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“Brain Rhythms” and “Oscillations”

Cahn et al., Cogn Proc 2010, http://link.springer.com/article/10.1007%2Fs10339-
009-0352-1/

Time course and topography may differ 
among different frequency bands

(and may depend on task, environment, subject group etc.)

http://link.springer.com/article/10.1007%2Fs10339-009-0352-1/


“Brain Rhythms” and “Oscillations”

Siegel et al., Nat Nsc 2012



Periodic Signals

A periodic signal repeats itself with a period T.

This is the case, for example, for sine and cosine functions:

In radians (𝟐𝟐𝝅𝝅 ~ 360 degrees):
𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 + 𝟐𝟐𝝅𝝅 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙 + 𝟐𝟐𝝅𝝅 = 𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙

In degrees :
𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙 + 𝟑𝟑𝟑𝟑𝟑𝟑 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝒙𝒙
𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙 + 𝟑𝟑𝟑𝟑𝟑𝟑 = 𝒔𝒔𝒔𝒔𝒔𝒔 𝒙𝒙

3600  ~  2𝝅𝝅

On a unit circle, a 3600 angle 
corresponds to a 

circumference of 2*pi
https://www.youtube.com/watch?v=z82I6u4DFTo

s(𝑡𝑡) = 𝑎𝑎 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑓𝑓 ∗ 𝑡𝑡 + 𝜃𝜃)
a: amplitude
f: frequency
𝜃𝜃 : phase

https://www.youtube.com/watch?v=z82I6u4DFTo


Polar Representation Of Periodic Signals
Euler’s Formula

𝑒𝑒−𝑖𝑖𝜃𝜃 = 𝒄𝒄𝒄𝒄𝒄𝒄 𝜃𝜃 + 𝒊𝒊 ∗ 𝒔𝒔𝒔𝒔𝒔𝒔 𝜃𝜃 i= −𝟏𝟏
Therefore:

𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑒𝑒−𝑖𝑖𝜃𝜃)
𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑒𝑒−𝑖𝑖𝜃𝜃)
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An oscillation at a particular frequency can be described in a 
“polar representation”:

𝑎𝑎 ∗ 𝑒𝑒−𝑖𝑖𝑖𝜋𝜋𝜋𝜋𝜋𝜋
a: amplitude
2𝜋𝜋: circumference of unit circle
f: frequency
t: time

“Complex” numbers can capture the two axes of the coordinate system for the circle 
around which the vector rotates periodically – this is rather abstract but helps the 
notation enormously.



Bastos & Schoeffelen, Front Syst Nsc 2016
https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full

The Polar Representation Of Periodic Signals
Convenient To Compare Periodic Signals

https://www.frontiersin.org/articles/10.3389/fnsys.2015.00175/full


Sine and Cosine Are Orthogonal to Each Other
(at a given frequency)
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Sine/Cosine At Integer Frequency Intervals
Are Orthogonal
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∫ sin (𝑚𝑚 ∗ 𝑓𝑓 ∗ 𝑥𝑥) 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛 ∗ 𝑓𝑓 ∗ 𝑥𝑥 𝑑𝑑𝑑𝑑 = 0 for integer m, n



Entering the Frequency Domain: 
Fourier Transform in Words

What you want:
You’ve got a signal consisting of N sample points (equidistant).

You want to know which frequencies contribute to the signal, and how much.

In other words:
You want to describe your signal as a linear combination of sines and cosines,

ideally of orthogonal basis functions made up of sines and cosines.

What you’ve got:
With N samples, you can estimate at most N independent parameters.

You cannot estimate frequencies above half of the sampling frequency SF 
(Nyquist).

For a given frequency, sine and cosine are orthogonal, 
i.e. 2 basis functions per frequency.



Divide the frequency range 0 to SF/2 evenly into N/2 frequencies. 

For every frequency, create a sine and a cosine.

Use these (orthogonal) sines and cosines as your basis functions.

Project these basis functions onto your data, get the amplitudes for individual basis 
functions – that is your frequency spectrum.

Fast Fourier Transform (FFT): A fast algorithm to do this.

(I’m cheating a bit, assuming an appropriate N and ignoring the mean. But the principle is ok.)

Entering the Frequency Domain: 
Fourier Transform in Words



The Fourier (De-)Composition

1 term
4 terms
16 terms

Approximating a step function 
with Fourier terms

Decomposing signals 
into sine/cosine terms

Frequency Spectrum



Motivation for Time-Frequency Analysis

Fourier Transform assumes sines and cosines with constant amplitudes 
across the whole time series (“stationarity”).

But what does an FFT mean for a signal like this?
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Motivation for Time-Frequency Analysis

You could run separate FFTs for different (sliding) time windows:
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But different window sizes are more or less optimal for different frequencies.
Run different FFTs with different window sizes for different frequency ranges? Ouff.



Time-Frequency Analysis: Wavelets (“little waves”)

Wavelets provide an optimal trade-off between frequency and time resolution.

Wavelets are convolved with the data to give instantaneous amplitude and phase 
estimates for different frequency ranges.

Wavelets are getting 
“broader” with 

decreasing frequency

=>

Time resolution 
decreases as 

frequency decreases
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Time-Frequency Analysis: Wavelets

Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nlm.nih.gov/10322469/

Wavelet Transform
Trade-off between time and frequency resolution

Time-Frequency Power

https://pubmed.ncbi.nlm.nih.gov/10322469/


Time-domain and frequency-domain filtering are two sides of the same coin:

One type of frequency-domain filtering corresponds to one type of time-domain filtering.

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images

Frequency domain

Time domain

Frequency

Time

Where have we seen this before?Basic Principals of Frequency Filtering

https://uk.mathworks.com/matlabcentral/fileexchange/51155-time-domain-filtering-vs-frequency-domain-filtering-in-images


Evoked and Induced Rhythmic Activity

Tallon-Baudry & Bertrand, TICS 1999
https://pubmed.ncbi.nlm.nih.gov/10322469/

evoked induced
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https://pubmed.ncbi.nlm.nih.gov/10322469/


When brain rhythms aren’t “rhythmic” – the example of beta “oscillations”

Jones et al., Curr Op Neurobiol 2016
https://pubmed.ncbi.nlm.nih.gov/27400290/

“beta bursts”
rather than “oscillations”

https://pubmed.ncbi.nlm.nih.gov/27400290/


A Very Rough Rule of Thumb

One needs at least 2 cycles of a frequency to get a meaningful estimate
(of amplitude, phase, etc.)

Duration (in ms) of 2 cycles at frequency f (in Hz): 2*1000/f

1 Hz: 2000 ms = 2 s

10 Hz: 200 ms = 1/5 s

40 Hz: 50 ms = 1/20 s

100 Hz: 20 ms = 1/50 s

The lower the frequency, the longer the time window required to estimate the signal.



Effect of Number of Cycles
1 cycle 2 cycles

3 cycles Freq/3 cycles



The Wavelet Zoo

https://www.quantamagazine.org/how-wavelets-allow-researchers-to-transform-and-understand-data-20211013/

https://www.quantamagazine.org/how-wavelets-allow-researchers-to-transform-and-understand-data-20211013/




“Single-Trial Analysis” and Source Estimation

Computing the power of a signal is a non-linear transformation.

Linear transformations are associative:
T(a+b) = T(a)+T(b)

Therefore, the result is the same whether you apply a linear transformation 
before or after averaging your epochs.

Spectral power is non-linear!
If you want the average power, you have to compute power for individual 
epochs first, then average.

The noise level and a priori knowledge about sources will be very different 
for single trials compared to the average.

For example, a single/multiple dipole model may be justified for the average (e.g. auditory P1 
etc.), but not for single trials.



Power Estimation Changes the Time Course
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For example, the frequency spectrum for sine(x) and sine2(x) are very different.





MRC Cognition and Brain Sciences Unit @MRCCBU mrc-cbu.cam.ac.uk

Thank you
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