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“Brain Rhythms” and “Oscillations”

Time course and topography may differ

among different frequency bands
(and may depend on task, environment, subject group etc.)
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Cahn et al., Cogn Proc 2010, http://link.springer.com/article/10.1007%2Fs10339-
009-0352-1/
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http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/

“Brain Rhythms” and “Oscillations”

Process 1 Process 2 Process 3

a Local activity

b Coherent
oscillations
(spectral
fingerprints)

C Canonical
computations

Computation 1 Computation 2 Computation 3 Computation 4

= e == mm Frequency i, ii, iii, iv, v Cognitive variables

Siegel et al., Nat Nsc 2012



Periodic Signals

A periodic signal repeats itself with a period T.

This is the case, for example, for sine and cosine functions:

/ (cos ©, sin )

=Y

S(t) =ax*sin(2nf xt+0)
a: amplitude
f: frequency
0 : phase

In radians (2 ~ 360 degrees):
cos(x + 2m) = cos(x)
sin(x + 2m) = sin(x)

In degrees :
cos(x + 360) = cos(x)
sin(x + 360) = sin(x)

On a unit circle, a 360° angle
corresponds to a
circumference of 2*pi

https://www.youtube.com/watch?v=z8216u4DFTo



https://www.youtube.com/watch?v=z82I6u4DFTo

Polar Representation Of Periodic Signals

Euler’'s Formula

“Complex” numbers can capture the two axes of the coordinate system for the circle
around which the vector rotates periodically — this is rather abstract but helps the
notation enormously.
e % = cos(0) +ix*sin(9) i=v/-1
Therefore:
cos(8) = real(e?)
sin(8) = imag(e~%f)

An oscillation at a particular frequency can be described in a
“polar representation”:

/ (cos 8, sin 8)

=
-
o

a*e —1271tft
a: amplitude
2m: circumference of unit circle
f: frequency

t: time

imagingry part

X
real part




The Polar Representation Of Periodic Signals

Convenient To Compare Periodic Signals

A Irmaginary axis B Imaginary axis
:: [Kl,}h]- :
(xy2) T X
} ——— Real axis L T Real axis
signal 1 =1 +iyi=Aie” signal 1 * conj(signal 2) =
signal 2 = x2 + iy2=Aze (3 + iy1) * (x2 - iy2) = (axa+yry2) + i(yixe-yaxi) =

Are® * fse™ = ArAze't

FIGURE 2 | Using polar coordinates and complex numbers to represent signals in the frequency domain. [A) The phase and amplitude of two signals. (B)
The cross-spectrum between signal 1 and 2, which corresponds to multiplying the amplitudes of the two signals and subtracting their phasas.

Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full



https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

Sine and Cosine Are Orthogonal to Each Other
(at a given frequency)

sine
cosine

]sin (f *xx)cos(f *x)dx =0




Sine/Cosine At Integer Frequency Intervals
Are Orthogonal

e
NIRRT Sin(x)
NN ANIYE A Sin(2*x)
N AV SR

RN EEnn

0.2 \ [\ \ 1 \ [\ \ /’

o I R NN

RN/ Ry

WR\RY B

. VAN \ AN/

-8 -6 -4 -2 0 2 4 6 8
sin(m * f * x) sin(n = f * x)dx = 0 for integer m, n



Entering the Frequency Domain:
Fourier Transform in Words

What you want:
You've got a signal consisting of N sample points (equidistant).
You want to know which frequencies contribute to the signal, and how much.

In other words:
You want to describe your signal as a linear combination of sines and cosines,
ideally of orthogonal basis functions made up of sines and cosines.

What you've got:
With N samples, you can estimate at most N independent parameters.

You cannot estimate frequencies above half of the sampling frequency SF
(Nyquist).

For a given frequency, sine and cosine are orthogonal,
l.e. 2 basis functions per frequency.



Entering the Frequency Domain:
Fourier Transform in Words

Divide the frequency range 0 to SF/2 evenly into N/2 frequencies.
For every frequency, create a sine and a cosine.
Use these (orthogonal) sines and cosines as your basis functions.

Project these basis functions onto your data, get the amplitudes for individual basis
functions — that is your frequency spectrum.

Fast Fourier Transform (FFT): A fast algorithm to do this.

('m cheating a bit, assuming an appropriate N and ignoring the mean. But the principle is ok.)



The Fourier (De-)Composition

Decomposing signals
Into sine/cosine terms

Approximating a step function
with Fourier terms
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Motivation for Time-Frequency Analysis

Fourier Transform assumes sines and cosines with constant amplitudes
across the whole time series (“stationarity”).

But what does an FFT mean for a signal like this?
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Motivation for Time-Frequency Analysis

You could run separate FFTs for different (sliding) time windows:
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But different window sizes are more or less optimal for different frequencies.
Run different FFTs with different window sizes for different frequency ranges? Ouff.



Time-Frequency Analysis: Wavelets (“little waves”)

Wavelets provide an optimal trade-off between frequency and time resolution.

RADIX-2 TUNABLE-Q WAVELET TRANSFORM
WAVELET: SCALES 4-17
N =256, Q =4.00, r =3.00
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Wavelets are convolved with the data to give instantaneous amplitude and phase
estimates for different frequency ranges.



Time-Frequency Analysis: Wavelets

Wavelet Transform Time-Frequency Power
Trade-off between time and frequency resolution
s(t)
freq.
convolution
— time
f

Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nlm.nih.gov/10322469/



https://pubmed.ncbi.nlm.nih.gov/10322469/

Basic Principals of Frequency Filtering

Time-domain and frequency-domain filtering are two sides of the same coin:

One type of frequency-domain filtering corresponds to one type of time-domain filtering.

Lowpass  Highpass Bandpass

Frequency domain \\ /’ A

Frequency <=

Time domain _/\ /\ ! \
0 o

Tlme 4-}

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images



https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images

Evoked and Induced Rhythmic Activity
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Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nlm.nih.gov/10322469/



https://pubmed.ncbi.nlm.nih.gov/10322469/

When brain rhythms aren’t “rhythmic” —the example of beta “oscillations”
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https://pubmed.ncbi.nlm.nih.gov/27400290/

A Very Rough Rule of Thumb

One needs at least 2 cycles of a frequency to get a meaningful estimate
(of amplitude, phase, etc.)

Duration (in ms) of 2 cycles at frequency f (in Hz): 2*1000/f
1 Hz: 2000 ms =2s

10 Hz: 200 ms =1/5s

40 Hz: 50 ms = 1/20 s

100 Hz: 20 ms = 1/50 s

The lower the frequency, the longer the time window required to estimate the signal.
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The Wavelet Zoo

Daubechies

Morlet

Symlet

Mexican Hat

Beylkin

Meyer

Coiflet

Haar

Battle-

Lemarie

https://www.gquantamagazine.org/how-wavelets-allow-researchers-to-transform-and-understand-data-20211013/



https://www.quantamagazine.org/how-wavelets-allow-researchers-to-transform-and-understand-data-20211013/




“Single-Trial Analysis” and Source Estimation

Computing the power of a signal is a non-linear transformation.

Linear transformations are associative:
T(a+b) =T(a)+T(b)

Therefore, the result is the same whether you apply a linear transformation
before or after averaging your epochs.

Spectral power is non-linear!
If you want the average power, you have to compute power for individual
epochs first, then average.

The noise level and a priori knowledge about sources will be very different
for single trials compared to the average.

For example, a single/multiple dipole model may be justified for the average (e.g. auditory P1
etc.), but not for single trials.



Power Estimation Changes the Time Course

4

sine(X)
sine?(x)

For example, the frequency spectrum for sine(x) and sine?(x) are very different.
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