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Chapter 2

Univariate Probability

This chapter briefly introduces the fundamentals of univariate probability theory, density



trials. For a frequentist, to say that P (Heads) = 1
2





2.4 Conditional Probability, Bayes’ rule, and Indepen-

dence

The



2.4.1 Bayes’ rule

Bayes’ rule



We have been given the value of the two terms in the numerator, but let us leave the



one can apply either to avoid this computation or to drastically simplify it; you will see
several examples of these tricks later in the book.
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1000 B.C.E. to 500 B.C.E. (Beyer, 1986). With only this information, a crude estimate of the
dis



2.8 Normalized and unnormalized probability distri-

butions



F (SOV ) = γ1γ2γ3





Variance of Bernoulli and uniform distributions

The variance of a Bernoulli-distributed random variable needs to be calculated explicitly,
by using the definition in Equation (2.19) and summing over the possible outcomes as in



The normal distribution doesn’t have a closed-form cumulat





〈SB, DO〉 〈SB, IO〉 〈DO, SB〉 〈DO, IO〉 〈IO, SB〉 〈IO, DO〉 Total
Count 478 59 1 3 20 9 570





F0 frequency (Hz)

C
ou

nt

100 120 140 160 180

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0



tʌt
tʌk
tʌp
kʌt
kʌk
kʌp
pʌt
pʌk







P (y|P̂ ) =
n∏















3.3 Linearity of expectation, covariance, correlation,

and variance sums of random variables





Since the covariance between conditionally independent random variables is zero, it follows
that the variance of the sum of pairwise independent random variables is the sum of their
variances.

3.4 The binomial distribution



a sequence of r random variables X1, . . . , Xr whose joint distribution is characterized by r pa-
rameters: a size parameter n denoting the number of trials, and r−1 parameters π1, . . . , πr−1,
where πi
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P (X = k; r, p) =

(
a

b

)
(1 − p)cpd, k ∈ {r, r + 1, · · · }

for some choice of a, b, c, d. Complete the specification of the distribution (i.e., say what
a, b, c, d are) and justify it.

Exercise 3.8: Linearity of expectation
You put two coins in a pouch; one coin is weighted such that it lands heads 5



Chapter 4

Parameter Estimation

Thus far we have concerned ourselves primarily with probability theory : what events may
occur with what probabilities, given a model family and choices for the parameters. This is
useful only in the case where we know the precise model family and parameter values for the



for passivization will in fact be realized as a passive.



4.2.1 Consistency

An estimator is consistent if the estimate θ̂ it constructs is guaranteed to converge to the
true parameter value θ as the quantity of data to which it is applied increases. Figure 4.1
demonstrates that Estimator 1 in our example is consistent: as the sample size increases, the



only the first n/







(Tool, 1949, cited in Language Log by Benjamin Zimmer, 18 October 2007)
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Figure 4.3: The bias of the MLE for uniform distributions
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P (θ|y, I) =
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given transitive sentence will be in the passive voice. For Bayesian statistics, we must first





we covered a moment ago) and the mean. For our example, the posterior mode is 4
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http://calvin.iarc.fr/~martyn/software/jags/
http://cran.r-project.org/web/packages/rjags/index.html


> plot(density(res[[1]][, 1]), xlab = expression(pi), ylab = expression(paste("p(",

+ pi, ")")))







simply expresses that observations y are drawn from a normal distribution parameterized by
µ





dous modeling flexibility. The only real limits are conceptu









testing in particular works just like any other type of Bayes



In our second hypothesis



P (y|H2) =
∑
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= 0.21

thus

P (y) =

P (y|H1)︷︸︸︷
0.23 ×

P (H1)23(y|H )︷︸︸︷
0.23 ×

PH



We use the critical trick of recognizing this integral as a beta function (Section 4.4.2), which
gives us:

=

(
6

4

)
B(5,



5.2.3 Example: Learning contextual contingencies in sequences





Here’s an example, where we will explain the standard error of the mean. Suppose





1. The null hypothesis is true, but we reject it (probability









Quantifying association: odds ratios

In Section 3.3 we already saw one method of quantifying the strength of association between
two binary categorical variables:



Fisher’s exact test

Fisher’s exact test applies to 2 ×









3. The linguist writes up her research results and sends them to a prestigious journal.
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The file spillover_word_rts





Ngarrka-
man

ngku
erg

ka
aux

wawirri
kangaroo

panti-
spear

rni.
nonpast

(Hale, 1983)

“The man is spearing the kangaroo”.

In some dialects of Warlpiri, however, using the ergative case is not obligatory. Note



Chapter 6

Generalized Linear Models
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respectively to the boxes MA − M0 and Unexplained. Thus, using the F statistic for hy-
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Frication Age X1 X2 X3 X4 X5 X6 X7

burst old 0 0 0 0 0 0 0
frication old 1 0 0 0 0 0 0
long old 0 1 0 0 0 0 0
short old 0 0 1 0 0 0 0
burst young 0 0 0 1 0 0 0
frication young 1 0 0 1 1 0 0
long young 0 1 0 1 0 1 0







an extremely rich topic, and we take them up in Chapter 8 in full detail. There is also,
however, a body of analytic techniques which uses the partit



precise reason for this. Suppose that we were to test for the presence of an interaction









+ result

+ }

> get.z.score <- function(response,conds.list) {

+ means <- tapply(response,conds.list,mean)



Subject
Verb Attachment 1 2 3 4 5 . . .



Subj

Subj:Attach

Attach

Subj
:

Verb
Verb

Subj:
Verb:
Attach

Verb:Attach

Residual Error



Error: subj:verb:attachment



452.2940 482.0567

> with(sp.1.subj,tapply(rt,list(verb,attachment),mean))

high low

IC 430.4316 474.1565







So sentences with nonpronominal recipients are realized ro











is approximately distributed as a χ2
k random variable, where k





6.9 Log-linear and multinomial logit models

















Onset Freq PM1 PM2 PM3A PM3B Onset Freq PM1 PM2 PM3A PM3B





and idiosyncratically to the probability of other words wit



λ1

λ 2



[sr], for example, would now have the paired-segment feature sr









covered in Section XXX. In this model, there is a collection of feature functions fj each
of which maph



This is a new expression of the same model, but with fewer para



is McCullagh and Nelder (1989). For GLMs on categorical data, Agresti (2002) and the
more introductory Agresti (2007) are highly recommended. For more information specific to



• Word frequency

• Speaker sex

• Speech rate



> lexdec.lm <- lm(RT ~ Frequency, lexdec)

> summary(lexdec.lm)[[4]]

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.58877844 0.022295932 295.514824 0.000000e+00

Frequency -0.04287181 0.004532505 -9.458744 1.026564e-20

> summary(lexdec.lm)[[4]][2,4]

[1] 1.026564e-20

Exercise 6.5: Decomposition of variance



β = 0 against an alternative-hypothesis model MA with unconstrained β





(Pro)noun 9192
Verb 904
Coordinator 1199
Number 237
(Pre-)Determiner 3427
Adverb 1846
Preposition or Complementizer 2418
wh-





Chapter 8

Hierarchical Models



θ

y1 y2 · · · yn









1. Construct point estimates of the parameters of interest, Σ̂b and θ̂, using the principle







lower bound upper bound posterior mode
µ 613.6 644.7 618.9
σb 35.4 60.4 43.7
σy 13.5 20.9 19.1















parameter (as indicated by the









Fully Bayesian analysis

We can try a similar analysis using fully Bayesian techniques rather than the point estimate.
We’ll present a slightly simpler model in which the speaker-



study of language. We move from generalized linear models (G



To illustrate the approach, we construct a model with the length, animacy, discourse ac-
cessibility, pronominality, and definiteness of both the recipient and theme arguments as
predictors, and with verb as a random effect. We use log-transformed length predictors (see
Section 6.7.4 for discussion).
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safely conclude that the effects of these factors truly are equal and opposite? (Hint: the eas-
iest way to construct the simpler model is to define new quanti





Chapter 9

Dimensionality Reduction and Latent
Variable Models
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9.1.1 Inference for Gaussian mixture models
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P (zij|w−ij, z−ij, σθ, σφ) =
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probabilities as follows: for each rule, write a tree-search expression corresponding using a
tgrep2, Tregex, or TIGERSearch



Appendix A

Mathematics notation and review

This appendix gives brief coverage of the mathematical notation and concepts that you’ll
encounter in this book. In the space of a few pages it is of course impossible to do justice
to topics such as integration and matrix algebra. Readers interested in strengthening their
fundamentals in these areas are encouraged to consult XXX [calculus] and Healy (2000).

A.1 Sets ({}, ∪, ∩, ∅)





a six, with the other five outcomes all being equally likely (i.e. 10% each). If we define a
discrete random variable X representing the outcome of a roll of this die, then the clearest
way of specifying the probability mass function for X is by splitting up the real numbers





∫ b
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it doesn’t have the normalizing constant 1√
2πσ2

. In order to determine the value of this





A.7 Combinatorics (
(



A =




3 0 0
0 −2 0
0 0 1


 B =




1 0 0
0 1 0
0 0 1




The n × n identity matrix is sometimes notated as In; when the dimension is clear from
context, sometimes the simpler notation I is used.

Transposition: For any matrix X of dimension m × n, the transpose of X, or



















Appendix C





but we can use the following conditional independencies, which can be read off the connec-
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