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Abstract

This paper provides an introduction to mixed-effects models for the analysis of repeated measurement data with sub-

means. Just as we model human participants as random
variables, we have to model factors characterizing their
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and is the same for all subjects i and items j. The design
matrix is multiplied by the vector of population coeffi-
cients b. Here, this vector takes the form

b



shorter latencies, for both SOA conditions, across all
subjects.
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The model specification



fixed effects on the one hand, and the standard deviationsand correlation
s for therandomeffectson theother hand.

http://cran.r-project.org


Turning to the subtable of random effects, we observe
that the first column lists the main grouping factors:
Item, Subj and the observation noise (Residual).
The second column specifies whether the random effect
concerns the intercept or a slope. The third column
reports the variances, and the fourth column the square
roots of these variances, i.e., the corresponding standard
deviations. The sample standard deviations calculated
above on the basis of Table 1 compare well with the
model estimates, as shown in Table 2.

The high correlation of the intercept and slope for the
subject random effects (�



lists only random intercepts for subject and item, as
desired.

The reader may have noted that summaries for model
objects fitted with lmer list standard errors and t-statis-
tics for the fixed effects, but no p-values. This is not with-
out reason.

With many statistical modeling techniques we can
derive exact distributions for certain statistics calculated
from the data and use these distributions to perform
hypothesis tests on the parameters, or to create confi-
dence intervals or confidence regions for the values of
these parameters. The general class of linear models fit



els with fixed-effects only. Crucially, the MCMC technique
applies to more general models and to data sets with
arbitrary structure.

Informally, we can conceive of Markov chain Monte
Carlo (



tribution, which is generally the case for such parame-
ters. After we have checked this we can evaluate p-values
from the sample with an ancillary function defined in the
languageR package, which takes a fitted model as
input and generates by default 10,000 samples from
the posterior distribution:
We obtain p-values for only the first two parameters
(the fixed effects). The first two columns show that the
model estimates and the mean estimate across MCMC



ple evaluated at zero works because the value 0 can-
not occur in the MCMC
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However, this counterintuitive inhibitory priming
effect is no longer significant when the decision latency
at the preceding trial (RTmin1) is brought into the model,

> print(lmer(RT

log(RTmin1) + Condition + (1jWord) + (1jSubject)),

corr = FALSE)



2005). The code for the simulations is available in the
languageR package in the CRAN archives (http://

cran.r-project.org, see

http://cran.r-project.org
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Most psycholinguistic experiments yield much larger
numbers of data points than in the present example.
Table 5 summarizes a second series of simulations in
which we increased the number of subjects to 20 and
the number of items to 40. As expected, the Type I error
rate for the mixed-effects models evaluated with tests
based on p-values using the t-test are now in accordance
with the nominal levels, and power is perhaps slightly
larger than the power of the quasi-F test. Evaluation
using MCMC sampling is conservative for this specific
fully balanced example. Depending on the costs of a
Type I error, the greater power of the t-test may offset
its slight anti-conservatism. In our experience, the differ-
ence between the two p-values becomes very small for
data sets with thousands instead of hundreds of observa-
tions. In analyses where MCMC-based evaluation and t-
based evaluation yield a very similar verdict across coef-
ficients, exceptional disagreement, with MCMC sampling
suggesting clear non-significance and the t-test suggest-
ing significance, is a diagnostic of an unstable and sus-
pect parameter. This is often confirmed by inspection
of the parameter’s posterior density.

It should be kept in mind that real life experiments are
characterized by missing data. Whereas the quasi-F test is
known to be vulnerable to missing data, mixed-effects





compared to the F1 analysis proposed by Raaijmakers
et al. (1999), as illustrated in Table 7, which lists Type
I error rate and power for 1000 simulation runs without
and with an effect of SOA. Simulated datasets were con-
structed using the parameters given by latin-

square.lmer4. The upper half of Table 7 shows
power and Type I error rate for the situation in which
the F1 analysis includes the interaction of SOA by List,



The estimates are close to the parameters that generated
the simulated data: ri = 20, rs = 50, r = 80, bint = 400,
bpriming = 30, blist = 18.5, blist:priming = 0.

Table 8 lists power and Type I error rate with respect to





BLUPs (the subject and item specific adjustments to inter-
cepts and slopes), which allow enhanced prediction for
these items and subjects (see, e.g., Baayen, 2008, for fur-
ther discussion). Another important advantage is the
possibility to include simultaneously predictors that
are tied to the items (e.g., frequency, length) and predic-
tors that are tied to participants (e.g., handedness, age,
gender). Mixed-effects models have also been extended
to generalized linear models and can hence be used effi-
ciently to model binary response data such as accuracy
in lexical decision (see Jaeger, this volume).

To conclude, we briefly address the question of the
extent to which an effect observed to be significant in a





in an RT study, and then analyze this data in (what in
the neuroimaging community is called) a random effects
analysis.

The estimation methods used to calculate the statisti-
cal parameters of these models include Maximum Like-
lihood or Restricted Maximum Likelihood, just as in the
application of the multilevel models used in education
research described earlier. One reason that these tech-
niques are used is to account for correlation between
successive measurements in the imaging time series.
These corrections are similar to corrections familiar to
psychologists for non-sphericity (Greenhouse & Geisser,
1958).

Similar analysis concerns are present within electro-
physiology. In the past, journal policy in psychophysio-
logical research has dealt with the problems posed by



ing their behavior as the experiment proceeds to opti-
mize performance. Procedures requiring prior averaging
across subjects or items, or procedures that are limited
to strictly factorial designs, cannot provide the
researcher with the analytical depth typically provided
by a mixed-effects analysis.

For data with not too small numbers of observations,
mixed-effects models may providear



mum likelihood estimates. The + symbols in each panel denote
the values of the deviance components at the maximum likeli-
hood estimates.
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