= Course Material for COGNESTIC 2024 =
The Cognitive Neuroimaging Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for reproducible and open neuroimaging analysis and related methods. You can find more information on the [[https://www.mrc-cbu.cam.ac.uk/cognestic-2023/|COGNESTIC webpage]].
Below you will find documents, videos and web links that will be used for the course or can be used for preparation.
== Software Installation Instructions ==
Access to much of the COGNESTIC-23 materials is available via Virtual Machine (VM). You will need at least 70GB of free space on your local hard drive, and at least 4GB of RAM. For instructions on how to install and set up the Cognestic23 VM see section ‘1 COGNESTIC Virtual Machine (full hands-on)’ for instructions. Data for the Structural MRI and Diffusion MRI are located inside the VM.
Full '''installation instructions''' can be found [[attachment:COGNESTIC-23_hands-on_materials.pdf|here]]. The installation can take some time (potentially more than an hour, depending on your download speed), so please reserve some time for this ahead of the event.
== Essential ==
You will find the course easier if you can study as much of the material below in advance (e.g, many of the videos below give the theory to the examples we will work through in the course).
(sessions below should be ordered as they will be in course, but just did my ones for an example)
<
><
> <>
||||||~+'''Background to Open Science'''+~ <
> Rik Henson ||
||__Viewing__ ||[[https://youtu.be/kTVtc7kjVQg|Open Cognitive Neuroscience]] ||
<
> <>
||||||~+'''Network Analysis'''+~ <
> Rik Henson ||
||__Viewing__ ||[[https://www.youtube.com/watch?v=H2q3fPxiuvw|Introduction to Network Neuroscience]] ||
<
> <>
||||||~+'''Structural MRI I and II'''+~''' '''<
> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/Psh-GovQLiI|Introduction to MRI Physics and image contrast]] <
> [[attachment:IntroductionToMRIPhysics.pdf|Slides]] ||
<
> <>
||||||~+'''Diffusion MRI I - '''+~~+'''Preprocessing, Model Fitting and Group Analysis'''+~ <
> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/stpmlzO7b6c|Introduction to Diffusion MRI - Part I]] <
> [[attachment:IntroductionToDiffusionMRI_I.pdf|Slides]] ||
<
> <>
||||||~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <
> Marta Correia ||
||__Viewing__ ||[[https://youtu.be/QDJJ6G2ZouA|Introduction to Diffusion MRI - Part II]] <
> [[attachment:IntroductionToDiffusionMRI_II.pdf|Slides]] ||
<
> <>
||||||~+'''fMRI I - Data Management'''+~ <
> Dace Apšvalka ||
||Viewing ||[[https://youtu.be/OuRdQJMU5ro|fMRI Data Structure & Terminology]] (6:47)<
>[[https://youtu.be/5H6XaJLp2V8?si=39BLjouIy8aUaEo7|Brain imaging data structure]] (11:07) ||
<
> <>
||||||~+'''fMRI II - Pre-processing'''+~ <
> Dace Apšvalka ||
||Viewing ||[[https://youtu.be/7Kk_RsGycHs|fMRI Artifacts and Noise]] (11:57) <
> [[https://youtu.be/Qc3rRaJWOc4|Pre-processing I]] (10:17) <
> [[https://youtu.be/qamRGWSC-6g|Pre-processing II]] (7:42) ||
<
> <>
||||||~+'''fMRI III - Analysis'''+~ <
> Dace Apšvalka ||
||Viewing ||[[https://www.youtube.com/watch?v=OyLKMb9FNhg|GLM applied to fMR]]I (11:21) <
> [[https://www.youtube.com/watch?v=7MibM1ATai4|Model Building – conditions and contrasts]] (11:48) <
> [[https://www.youtube.com/watch?v=DEtwsFdFwYc%20|Model Building - nuisance variables]] (13:58) <
> [[https://youtu.be/AalIM9-5-Pk|Multiple Comparisons]] (9:03) <
> [[https://youtu.be/__cOYPifDWk|Group-level Analysis I]] (7:05) ||
<
> <>
||||||~+'''EEG/MEG I – Measurement and Pre-processing'''+~ <
> Olaf Hauk ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=S24QG_n6KXk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=1|Overview of EEG/MEG data processing from raw data to source estimates]]''' <
>Event-related paradigm, sample dataset, power spectrum, pre-processing, artefact correction, epoching and averaging, visualization, source estimation.<
> '''2. [[https://www.youtube.com/watch?v=GGDc6qZoDZ4&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=2&pp=iAQB|The generation of EEG/MEG signals]]''' <
>Dipole sources, volume currents, sensor types (EEG, magnetometers, gradiometers) and their leadfields.<
>''' ''''''3.''' '''[[https://www.youtube.com/watch?v=fLAoRsB2MF8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=5&pp=iAQB|Frequency and temporal filtering of EEG/MEG data]]'''<
>''' '''Frequency spectrum, temporal smoothing, relationship between frequency and time domain, filters (low-/high-/band-pass, Notch), aliasing, decibels. <
> '''4. [[https://www.youtube.com/watch?v=OZFiYeIR2Xk&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=7&pp=iAQB|Differential sensitivity of EEG and MEG]]''' <
>Volume conduction, sensor types and their leadfields, sensitivity maps, dipoles vs spatially extended sources. <
> '''5.''' '''[[https://www.youtube.com/watch?v=DYOnFu2Cuyw&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=16|Event-related potentials and fields]]''' <
>Averaging, evoked and induced activity, number of trials, artefact rejection, parametric designs, regression. <
> Fore more on this topic see [[#eegmeg1b|here.]] ||
<
> <>
||||||~+'''EEG/MEG II – Head Modelling and Source Estimation'''+~ <
> Olaf Hauk ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=duhU5nOsAoc&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=8&pp=iAQB|The EEG/MEG forward model]]'''<
>Basic formulation of the EEG/MEG forward problem, linear equation, basics of head modelling, examples of sensory evoked responses.''' '''<
> '''2. [[https://www.youtube.com/watch?v=KlRJ5kpT3eA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=11&pp=iAQB|The EEG/MEG inverse problem]]'''<
>Non-uniqueness, under-determinedness, examples of non-uniqueness, source estimates for sensorily evoked activity'''. '''<
> '''3. [[https://www.youtube.com/watch?v=X4EZCGPvI1k&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=12&pp=iAQB|The spatial resolution of linear EEG/MEG source estimation]]'''<
>''' '''Leakage and blurring, resolution matrix, point-spread functions (PSFs), cross-talk functions (CTFs), examples of PSFs and CTFs, regions-of-interest for source estimation.''' '''<
> '''4.''' '''[[http://www.youtube.com/watch?v=XgYev3N1rR0&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=14&pp=iAQB|Noise and regularisation in EEG/MEG source estimates]] '''<
>Over- and under-fitting, smoothing, regularisation parameter, data whitening, noise covariance matrix.''' ''' <
> Fore more on this topic see [[#eegmeg2b|here.]] ||
<
> <>
||||||~+'''EEG/MEG III – Time-Frequency and Functional Connectivity '''+~~+'''Analysis '''+~ <
> Olaf Hauk ||
||__Viewing__ ||'''1. ''' '''[[https://www.youtube.com/watch?v=N4Pm1_C8hlA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=18&pp=iAQB|Frequency spectra and the Fourier analysis]]''' <
> Periodic basis functions, Fourier Decomposition, frequency spectrum, Nyquist Theorem, steady state response. <
> '''2. ''' '''[[https://www.youtube.com/watch?v=ac0LbTm1Eb8&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=19&pp=iAQB|Time-frequency analysis and wavelets]]''' <
>Fourier analysis, wavelets, trade-off between time and frequency resolution, wavelets, number of cycles, evoked and induced activity, beta bursts. <
> '''3.''' '''[[https://www.youtube.com/watch?v=omWqJ8xD2gs&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=20&pp=iAQB|The basics of functional connectivity methods]]''' <
>Types of connectivity, amplitude envelope correlation, resting state analysis, Hilbert envelope, phase-locking, coherence, SNR bias, time-resolved connectivity. <
> Fore more on this topic see [[#eegmeg3b|here.]] ||
<
> <>
||||||~+'''EEG/MEG IV – Further Topics and BIDS'''+~ <
> Olaf Hauk & Máté Aller ||
||__Viewing__ ||'''1. [[https://www.youtube.com/watch?v=sW2i5sZC0zA&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=22&pp=iAQB|Primer on group statistics for EEG/MEG data]]'''<
>Regions-of-interest (ROI) analysis, multiple comparison problem, cluster-based permutation tests, problems estimating cluster extent, MNE-Python tutorial.<
> '''2. [[https://www.youtube.com/watch?v=08_VgAlVjIg&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=23&pp=iAQB|Primer on decoding and RSA with EEG/MEG data]]'''<
>Basics of linear decoding, temporal generalisation, interpreting decoding weights, back-projection, representational similarity analysis (RSA).<
> '''3. [[https://www.youtube.com/watch?v=95WZzPGXJes&list=PLp67eqWCj2f_DBsCMkIOBpBbLWGAUKtu5&index=24&pp=iAQB|Primer on multimodal integration]]''' <
> Types of neural “activity”, differential sensitivity of EEG/MEG vs fMRI, source weighting and priors, estimating deep sources with EEG/MEG. <
> Fore more on this topic see [[#eegmeg4b|here.]] ||
<
> <>
||||||~+'''MVPA/RSA I'''+~ <
> Daniel Mitchell ||
||