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“Brain Rhythms” and “Oscillations”

Cahn et al., Cogn Proc 2010, http://link.springer.com/article/10.1007%2Fs10339-

009-0352-1/

Time course and topography may differ among different frequency bands
(and may depend on task, environment, subject group etc.)

=> Different frequency “bands” may reflect different processes/computations, systems/networks, etc.

http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/


“Brain Rhythms” and “Oscillations”

Siegel et al., Nat Nsc 2012



Periodic Signals

A periodic signal repeats itself with a period T.

This is the case, for example, for sine and cosine functions:

In radians (𝟐𝝅 ~ 360 degrees):
𝒄𝒐𝒔 𝒙 + 𝟐𝝅 = 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝒙 + 𝟐𝝅 = 𝒔𝒊𝒏 𝒙

In degrees :
𝒄𝒐𝒔 𝒙 + 𝟑𝟔𝟎 = 𝒄𝒐𝒔 𝒙
𝒔𝒊𝒏 𝒙 + 𝟑𝟔𝟎 = 𝒔𝒊𝒏 𝒙

https://www.youtube.com/watch?v=z82I6u4DFTo

s(𝑡) = 𝑎 ∗ 𝑠𝑖𝑛(2𝜋𝑓 ∗ 𝑡 + 𝜃)
a: amplitude
f: frequency
𝜃 : phase

3600  ~  2𝝅

On a unit circle, a 3600 angle 

corresponds to a 

circumference of 2*pi

https://www.youtube.com/watch?v=z82I6u4DFTo


Polar Representation Of Periodic Signals
Euler’s Formula

𝑒−𝑖𝜃 = 𝒄𝒐𝒔 𝜃 + 𝒊 ∗ 𝒔𝒊𝒏 𝜃 i= −𝟏
Therefore:

𝑐𝑜𝑠(𝜃) = 𝑟𝑒𝑎𝑙(𝑒−𝑖𝜃)

𝑠𝑖𝑛(𝜃) = 𝑖𝑚𝑎𝑔(𝑒−𝑖𝜃)
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An oscillation at a particular frequency can be described in a 

“polar representation”:

𝑎 ∗ 𝑒−𝑖2𝜋𝑓𝑡
a: amplitude

2𝜋: circumference of unit circle

f: frequency

t: time

“Complex” numbers can capture the two axes of the coordinate system for the circle 

around which the vector rotates periodically – this is rather abstract but helps the 

notation enormously.



Bastos & Schoeffelen, Front Syst Nsc 2016

https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

The Polar Representation Of Periodic Signals
Convenient To Compare Periodic Signals

https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full


Sine and Cosine Are Orthogonal to Each Other
(at a given frequency)
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Sine/Cosine At Integer Frequency Intervals

Are Orthogonal
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Entering the Frequency Domain: 
Fourier Transform in Words

What you want:

You’ve got a signal consisting of N sample points (equidistant).

You want to know which frequencies contribute to the signal, and how much.

In other words:

You want to describe your signal as a linear combination of sines and cosines,

ideally of orthogonal basis functions made up of sines and cosines.

What you’ve got:

With N samples, you can estimate at most N independent parameters.

You cannot estimate frequencies above half of the sampling frequency SF 

(Nyquist).

For a given frequency, sine and cosine are orthogonal, 

i.e. 2 basis functions per frequency.



Divide the frequency range 0 to SF/2 evenly into N/2 frequencies. 

For every frequency, create a sine and a cosine.

Use these (orthogonal) sines and cosines as your basis functions.

Project these basis functions onto your data, get the amplitudes for individual basis 

functions – that is your frequency spectrum.

Fast Fourier Transform (FFT): A fast algorithm to do this.

(I’m cheating a bit, assuming an appropriate N and ignoring the mean. But the principle is ok.)

Entering the Frequency Domain: 
Fourier Transform in Words



The Fourier (De-)Composition

1 term

4 terms

16 terms

Approximating a step function 

with Fourier terms

Decomposing signals 

into sine/cosine terms

Frequency Spectrum



Steady State Responses

Auditory Steady State Response

(ASSR)

Visual Steady State Response

(VSSR)

Norcia et al., J Vision 2015, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581566/Ross et al., JASA 2000, https://pubmed.ncbi.nlm.nih.gov/10955634/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4581566/
https://pubmed.ncbi.nlm.nih.gov/10955634/


Fast Periodic Visual Stimulation (FPVS)



Fast Periodic Visual Stimulation (FPVS)



Fast Periodic Visual Stimulation (FPVS)

Hauk et al., NI 2021, https://www.sciencedirect.com/science/article/pii/S1053811921007345

https://www.sciencedirect.com/science/article/pii/S1053811921007345


Motivation for Time-Frequency Analysis

Fourier Transform assumes sines and cosines with constant amplitudes 

across the whole time series (“stationarity”).

But what does an FFT mean for a signal like this?
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Motivation for Time-Frequency Analysis

You could run separate FFTs for different (sliding) time windows:
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But different window sizes are more or less optimal for different frequencies.

Run different FFTs with different window sizes for different frequency ranges? Ouff.



Hipp et al., Nat Nsc 2012, https://www.nature.com/articles/nn.3101

Functional Connectivity of Resting State Activity

(“Hilbert”) Envelope for a frequency band

https://www.nature.com/articles/nn.3101


Time-Frequency Analysis: Wavelets (“little waves”)

Wavelets provide an optimal trade-off between frequency and time resolution.

Wavelets are convolved with the data to give instantaneous amplitude and phase 

estimates for different frequency ranges.

Wavelets are getting 

“broader” with 

decreasing frequency

=>

Time resolution 

decreases as 

frequency decreases
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Time-Frequency Analysis: Wavelets

Tallon-Baudry & Bertrand, TICS 1999

https://pubmed.ncbi.nlm.nih.gov/10322469/

Wavelet Transform
Trade-off between time and frequency resolution

Time-Frequency Power

https://pubmed.ncbi.nlm.nih.gov/10322469/


Time-domain and frequency-domain filtering are two sides of the same coin:

One type of frequency-domain filtering corresponds to one type of time-domain filtering.

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images

Frequency domain

Time domain

Frequency

Time

Where have we seen this before?Basic Principals of Frequency Filtering

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images


A Very Rough Rule of Thumb

One needs at least 2 cycles of a frequency to get a meaningful estimate

(of amplitude, phase, etc.)

Duration (in ms) of 2 cycles at frequency f (in Hz): 2*1000/f

1 Hz: 2000 ms = 2 s

10 Hz: 200 ms = 1/5 s

40 Hz: 50 ms = 1/20 s

100 Hz: 20 ms = 1/50 s

The lower the frequency, the longer the time window required to estimate the signal.



Effect of Number of Cycles

1 cycle 2 cycles

3 cycles Freq/3 cycles

Rule of thumb: For low frequencies (<~10Hz), n=2 or 3; for higher frequencies n=f/3.



Evoked and Induced Rhythmic Activity

Tallon-Baudry & Bertrand, TICS 1999

https://pubmed.ncbi.nlm.nih.gov/10322469/

evoked induced
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https://pubmed.ncbi.nlm.nih.gov/10322469/


When brain rhythms aren’t “rhythmic” – the example of beta “oscillations”

Jones et al., Curr Op Neurobiol 2016

https://pubmed.ncbi.nlm.nih.gov/27400290/

“beta bursts”
rather than “oscillations”

https://pubmed.ncbi.nlm.nih.gov/27400290/




“Single-Trial Analysis” and Source Estimation

Computing the power of a signal is a non-linear transformation.

Linear transformations are associative:
T(a+b) = T(a)+T(b)

Therefore, the result is the same whether you apply a linear transformation before or after 
averaging your epochs.

Spectral power is non-linear!
If you want the average power, you have to compute power for individual epochs first, then 
average.

The noise level and a priori knowledge about sources will be different for single trials 
compared to the average.

For example, a single/multiple dipole model may be justified for the average (e.g. auditory P1 etc.), but not for 
single trials.



Power Estimation Changes the Time Course
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MRC Cognition and Brain Sciences Unit @MRCCBU mrc-cbu.cam.ac.uk

Thank you


