~~+'''Analysis '''+~ <<BR>> Olaf Hauk ||
||<10%>__Software and datasets__ ||This will be part of a download that will become available later.<<BR>> [[https://mne.tools/stable/index.html|MNE-Python]] software homepage <<BR>> [[attachment:MNE_Installation_Instructions.pdf|MNE stand-alone installation instructions for COGNESTIC]]<<BR>> [[attachment:MNE-Python_datasets.ipynb|Jupyter script to download sample datasets in MNE-Pytho]]n ||
||'''Essential''' and suggested viewing ||'''1.''' [[https://www.youtube.com/watch?v=zl3tyPLuUm8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=17&pp=iAQB|The basics of signals in the frequency domain]] <<BR>>Oscillations, periodic signals, sine and cosine, polar representation, complex numbers. <<BR>> '''2. ''' '''[[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]]''' <<BR>> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <<BR>> '''3. ''' '''[[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]]''' <<BR>>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <<BR>> '''4.''' '''[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]]''' <<BR>>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <<BR>>'''5. '''[[https://www.youtube.com/watch?v=gqm2RAz9I8A&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=21&pp=iAQB|Spatial resolution (leakage) and connectivity]]<<BR>>Connectivity in sensor and source space, point-spread and cross-talk, (non-)zero-lag signals, orthogonalisation, imaginary part of coherency, source space parcellations. ||
||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/26778976/|Tutorial on Functional Connectivity]]<<BR>> [[https://mitpress.mit.edu/books/analyzing-neural-time-series-data|Analyzing Neural Time Series Data]]<<BR>> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]]__ __ ||
||Slides and scripts ||TBA ||




<<BR>> <<Anchor(eegmeg4b)>>
||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG IV – Statistics and BIDS'''+~ <<BR>> Olaf Hauk & Máté Aller ||
Line 186: Line 238:
<<BR>> <<Anchor(pythonprimer)>>
||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Kshipra Gurunandan ||
||<10%>__Software__ ||[[https://www.python.org/|Python]], [[https://pandas.pydata.org/|Pandas]], [[https://numpy.org/|NumPy]], [[https://matplotlib.org/|Matplotlib]], [[https://seaborn.pydata.org/|Seaborn]] ||
||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] ||
||__Useful references__ ||[[https://www.w3schools.com/python/default.asp|Python concepts with examples]], [[https://quickref.me/python.html|Quick reference]], [[https://blog.finxter.com/python-cheat-sheets/|Cheatsheets]] ||
||__Slides and scripts__ ||To be added ||




<<BR>> <<Anchor(rsa1)>>
||||||<tablewidth="100%"style="text-align:center;">~+'''MVPA/RSA I'''+~''' '''<<BR>> Daniel Mitchell ||
||<12%>__Software__ ||[[https://www.python.org/|Python 3.7+]], including numpy, matplotlib, & [[https://scikit-learn.org/stable/|scikit-learn]]. <<BR>> (To visualise MRI data, you can use your software of choice, although for nifti format data you might like to consider [[https://www.nitrc.org/projects/mricron|MRIcroN]] or [[https://www.nitrc.org/projects/mricrogl|MRIcroGL]].) ||
||__Datasets__ || ||
||__Reading__ ||[[https://academic.oup.com/scan/article/4/1/101/1613450|Mur et al. (2009) Revealing representational content with pattern-information fMRI--an introductory guide]]<<BR>> ||
||__Slides and scripts __ ||To be added nearer the time. ||




<<BR>> <<Anchor(rsa2)>>
||||||<tablewidth="100%"style="text-align:center;">~+'''MVPA/RSA II'''+~''' '''<<BR>> Daniel Mitchell & Máté Aller ||
||<12%>__Software__ ||Python implementation of the RSA Toolbox: [[https://github.com/rsagroup/rsatoolbox|Version 3.0]] ||
||__Datasets__ ||Example data included with RSA toolbox ||
||__Reading__ ||[[https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008/full|Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience]]<<BR>>[[https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(13)00127-7|Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain]] <<BR>>[[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003553|Nili et al. (2014) A toolbox for representational similarity analysis]]<<BR>> [[https://elifesciences.org/articles/82566|Schutt et al. (2023) Statistical inference on representational geometries]]<<BR>>EEG/MEG: <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/27779910/%20|Tutorial on EEG/MEG decoding]]<<BR>> [[https://www.sciencedirect.com/science/article/pii/S1364661314000199|Temporal Generalization]] [[https://www.sciencedirect.com/science/article/pii/S1053811913010914|Interpretation of Weight Vectors]] ||
||__Slides and scripts__ ||We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox. <<BR>>[[attachment:EEGMEG5-decoding.zip|EEGMEG Notebooks]] [[attachment:EMEG5_Decoding.pdf|EEG/MEG Slides]]<<BR>> ||




<<BR>> <<Anchor(connectivityfmri)>>
||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov ||
||<10%>__Software__ ||[[https://nilearn.github.io/stable/index.html|Nilearn]] ||
||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] ||
||__Reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]]<<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.04.007|Learning and comparing functional connectomes across subjects]] ||
||__Viewing__ ||[[https://www.youtube.com/watch?v=SqyNPbsgHNQ&ab_channel=PetarRaykov|fMRI Functional Connectivity in fMRI]]<<BR>>[[https://www.youtube.com/watch?v=1VOKsWWLgjk&ab_channel=RikHenson&t=15m10s|Overview of Effective Connectivity (not covered in person)]] ||
||__Tutorial slides and scripts__ ||[[https://github.com/ppraykov/FCCognestic2023|Functional Connectivity Nilearn Practical]]<<BR>>[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] ||



Line 187: Line 280:
<<BR>> <<Anchor(rsa1)>>
||||||<tablewidth="100%"style="text-align:center">~+'''MVPA/RSA I'''+~ <<BR>> Daniel Mitchell ||
||<10%>__Software__ ||[[http://cosmomvpa.org/|CoSMoMVPA]] using [[https://octave.org/|Octave]]. (These are not included in the virtual machine; you will need to install them yourself. If you have Matlab, you are welcome to use it instead of Octave, but the demos will be in Octave because it is open source.) <<BR>> To visualise MRI data, you can use your software of choice, although for nifti format data you might like to consider [[https://www.nitrc.org/projects/mricron|MRIcroN]]. ||
||__Datasets__ ||[[https://cosmomvpa.org/datadb-v0.3.zip|Tutorial data]] from CoSMoMVPA toolbox ||
||__Suggested reading__ ||[[https://academic.oup.com/scan/article/4/1/101/1613450|Mur et al. (2009) Revealing representational content with pattern-information fMRI--an introductory guide]]<<BR>>[[https://www.frontiersin.org/articles/10.3389/fninf.2014.00088/full|Hebart et al. (2014) The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data]]<<BR>>[[https://www.frontiersin.org/articles/10.3389/fninf.2016.00027/full|Oosterhof et al. (2016) CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave]] ||
||__Suggested viewing__ ||Excellent presentations from Martin Hebart's MVPA course, on:<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/02_lecture1|Introduction to MVPA]]<<BR>>[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/03_lecture2|Introduction to classification]]. I've suggested these two, but the others are worth a look too. <<BR>> (Note: on 25/9/23-26/9/23 the above links stopped working due to a temporary issue with the host website. If this happens again, let me know.) ||
||Slides and scripts__ __ ||We will be using the demos from the "examples" folder of the CoSMoMVPA toolbox.<<BR>> Exercises can be copied from the files [[https://www.cosmomvpa.org/matindex_skl.html|here]], pasted into an empty Octave file, and you can try to fill in the missing snippets.<<BR>>[[attachment:example_djm_partitions.m|extra example 1]]<<BR>>[[attachment:example_djm_unbalanced.m|extra example 2]]<<BR>>[[attachment:COGNESTIC23_MVPA_djm_part1.pptx|slides]] ||




<<BR>> <<Anchor(rsa2)>>
||||||<tablewidth="100%"style="text-align:center">~+'''MVPA/RSA II'''+~ <<BR>> Daniel Mitchell ||
||<10%>Software ||Python implementation of the RSA Toolbox: [[https://github.com/rsagroup/rsatoolbox|Version 3.0]] ||
||Datasets__ __ ||Example data included with RSA toolbox ||
||Suggested reading__ __ ||[[https://www.frontiersin.org/articles/10.3389/neuro.06.004.2008/full|Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience]]<<BR>>[[https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(13)00127-7|Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain]] <<BR>>[[https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003553|Nili et al. (2014) A toolbox for representational similarity analysis]]<<BR>> [[https://elifesciences.org/articles/82566|Schutt et al. (2023) Statistical inference on representational geometries]]<<BR>>EEG/MEG: <<BR>> [[https://pubmed.ncbi.nlm.nih.gov/27779910/%20|Tutorial on EEG/MEG decoding]]<<BR>> [[https://www.sciencedirect.com/science/article/pii/S1364661314000199|Temporal Generalization]] [[https://www.sciencedirect.com/science/article/pii/S1053811913010914|Interpretation of Weight Vectors]] ||
||Suggested viewing__ __ ||[[https://fmrif.nimh.nih.gov/course/mvpa_course/2017/08_lecture6|Martin Hebart's lecture on RSA]] <<BR>>(Note: on 25/9/23-26/9/23 this link stopped working due to a temporary issue with the host website. If this happens again, let me know.) ||
||Slides and scripts ||We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox. <<BR>> [[attachment:COGNESTIC23_MVPA_djm_part2.pptx|slides]]<<BR>>[[attachment:EEGMEG5-decoding.zip|EEGMEG Notebooks]] [[attachment:EMEG5_Decoding.pdf|EEG/MEG Slides]]<<BR>> ||




<<BR>> <<Anchor(psychophysiol)>>
||||||<tablewidth="100%"style="text-align:center">~+'''Brain Stimulation, Pethysmography, Electromyography'''+~ <<BR>> Ajay Halai, Alexis Deighton McIntyre, Hristo Dimitrov ||
||<10%>Software__ __ ||Brain Stimulation: <<BR>> [[https://simnibs.github.io/simnibs/build/html/index.html|E-field modelling for non-invasive brain stimulation using SimNIBS]] <<BR>> Plethysmography: <<BR>> [[https://github.com/alexisdmacintyre/SpeechBreathingToolbox|Speech breathing-oriented toolbox for breath-belt data (MATLAB)]] ||
||Datasets__ __ || ||
||Suggested reading__ __ ||Brain Stimulation: <<BR>> [[https://www.sciencedirect.com/science/article/pii/S1053811916001191|Approaches to brain stimulation]]; [[https://direct.mit.edu/jocn/article/33/2/195/95534/Inferring-Causality-from-Noninvasive-Brain|what can we infer from brain stimulation]]; [[https://www.nature.com/articles/nrneurol.2010.30.pdf|using NIBS clinically]] ; focused ultrasound [[https://www.nature.com/articles/srep34026.pdf|1]] and [[https://www.nature.com/articles/s41598-018-28320-1.pdf|2]] <<BR>><<BR>> Plethysmography: <<BR>> Heck, D. H., !McAfee, S. S., Liu, Y., Babajani-Feremi, A., Rezaie, R., Freeman, W. J., ... & Kozma, R. (2017). Breathing as a fundamental rhythm of brain function. ''Frontiers in neural circuits'', ''10'', 115. https://doi.org/10.3389/fncir.2016.00115 <<BR>> Varga, S., & Heck, D. H. (2017). Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. ''Consciousness and Cognition'', ''56'', 77-90. https://doi.org/10.1016/j.concog.2017.09.008 <<BR>> Allen, M., Varga, S., & Heck, D. H. (2022). Respiratory rhythms of the predictive mind. ''Psychological Review''. https://doi.org/10.1037/rev0000391 <<BR>><<BR>> EMG: <<BR>> [[https://www.sciencedirect.com/science/article/pii/S1050641120300419|Consensus for experimental design in electromyography]]<<BR>> [[https://www.sciencedirect.com/science/article/pii/S1050641122000293|Tutorial high-density EMG]]<<BR>> [[https://ieeexplore.ieee.org/document/9467400|Noninvasive Neural Interfacing With Wearable Muscle Sensors]] ||
||Suggested viewing__ __ ||Brain Stimulation: [[https://simnibs.github.io/simnibs/build/html/tutorial/tutorial.html|SimNIBs tutorial]] and [[https://www.youtube.com/playlist?list=PLDCjI20ZMvu2G4dGH9CIEztYHTEHg2oam|SimNIBS youtube videos]] ||
||Slides and scripts ||Brain Stimulation: [[attachment:AH_slides.pptx|slides]]<<BR>> Plethysmography: [[attachment:MacIntyre_COGNESTIC.pdf|slides]] ||




----
----

Course Material for COGNESTIC 2024

The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the COGNESTIC webpage.

Below you will find documents, videos and web links that will be used for the course or can be used for preparation.

Software Installation Instructions

Access to much of the COGNESTIC-23 materials is available via Virtual Machine (VM). You will need at least 70GB of free space on your local hard drive, and at least 4GB of RAM. For instructions on how to install and set up the Cognestic23 VM see section ‘1 COGNESTIC Virtual Machine (full hands-on)’ for instructions. Data for the Structural MRI and Diffusion MRI are located inside the VM.

Full installation instructions can be found here. The installation can take some time (potentially more than an hour, depending on your download speed), so please reserve some time for this ahead of the event.

Essential

You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course).

(sessions below should be ordered as they will be in course, but just did my ones for an example)



Background to Open Science
Rik Henson

Viewing

Open Cognitive Neuroscience


Network Analysis
Rik Henson

Viewing

Introduction to Network Neuroscience


Structural MRI I and II
Marta Correia

Viewing

Introduction to MRI Physics and image contrast
Slides


Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis
Marta Correia

Viewing

Introduction to Diffusion MRI - Part I
Slides


Diffusion MRI II - Tractography and the Anatomical Connectome
Marta Correia

Viewing

Introduction to Diffusion MRI - Part II
Slides


fMRI I - Data Management
Dace Apšvalka

Viewing

fMRI Data Structure & Terminology (6:47)
Brain imaging data structure (11:07)


fMRI II - Pre-processing
Dace Apšvalka

Viewing

fMRI Artifacts and Noise (11:57)
Pre-processing I (10:17)
Pre-processing II (7:42)


fMRI III - Analysis
Dace Apšvalka

Viewing

GLM applied to fMRI (11:21)
Model Building – conditions and contrasts (11:48)
Model Building - nuisance variables (13:58)
Multiple Comparisons (9:03)
Group-level Analysis I (7:05)


EEG/MEG I – Measurement and Pre-processing
Olaf Hauk

Viewing

1. Overview of EEG/MEG data processing from raw data to source estimates
Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.
2. The generation of EEG/MEG signals
Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.
3. Frequency and temporal filtering of EEG/MEG data
Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels.
4. Differential sensitivity of EEG and MEG
Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources.
5. Event-related potentials and fields
Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression.
Fore more on this topic see here.


EEG/MEG II – Head Modelling and Source Estimation
Olaf Hauk

Viewing

1. The EEG/MEG forward model
Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.
2. The EEG/MEG inverse problem
Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity.
3. The spatial resolution of linear EEG/MEG source estimation
Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.
4. Noise and regularisation in EEG/MEG source estimates
Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.
Fore more on this topic see here.


EEG/MEG III – Time-Frequency and Functional Connectivity Analysis
Olaf Hauk

Viewing

1. Frequency spectra and the Fourier analysis
Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response.
2. Time-frequency analysis and wavelets
Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts.
3. The basics of functional connectivity methods
Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity.
Fore more on this topic see here.


EEG/MEG IV – Further Topics and BIDS
Olaf Hauk & Máté Aller

Viewing

1. Primer on group statistics for EEG/MEG data
Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.
2. Primer on decoding and RSA with EEG/MEG data
Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).
3. Primer on multimodal integration
Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG.
Fore more on this topic see here.


MVPA/RSA
Daniel Mitchelland Máté Aller

Viewing

Excellent presentations from Martin Hebart's MVPA course, on:
Introduction to MVPA
Introduction to classification.
If the links don't work, download from here and here.
Martin Hebart's lecture on RSA. If the link fails, download from here.
Primer on decoding and RSA with EEG/MEG data


MVPA/RSA II
Daniel Mitchell

Viewing

Additional Extra

If you want additional background, consider some of the below:


Background to Open Science
Rik Henson

Websites

OSF
UKRN
BIDS

Reading

Munafo et al, 2017, problems in science
Button et al, 2013, power in neuroscience
Poldrack et al, 2017, reproducible neuroimaging
Marek et al, 2022, power in neuroimaging association studies

Viewing

Statistical power in neuroimaging
PayWall: open access
Comedian's Perspective on science and media

Slides

Open Science Talk Slides


Brain Network Analysis
Rik Henson

Software

Python 3.7+, nxviz, python-louvain

Datasets

Reading

- (Review article) Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10, 186–198 (2009). https://doi.org/10.1038/nrn2575
- (Textbook reference for more information) Alex Fornito, Andrew Zalesky, and Edward Bullmore. Fundamentals of brain network analysis. Academic press, 2016.

Viewing

Understanding your brain as a network and as art by Prof. Dani Bassett.

Slides

https://github.com/isebenius/COGNESTIC_network_analysis/ Slides


Structural MRI I - Voxel-based morphometry
Marta Correia

Software

FSL

Suggested reading

Introduction to GLM for structural MRI analysis
Good et al, 2001, A VBM study of ageing
Smith et al, 2004, Structural MRI analysis in FSL


Structural MRI II - Surface-based analyses
Marta Correia

Software

Freesurfer

Suggested reading

Dale et al, 1999, Cortical surface-based analysis I
Fischl et al, 1999, Cortical surface-based analysis II

Suggested viewing

Using the command line


Diffusion MRI I - Preprocessing, Model Fitting and Group Analysis
Marta Correia

Software

dipy, FSL

Suggested reading

FSL Diffusion Toolbox Wiki
Le Bihan et al, 2015, What water tells us about biological tissues
Soares et al, 2013, A short guide to Diffusion Tensor Imaging
Smith et al, 2006, Tract-based spatial statistics (TBSS)


Diffusion MRI II - Tractography and the Anatomical Connectome
Marta Correia

Software

dipy

Suggested reading

MR Diffusion Tractography


fMRI I - Data Management
Dace Apšvalka

Software

HeudiConv, PyBIDS, NiBabel, Nilearn

Websites

Brain Imaging Data Structure
BIDS Starter Kit
BIDS Specification v1.9.0

Suggested reading

The brain imaging data structure (BIDS), Gorgolewski et al., 2016
The past, present, and future of the brain imaging data structure (BIDS), Poldrack et al., 2024


fMRI II - Pre-processing
Dace Apšvalka

Software

MRIQC, fMRIprep, NiPype

Suggested reading

Functional Magnetic Resonance Imaging Methods, Chen & Glover, 2015
Quality control in functional MRI studies with MRIQC and fMRIPrep, Provins et al., 2023
fMRIPrep: a robust preprocessing pipeline for functional MRI, Esteban et al., 2018
Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python, Gorgolewski et al., 2011


fMRI III - Analysis
Dace Apšvalka

Software

Nilearn

Suggested reading

The Statistical Analysis of fMRI Data, Lindquist, 2008
Controlling the familywise error rate in functional neuroimaging: a comparative review, Nichols & Hayasaka, 2003
Analysis of task-based functional MRI data preprocessed with fMRIPrep, Esteban et al., 2020
Guidelines for reporting an fMRI study, Poldrack et al., 2008

Suggested viewing

Model Building - temporal basis sets (11:08)
GLM Estimation (9:11)
Noise Models- AR models (9:57)
Inference- Contrasts and t-tests (11:05)
Multiple Comparisons by Martin Lindquist and Tor Wager (9:03)
FWER Correction (16:11)
FDR Correction (5:25)
More about multiple comparisons (14:39)


EEG/MEG I – Measurement and Pre-processing
Olaf Hauk

Software and datasets

This will be part of a download that will become available later.
MNE-Python software homepage
MNE stand-alone installation instructions for COGNESTIC
Jupyter script to download sample datasets in MNE-Python

Essential and suggested viewing

0. Overview of EEG/MEG data processing from raw data to source estimates
Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.

1. A brief history of timing
A brief overview of the history of bioelectromagnetism, EEG and MEG.
2. The generation of EEG/MEG signals
Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.
3. Basics of EEG/MEG artefact correction
Physiological and non-physiological artefacts, data decompositions, frequency/temporal/spatial filtering.
4. Frequency and temporal filtering of EEG/MEG data
Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels.
5. Topographical artefact correction of EEG/MEG data
Independent Component Analysis (ICA), Signal Space Projection (SSP), eye movement and heart beat artefacts.
6. Maxfiltering of MEG data
Signal Space Separation, options of Maxfilter software (e.g. movement compensation).
7. Differential sensitivity of EEG and MEG
Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources.
8. Event-related potentials and fields
Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression.
+ Origin, significance, and interpretation of EEG (Michael X Cohen)
+ Analysing MEG data with MNE-Python and its ecosystem (Alex Gramfort)
+ List of EEG/MEG lectures

MNE-Python tutorials:
Overview of MNE-Python processing pipeline from preprocessing to source estimation
Preprocessing

Suggested reading

Digitial Filtering
Filtering How To
Maxwell Filtering
General EEG/MEG Literature

Slides and scripts

TBA


EEG/MEG II – Head Modelling and Source Estimation
Olaf Hauk

Software and datasets

This will be part of a download that will become available later.
MNE-Python software homepage
MNE stand-alone installation instructions for COGNESTIC
Jupyter script to download sample datasets in MNE-Python

Essential and suggested viewing

0. Overview of EEG/MEG data processing from raw data to source estimates
Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.

1. The EEG/MEG forward model
Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.
2. Source spaces for EEG/MEG source estimation
Cortical surface, volumetric source space, spatial sampling, spatial normalisation, subcortical areas, source orientation.
3. Head models for EEG/MEG source estimation <<BR>>Volume conduction, Boundary Element Method (BEM), Finite Element Method (FEM), head model accuracy.
4. The EEG/MEG inverse problem
Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity.
5. The spatial resolution of linear EEG/MEG source estimation
Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.
6. Comparison of spatial resolution for linear EEG/MEG source estimation methods
Point-spread functions (PSFs), cross-talk functions (CTFs), resolution metrics (localisation error, spatial deviation), combination of EEG and MEG, PSFs and CTFs for minimum-norm type methods and beamformers, comparison of resolution metrics for minimum-norm type methods and beamformers.
7. Noise and regularisation in EEG/MEG source estimates
Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.
+ List of EEG/MEG lectures

MNE-Python Tutorials:
Forward Models and Source Spaces
Source Estimation

Suggested reading

Linear source estimation and spatial resolution
Comparison of common head models (e.g. BEM)
Guidelines for head modelling (incl. FEM)
General EEG/MEG Literature

Slides and scripts

TBA


EEG/MEG III – Time-Frequency and Functional Connectivity Analysis
Olaf Hauk

Software and datasets

This will be part of a download that will become available later.
MNE-Python software homepage
MNE stand-alone installation instructions for COGNESTIC
Jupyter script to download sample datasets in MNE-Python

Essential and suggested viewing

1. The basics of signals in the frequency domain
Oscillations, periodic signals, sine and cosine, polar representation, complex numbers.
2. Frequency spectra and the Fourier analysis
Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response.
3. Time-frequency analysis and wavelets
Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts.
4. The basics of functional connectivity methods
Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity.
5. Spatial resolution (leakage) and connectivity
Connectivity in sensor and source space, point-spread and cross-talk, (non-)zero-lag signals, orthogonalisation, imaginary part of coherency, source space parcellations.

Suggested reading

Tutorial on Functional Connectivity
Analyzing Neural Time Series Data
General EEG/MEG Literature

Slides and scripts

TBA


EEG/MEG IV – Statistics and BIDS
Olaf Hauk & Máté Aller

Software

MNE-Python
MNE Installation for Cognestic

Datasets

Sample dataset in MNE-Python. Tutorials
MNE Installation for Cognestic
M/EEG combined dataset Download Datasets

Suggested reading

Estimating subcortical sources from EEG/MEG
Tutorial on converting MEG data to BIDS format
Example using MNE-BIDS-Pipeline for processing combined M/EEG data

Suggested viewing

Talk on Multimodal Integration

Slides and scripts

Notebooks Exercises Slides1 Slides2
Notebooks mne-bids-pipeline Slides mne-bids-pipeline


Primer on Python
Kshipra Gurunandan

Software

Python, Pandas, NumPy, Matplotlib, Seaborn

Datasets

Wakeman Multimodal

Useful references

Python concepts with examples, Quick reference, Cheatsheets

Slides and scripts

To be added


MVPA/RSA I
Daniel Mitchell

Software

Python 3.7+, including numpy, matplotlib, & scikit-learn.
(To visualise MRI data, you can use your software of choice, although for nifti format data you might like to consider MRIcroN or MRIcroGL.)

Datasets

Reading

Mur et al. (2009) Revealing representational content with pattern-information fMRI--an introductory guide

Slides and scripts

To be added nearer the time.


MVPA/RSA II
Daniel Mitchell & Máté Aller

Software

Python implementation of the RSA Toolbox: Version 3.0

Datasets

Example data included with RSA toolbox

Reading

Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience
Kriegeskorte & Kievit (2013) Representational geometry: integrating cognition, computation, and the brain
Nili et al. (2014) A toolbox for representational similarity analysis
Schutt et al. (2023) Statistical inference on representational geometries
EEG/MEG:
Tutorial on EEG/MEG decoding
Temporal Generalization Interpretation of Weight Vectors

Slides and scripts

We will demo the RSA toolbox using the jupyter notebooks in the "demos" folder of the toolbox.
EEGMEG Notebooks EEG/MEG Slides


fMRI Connectivity
Petar Raykov

Software

Nilearn

Datasets

movie dataset

Reading

Resting-state functional Connectivity
Learning and comparing functional connectomes across subjects

Viewing

fMRI Functional Connectivity in fMRI
Overview of Effective Connectivity (not covered in person)

Tutorial slides and scripts

Functional Connectivity Nilearn Practical
DCM tutorial in SPM (not covered in-person)


None: COGNESTIC2024 (last edited 2024-09-27 12:06:10 by OlafHauk)