Size: 24837
Comment: only temporary
|
← Revision 194 as of 2023-03-31 12:36:10 ⇥
Size: 27145
Comment: Back to 2022 page
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
Below you will find documents, videos and web links that will be used for the course or can be used for preparation. <<BR>><<BR>> <<Anchor(openscience)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Introduction and Open Science'''+~ <<BR>> Rik Henson & Olaf Hauk || |
Below you will find documents, videos and web links that will be used for the course or can be used for preparation. <<BR>><<BR>> <<Anchor(openscience)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Introduction and Open Science'''+~ <<BR>> Rik Henson & Olaf Hauk || |
Line 14: | Line 14: |
<<BR>> <<Anchor(pythonprimer)>> ||||||<tablewidth="734px" tableheight="248px"style="text-align:center">~+'''Primer on Python'''+~ <<BR>> Edwin Dalmijer || ||<10%>__Websites__ ||[[https://www.python.org/|Python]], [[https://numpy.org/|NumPy]], [[https://scipy.org/|SciPy]], [[https://matplotlib.org/|Matplotlib]], [[https://psychopy.org/|PsychoPy]] || ||__Suggested reading__ ||None || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=H8Du3llCa6w|saliency-mapping of Taylor Swift music videos]] || ||__Tutorial slides and scripts__ ||None || |
|
Line 25: | Line 15: |
||||||<tablewidth="100%"style="text-align:center">'''Structural MRI I - Voxel-based morphometry'''~+''' '''+~<<BR>> Marta Correia || | ||||||<tablewidth="100%"style="text-align:center">~+'''Structural MRI - VBM and Surface-based Analysis '''+~<<BR>> Marta Correia || |
Line 35: | Line 25: |
<<BR>> <<Anchor(structuralmri2)>> ||||||<tablewidth="100%"style="text-align:center">'''Structural MRI II - Surface-based analyses'''~+''' '''+~<<BR>> Marta Correia || ||<10%>__Software__ ||[[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/|FSL]] [[https://surfer.nmr.mgh.harvard.edu/|Freesurfe]]r || ||__Datasets__ ||[[https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/Data|Freesurfer tutorial data]] <<BR>> Subset of the CamCAN dataset (~3GB) https://www.cam-can.org/, please sign [[attachment:CamCAN Data User Agreement_COGNESTIC.docx|data user agreement]] if using || ||__Suggested reading__ || || ||__Suggested viewing__ || || ||__Tutorial slides and scripts__ || || |
|
Line 47: | Line 26: |
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - The Diffusion Tensor Model'''+~ <<BR>> Marta Correia || | ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI I - DTI Model Fitting and Group Analysis'''+~ <<BR>> Marta Correia || |
Line 58: | Line 37: |
||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and the Anatomical Connectome'''+~ <<BR>> Marta Correia || | ||||||<tablewidth="100%"style="text-align:center">~+'''Diffusion MRI II - Tractography and Structural Connectivity'''+~ <<BR>> Marta Correia || |
Line 113: | Line 92: |
||||||<tablewidth="734px" tableheight="239px"style="text-align:center">~+'''fMRI Connectivity'''+~ <<BR>> Petar Raykov || ||<10%>__Software__ ||[[https://carpentries-incubator.github.io/SDC-BIDS-fMRI/aio/index.html|Nilearn Python]] || ||__Datasets__ ||[[https://nilearn.github.io/dev/modules/generated/nilearn.datasets.fetch_development_fmri.html|movie dataset]] || ||__Suggested reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=1VOKsWWLgjk|fMRI Functional and Effective Connectivity in fMRI]] || ||__Tutorial slides and scripts__ ||[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|DCM tutorial in SPM (not covered in-person)]] || <<BR>> <<Anchor(networks)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Brain Network Analysis'''+~ <<BR>> Lena Dorfschmidt || ||<10%>Software__ __ ||[[https://pypi.org/project/bctpy/|Brain connectivity toolbox in python]] || ||Datasets__ __ || || ||Suggested reading__ __ ||Bullmore, E., Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. ''Nat Rev Neurosci'' '''10''', 186–198 (2009). [[https://doi.org/10.1038/nrn2575|https://doi.org/10.1038/nrn2575]] <<BR>> Fornito, Alex, Andrew Zalesky, and Edward Bullmore. ''Fundamentals of brain network analysis''. Academic press, 2016. || ||Suggested viewing__ __ ||[[https://www.youtube.com/watch?v=HjSGqwAFRcc|Understanding your brain as a network and as art]] || |
||||||<tablewidth="100%"style="text-align:center">~+'''Connectivity for fMRI'''+~ <<BR>> Rik Henson || ||<10%>__Software__ ||[[https://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[http://dx.doi.org/10.1016/j.tics.2013.09.016|Resting-state functional Connectivity]] <<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.07.008|Simple Intro to DCM]] <<BR>> [[https://www.frontiersin.org/articles/10.3389/fnins.2019.00300/full#supplementary-material|fMRI preprocessing in SPM12 (for demo)]] <<BR>> [[https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf|SPM12 manual (Chapter 36)]] || ||__Suggested viewing__ ||[[https://youtu.be/1VOKsWWLgjk|fMRI Functional Connectivity, including DCM]] <<BR>> [[https://youtu.be/1cbEmn_Qgkc|Bayesian Model Comparison (for DCM for fMRI/MEEG)]] || ||__Tutorial slides and scripts__ ||[[attachment:Multimodal_DCM_cognestic_tutorial_fMRI.pdf|Tutorial for DCM for fMRI]] || <<BR>> <<Anchor(eyetracking)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Eye-tracking'''+~ <<BR>> Edwin Dalmaijer || ||<10%>Software__ __ ||Python NumPy, [[https://scipy.org/|SciPy]], [[https://matplotlib.org/|Matplotlib]] || ||Datasets__ __ ||[[https://www.pygaze.org/resources/downloads/PEP/ED_pupil.asc|Example Data]] EyeLink || ||Suggested reading__ __ ||https://doi.org/10.3758/s13428-021-01762-8 Paper on eye-tracking reporting standards (great for beginners and experts alike) || ||Suggested viewing__ __ ||https://www.youtube.com/watch?v=F5eBln42VyM Talk at the MRC CBU on how to hack pupillometry studies || |
Line 156: | Line 135: |
<<BR>> <<Anchor(eegmeg4)>> ||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG VI – Priors and Multimodal Imaging'''+~ <<BR>> Olaf Hauk || |
<<BR>> <<Anchor(eegmeg3)>> ||||||<tablewidth="100%"style="text-align:center">~+'''EEG/MEG III – Time-Frequency and Functional Connectivity'''+~ <<BR>> Olaf Hauk || |
Line 160: | Line 139: |
||__Suggested reading__ || || ||__Suggested viewing__ || || ||Slides and scripts__ __ || || |
||__Suggested reading__ ||[[https://pubmed.ncbi.nlm.nih.gov/26778976/|Tutorial on Functional Connectivity]]<<BR>> [[https://mitpress.mit.edu/books/analyzing-neural-time-series-data|Analyzing Neural Time Series Data]]<<BR>> [[attachment:General EEGMEG Literature.pdf|General EEG/MEG Literature]] || ||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures?action=AttachFile&do=view&target=EEGMEG3.mp4|Introduction to time-frequency and functional connectivity analysis]] <<BR>> [[https://www.youtube.com/watch?v=wB417SAbdak|Time-Frequency Analysis of EEG Time Series]] || ||Slides and scripts__ __ ||[[attachment:EEGMEG3-timefrequency.zip|Notebooks and Slides]] || <<BR>> <<Anchor(graphtheory)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Graph Theory'''+~ <<BR>> Caroline Nettekoven [[https://us02web.zoom.us/j/81982692386?pwd=TUZsdmpHZDEySUJLSFJIcDN6TXNFdz09|Zoom link]] || ||<10%>Software__ __ ||[[https://sites.google.com/site/bctnet/|Brain Connectivity Toolbox]] in [[https://uk.mathworks.com/products/matlab.html|Matlab]], [[https://sites.google.com/site/bctnet/list-of-measures?authuser=0|BCT Documentation]] || ||Datasets__ __ ||[[https://www.caroline-nettekoven.com/slides/graph-theory-exercises/|Coding exercises]]<<BR>> [[https://www.caroline-nettekoven.com/slides/graph-theory-exercises-solutions/|Exercise solutions]] || ||Suggested reading__ __ ||[[https://www.nature.com/articles/nrn2575|Complex brain networks: graph theoretical analysis of structural and functional systems]] || ||Suggested viewing__ __ ||[[https://www.caroline-nettekoven.com/slides/graph-theory-lecture/|Slides]] || ||Slides and scripts || || |
Line 189: | Line 179: |
<<BR>> <<Anchor(statistics)>> ||||||<tablewidth="100%"style="text-align:center">~+'''Statistics in R'''+~ <<BR>> Peter Watson || ||<10%>__Software__ ||[[https://www.r-project.org/|R]] Data&Code || ||__Datasets__ ||[[attachment:PW SEPT 2022 R COURSE.zip|Data&Code]] [[attachment:README R COURSE.txt|Readme]] || ||__Suggested reading__ ||[[https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjZrKTMs635AhWQUMAKHZfTA6gQFnoECAYQAQ&url=https://labs.la.utexas.edu/gilden/files/2016/05/Statistics-Text.pdf|Statistical Methods for Psychology (Howell)]] <<BR>> [[https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjB1Pnxs635AhXOQkEAHfHvBqgQFnoECBQQAQ&url=https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf|Introduction to R]] <<BR>> [[https://www.amazon.co.uk/Discovering-Statistics-Using-Andy-Field/dp/1446200469|Discovering statistics using R]] <<BR>> [[https://www.amazon.co.uk/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/ref=sr_1_1?crid=ZCK7U9XROUWC&keywords=an+introduction+to+statistical+learning+with+applications+in+r&qid=1664181428&s=books&sprefix=an+introduction+to+statistical+learning,stripbooks,56&sr=1-1|An introduction to statistical learning with applications in R]] || ||__Suggested viewing__ ||[[https://imaging.mrc-cbu.cam.ac.uk/statswiki/StatsCourse2021/recordings|CBU Statistics Lectures]] || ||Slides and scripts__ __ || || |
|
Line 190: | Line 191: |
||||||<tablewidth="100%"style="text-align:center">~+'''Brain Stimulation, Plethysmography, Electromyography'''+~ <<BR>> Ajay Halai, Alexis Deighton MacIntyre, Hristo Dimitrov || ||<10%>Software ||Plethysmography: https://github.com/alexisdmacintyre/SpeechBreathingToolbox || ||Datasets || || ||Suggested reading__ __ ||Brain Stimulation: <<BR>> [[https://www.sciencedirect.com/science/article/pii/S1053811916001191?via=ihub|Approaches to brain stimulation]] ; [[https://direct.mit.edu/jocn/article/33/2/195/95534/Inferring-Causality-from-Noninvasive-Brain|what can we infer from brain stimulation]]; [[https://www.nature.com/articles/nrneurol.2010.30.pdf|using NIBS clinically]] ; focused ultrasound [[https://www.nature.com/articles/srep34026.pdf|1]] and [[https://www.nature.com/articles/s41598-018-28320-1.pdf|2]] <<BR>><<BR>> Plethysmography: <<BR>>Heck, D. H., McAfee, S. S., Liu, Y., Babajani-Feremi, A., Rezaie, R., Freeman, W. J., ... & Kozma, R. (2017). Breathing as a fundamental rhythm of brain function. Frontiers in neural circuits, 10, 115. https://doi.org/10.3389/fncir.2016.00115 <<BR>> Varga, S., & Heck, D. H. (2017). Rhythms of the body, rhythms of the brain: Respiration, neural oscillations, and embodied cognition. Consciousness and Cognition, 56, 77-90. https://doi.org/10.1016/j.concog.2017.09.008 <<BR>>Allen, M., Varga, S., & Heck, D. H. (2022). Respiratory rhythms of the predictive mind. Psychological Review. https://doi.org/10.1037/rev0000391 || ||Suggested viewing__ __ ||Brain Stimulation: [[attachment:AH_slides.pptx|slides]] || ||Slides and scripts || || |
||||||<tablewidth="100%"style="text-align:center">~+'''Brain Stimulation'''+~ <<BR>> Ajay Halai || ||<10%>Software__ __ ||[[https://simnibs.github.io/simnibs/build/html/index.html|SIMNIBS]] (also requires access to Matlab, FSL and Freesurfer to run certain functions, see SIMNIBS installation guide) and [[http://www.k-wave.org/|k-wave]] || ||Datasets__ __ ||[[https://simnibs.github.io/simnibs/build/html/dataset.html|tutorial_data]] || ||Suggested reading__ __ ||[[https://www.sciencedirect.com/science/article/pii/S1053811916001191?via=ihub|Approaches to brain stimulation]] ; [[https://direct.mit.edu/jocn/article/33/2/195/95534/Inferring-Causality-from-Noninvasive-Brain|what can we infer from brain stimulation]]; [[https://www.nature.com/articles/nrneurol.2010.30.pdf|using NIBS clinically]] ; focused ultrasound [[https://www.nature.com/articles/srep34026.pdf|1]] and [[https://www.nature.com/articles/s41598-018-28320-1.pdf|2]] || ||Suggested viewing__ __ ||[[attachment:AH_slides.pptx|slides]] || ||Slides and scripts ||[[attachment:AH_scripts.zip|scripts]] || <<BR>> <<Anchor(dcmemeg1)>> ||||||<tablewidth="100%"style="text-align:center">~+'''DCM for M/EEG'''+~ <<BR>> Pranay Yadav & Rik Henson || ||<10%>__Software__ ||[[https://www.fil.ion.ucl.ac.uk/spm/software/spm12/|SPM12]] || ||__Datasets__ ||[[https://openneuro.org/datasets/ds000117/versions/1.0.5|Wakeman Multimodal]] || ||__Suggested reading__ ||[[https://doi.org/10.3389/fnins.2019.00300|Preprocessing M/EEG in SPM12]] <<BR>> [[https://doi.org/10.1016/j.neuroimage.2013.07.008|Simple Intro to DCM]] || ||__Suggested viewing__ ||[[https://www.youtube.com/watch?v=HNaAvKmVCYo|Talk on DCM for M/EEG]] <<BR>> [[https://youtu.be/6b35VvQpPDU|MEEG connectivity other than DCM (not demo'ed, and related to Hauk talks above)]] || ||__Tutorial slides and scripts__ ||[[attachment:Multimodal_DCM_cognestic_tutorial_MEEG.pdf|Tutorial for DCM for ERP]] || |
Course Material for COGNESTIC 2022
The Cognitive Neuroscience Skills Training In Cambridge (COGNESTIC) is a 2-week course that provides researchers with training in state-of-the-art methods for neuroimaging and neurostimulation. You can find more information on the COGNESTIC webpage.
Below you will find documents, videos and web links that will be used for the course or can be used for preparation.
Introduction and Open Science |
||
Websites |
||
Suggested reading |
Munafo et al, 2017, problems in science |
|
Suggested viewing |
Open Cognitive Neuroscience (will give this talk live on day) |
|
Tutorial slides and scripts |
Structural MRI - VBM and Surface-based Analysis |
||
Software |
||
Datasets |
Freesurfer tutorial data |
|
Suggested reading |
Introduction to GLM for structural MRI analysis |
|
Suggested viewing |
Using the command line |
|
Tutorial slides and scripts |
FSLVBM slides |
Diffusion MRI I - DTI Model Fitting and Group Analysis |
||
Software |
||
Datasets |
||
Suggested reading |
FSL Diffusion Toolbox Wiki |
|
Suggested viewing |
||
Tutorial slides and scripts |
FSL DTI and TBSS slides |
Diffusion MRI II - Tractography and Structural Connectivity |
||
Software |
||
Datasets |
||
Suggested reading |
||
Suggested viewing |
||
Tutorial slides and scripts |
MRtrix Tractography slides |
fMRI I - Data management, structure, manipulation |
||
Software |
||
Datasets |
||
Suggested reading |
Gorgolewski et al., 2016, The brain imaging data structure (BIDS) |
|
Suggested viewing |
BIDS for MRI: Structure and Conversion by Taylor Salo (13:39) |
|
Slides and scripts |
fMRI II - Quality control & Pre-processing |
||
Software |
||
Datasets |
||
Suggested reading |
Chen & Glover (2015), Functional Magnetic Resonance Imaging Methods |
|
Suggested viewing |
fMRI Artifacts and Noise by Martin Lindquist and Tor Wager (11:57) |
|
Slides and scripts |
fMRI IV - Group Level Analysis & Reporting |
||
Software |
||
Datasets |
||
Suggested reading |
Mumford & Nichols (2006), Modeling and inference of multisubject fMRI data |
|
Suggested viewing |
Group-level Analysis I by Martin Lindquist and Tor Wager (7:05) |
|
Slides and scripts |
Connectivity for fMRI |
||
Software |
||
Datasets |
||
Suggested reading |
Resting-state functional Connectivity |
|
Suggested viewing |
fMRI Functional Connectivity, including DCM |
|
Tutorial slides and scripts |
Eye-tracking |
||
Software |
Python NumPy, SciPy, Matplotlib |
|
Datasets |
||
Suggested reading |
https://doi.org/10.3758/s13428-021-01762-8 Paper on eye-tracking reporting standards (great for beginners and experts alike) |
|
Suggested viewing |
https://www.youtube.com/watch?v=F5eBln42VyM Talk at the MRC CBU on how to hack pupillometry studies |
|
Slides and scripts |
|
EEG/MEG I – Pre-processing |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Digitial Filtering |
|
Suggested viewing |
Introduction to EEG/MEG Preprocessing |
|
Slides and scripts |
EEG/MEG II – Source Estimation |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Linear source estimation and spatial resolution |
|
Suggested viewing |
Introduction to EEG/MEG Source Estimation M/EEG Source Analysis in SPM |
|
Slides and scripts |
EEG/MEG III – Time-Frequency and Functional Connectivity |
||
Software |
||
Datasets |
Sample dataset in MNE-Python. Tutorials |
|
Suggested reading |
Tutorial on Functional Connectivity |
|
Suggested viewing |
Introduction to time-frequency and functional connectivity analysis |
|
Slides and scripts |
Graph Theory |
||
Software |
||
Datasets |
||
Suggested reading |
Complex brain networks: graph theoretical analysis of structural and functional systems |
|
Suggested viewing |
||
Slides and scripts |
|
MVPA/RSA I |
||
Software |
The Decoding Toolbox in Matlab. (This might not be accessible from the CBU internet connection, so please download it in advance or use a difffernt wifi connection) |
|
Datasets |
The Decoding Toolbox example dataset |
|
Suggested reading |
Mur et al. (2009) Revealing representational content with pattern-information fMRI--an introductory guide |
|
Suggested viewing |
Excellent presentations from Martin Hebart's MVPA course, on: |
|
Slides and scripts |
Slides for morning session - MVPA |
MVPA/RSA II |
||
Software |
The RSA toolbox in Matlab |
|
Datasets |
Group-averged example data from Mitchell & Cusack (2016) Semantic and emotional content of imagined representations in human occipitotemporal cortex |
|
Suggested reading |
Kriegeskorte et al. (2008) Representational similarity analysis - connecting the branches of systems neuroscience |
|
Suggested viewing |
||
Slides and scripts |
Slides for afternoon session - RSA |
Statistics in R |
||
Software |
R Data&Code |
|
Datasets |
||
Suggested reading |
Statistical Methods for Psychology (Howell) |
|
Suggested viewing |
||
Slides and scripts |
|
Brain Stimulation |
||
Software |
SIMNIBS (also requires access to Matlab, FSL and Freesurfer to run certain functions, see SIMNIBS installation guide) and k-wave |
|
Datasets |
||
Suggested reading |
Approaches to brain stimulation ; what can we infer from brain stimulation; using NIBS clinically ; focused ultrasound 1 and 2 |
|
Suggested viewing |
||
Slides and scripts |
DCM for M/EEG |
||
Software |
||
Datasets |
||
Suggested reading |
||
Suggested viewing |
Talk on DCM for M/EEG |
|
Tutorial slides and scripts |