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1. Introduction 
 
In recent years psycholinguists have been criticized for using suboptimal statistical tests 
(Baayen, Davidson, & Bates, 2006; Raaijmakers, 2003; Raaijmakers, Schrijnemakers, & 
Gremmen, 1999). In particular, the use of F1 and F2 tests “to generalize over participants 
and items” has been called into question. At the same time, rumors are spreading about a 
much better type of analysis few people understand. In this paper I try to translate my 
(limited) knowledge in a form that is easy to master, because it consists of a series of 
cookbook recipes. It is the form used increasingly in stats courses and can be defended on 
the basis that there are different levels of understanding (e.g., knowing how to work with 
a statistical package and how to interpret the results vs. being able to build one). My 
discussion is limited to SPSS, not because I am particularly happy with this package, but 
because it is most widely used. 
 
 
2. Why does one need to bother about variance between items? 
 
For a beginning researcher it is tempting to limit the statistical analysis of 
psycholinguistic data to an analysis based on the average per condition per participant. 
For instance, if 10 participants make a lexical decision to 5 low frequency words and 5 
high frequency words, we will calculate the mean of the reaction times (RT) to the 
correctly identified low frequency words and the mean of the RTs to the correctly 
identified high frequency words (in addition to the percentage of errors, which will be 
used as a second variable). Table 1 shows some results we may obtain (empty cells are 
errors made by the participants). 
 
 

 
Table 1 : Example data of a lexical decision experiment containing of 5 low frequency and 
5 high frequency words. Ten participants in total. 
 
 
When we calculate the mean RTs of the correct trials for the low and the high frequency 
words, we get Table 2. 
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Table 2 : Mean RT of the low frequency and the high frequency words per participant 
(correct trials only). 
 
 
To run the analysis, we have to use an ANOVA with a repeated measure. The figures 
below show how we get there. 
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 Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum of 

Squares df 
Mean 

Square F Sig. 
Partial Eta 
Squared 

freq Sphericity Assumed 13676.450 1 13676.450 35.646 .000 .798
  Greenhouse-Geisser 13676.450 1.000 13676.450 35.646 .000 .798
  Huynh-Feldt 13676.450 1.000 13676.450 35.646 .000 .798
  Lower-bound 13676.450 1.000 13676.450 35.646 .000 .798
Error(freq) Sphericity Assumed 3453.050 9 383.672      
  Greenhouse-Geisser 3453.050 9.000 383.672      
  Huynh-Feldt 3453.050 9.000 383.672      
  Lower-bound 3453.050 9.000 383.672      
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So, on the basis of our ANOVA with one repeated measure, we get a significant effect: 
F(1,9) = 35.646, MSe = 383.672, p < .001, Eta Squared = .798    2. The effect is 
extraordinarily strong because no participant has a lower mean RT for the low frequency 
words than for the high frequency words. This is strong evidence that high frequency 
words are easier to process than low frequency words, isn’t it? 
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Figure 1 : Mean lexical decision time per word: the first five words are the low frequency 
words; the final five are the high frequency words. 
 
 
Figure 1 shows another part of the story, however. This figure displays the mean RT per 
word stimulus. Now, the evidence suddenly looks less impressive: Nearly all the 
difference between the high and the low frequency words is due to the long RTs for word 
Low2 (see also Table 1). If we took another sample of words that does not include word 
Low2, would we still find a frequency effect? 
 
The discrepancy between Table 2 and Figure 1 is what Clark (1973) called “the language-
as-fixed-effect fallacy”. If we limit our statistical analysis to the analysis reported above, 
we assume that there is no variability in the words we have chosen, or that our sample 
exhausts all possible words we could have selected. Given that this rarely is the case, 
Clarke argued that in our statistical analyses we have to take into account the variability 
due to the items in addition to the variability due to the stimulus items. Although his 
analysis is not that difficult to understand, it requires the reader to know something about 
the difference between fixed and random effects in ANOVAs and about how to calculate 
Mean Square terms and F-values. In addition, the analysis Clarke proposed (a quasi-F 
ratio or F’) only works when there are no missing data (i.e., when the participants make 
no errors or when the missing RTs are estimated). 
 

                                                 
2 Eta squared is an index of the effect size. You get it when you click on Options and Estimates of effect 
size. The eta squared has a similar meaning as R² (how much of the variance is due to the effect). In 
psychology, most values of eta squared will be around .09 (i.e. r = .30, medium effect size). The high value 
in the present example gives away that it was constructed by hand.  
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Luckily, Clarke (1973) also included an easier way around the problem (although 
Raaijmakers claims this has been one of the big mistakes in psycholinguistic research, 
because psycholinguists used the shortcut in the wrong way). 
 
The solution Clarke proposed, was to do an F2 analysis in addition to the F1 analysis and 
to calculate minF’. F1 is the analysis we have discussed above (Table 2). It consists of an 
ANOVA on the mean values per participant per condition. There can be as many 
independent variables (IVs) as one likes (although in reality, it is strongly recommended 
not to have more than 2; higher-order interactions are a nightmare to interpret and usually 
are unstable; i.e., the exact same pattern is not obtained in a replication of the study, even 
when the interaction is significant again; in addition, very few researchers have a priori 
hypotheses about more than two IVs).  
 

 
Table 3: Mean RT of the 5 low frequency words and the 5 high frequency words. 
 
 
Table 3 shows the starting point of the F2 analysis, the analysis over items. For this 
analysis, the researcher calculates the mean RT per word. Because in the present example 
the words belonging to the high frequency condition and the words belonging to the low 
frequency condition are different words, the IV will be a between-items variable. These 
are the steps of the analysis: 
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 Tests of Between-Subjects Effects 
 
Dependent Variable: RT  

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Corrected Model 7182.400(a) 1 7182.400 2.920 .126 .267
Intercept 4419590.400 1 4419590.400 1796.837 .000 .996
Frequency 7182.400 1 7182.400 2.920 .126 .267
Error 19677.200 8 2459.650     
Total 4446450.000 10      
Corrected Total 26859.600 9      

a  R Squared = .267 (Adjusted R Squared = .176) 
 
In the F2 analysis we see that the effect of word frequency is not significant (F2(1,8) = 
2.92, MSe = 2460, p = .126, eta squared = .267). In the psycholinguistic community, this 
“means” that on the basis of the present data we cannot assume that the finding 
generalizes to other stimuli (notice that it is a null-effect, so the researcher is not allowed 
to conclude that the effect is ‘absent’; the power of the experiment is way too low for 
that). 
 
Clarke (1973) himself did not pay too much attention to the particular value of F2 (rightly 
so) and only calculated it because it allowed him to obtain a reasonably good estimate of 
an F value that would generalize at the same time across participants and items, which 
he called the minF’. The minF’ value is calculated as follows: 
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To find the p-value associated with minF’, you can use the built-in Excel function 
[FDIST(2.699,1,9) = .135] or use a ready-made applet on the internet (see 
http://www.pallier.org//ressources/MinF/compminf.htm or 
http://users.ugent.be/~rhartsui/tools.html).  
 
The minF’ test informs us that we are not allowed on the basis of the data in Table 1 to 
argue for a reliable frequency effect that generalizes both across participants and stimuli, 
which was Clarke’s message. 
 
 
3. Getting overly excited about F2 
 
In the years after Clark (1973) the importance of an F2 items analysis became generally 
accepted in psycholinguistics, but gradually psycholinguists forgot about minF’ 
(Raaijmakers et al., 1999). Part of the reason for this was that psycholinguists were not 
aware of the fact that a significant F1 and a significant F2 do not suffice to get a 
significant minF’ (what Raaijmakers et al. called the “F1 x F2 fallacy”). In addition, there 
were good reasons to expect that minF’ would be a conservative test (i.e., more difficult 
to get significance with it), although subsequent simulations showed that this problem 
was less severe than feared at the onset. 
 
Anyway, gradually psycholinguists moved away from minF’ and limited their analyses to 
F1 (to check whether the findings could be generalized across participants) and F2 (to 
check whether the findings could be generalized across stimulus materials). In addition, 
psycholinguists became more and more ‘sophisticated’ in their use of F1 and F2. Looking 
at Table 3, we see that the F2 analysis in our example is one of the least powerful tests 
one could imagine: Because word frequency is a between-items variable, all noise due to 
the individual words is added to the error term and one needs large numbers of 
observations in the different conditions to find a significant F2. This is in particular a 
problem when pairs of words have been assembled that differ on one particular variable 
(e.g., age of acquisition, AoA) and are matched on a list of other variables (frequency, 
word length, number of orthographic neighbors, …). Because of the control variables, 
large differences between the word pairs are expected (otherwise one would not need to 
match the stimuli on these variables) and this variance should be partialed out before we 
start the F2 analysis. One solution is to use a repeated measures design for the F2 analysis 
as well. In this analysis the pairs of stimuli are considered as observations from the same 
‘entity’ or ‘block’ (analog to the ‘participant’ in a repeated measures F1 analysis). Table 
4 shows how the data of such an F2 design would look like for an experiment in which 10 
pairs of words have been selected that differ in AoA (one word is acquired early in life, 
e.g., daffodil, the other word is acquired late in life, e.g., participant) and both are 
matched on a series of other measures (frequency, …).  
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For these data, the F2 with repeated measures is F2(1,9) = 22.647, MSe = 710, p = .001, 
eta squared = .716), whereas with a between-items analysis it would be F2(1,18) = 1.922, 
MSe = 8366, p = .183, eta squared = .096). The reason for the lack of power of the 
between-items analysis becomes clear when you compare the mean squares of error of 
both tests (8366 vs. 710). In the repeated-items analysis, a lot of the variability between 
the stimuli is partialed out as variability between the blocks, due to variation in the 
control variables, whereas this variance is included in the error term of the between-items 
test, making it very hard to find a significant F2 (just like one needs at least 128 
participants to look for a medium size effect in a between-participants F1 analysis with 1 
IV and 2 conditions). 
 
Another way to ‘improve’ the F2 analysis is to include a Latin-square variable (Pollatsek 
& Well, 1995). A technique psycholinguists often use, is to counterbalance their stimuli 
over participants. Imagine, for instance, that you want to investigate semantic priming. 
To do so, you search for target words with related and unrelated primes (e.g., using the 
Edinburgh Thesaurus, http://www.eat.rl.ac.uk/ or Nelson’s Florida norms, 
http://w3.usf.edu/FreeAssociation/). These are some of the words you may come up with: 
 
 
Target   Related prime  Unrelated prime 
 
bread   butter   buffer 
boy   girl   curl 
nurse   doctor   danger 
cat   dog   day 
… 
 
Because you do not want to present your target words twice to the same participant, half 
of the participants see bread preceded by butter and the other half sees bread preceded by 
buffer, and so on. So, you will make two stimulus list: 
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List 1    List 2 
 
butter-bread   buffer-bread 
curl-boy   girl-boy 
doctor-nurse   danger-nurse 
day-cat    dog-cat 
… 
 
 
Half of the participants will get list 1 and half list 2. Now, a typical problem in such a 
design is what to do with a slow or a fast participant. Table 4 illustrates what can happen: 
 

 
 
 
The important person here is participant 3, who is considerably slower than everyone 
else. Because of the Latin-square design, this person will add extra RT to the related 
condition for the stimuli butter-bread and doctor-nurse; similarly s/he will add extra RT 
to the unrelated condition for the stimuli curl-boy and day-cat. This will show in the data 
that are entered in the F2 analysis, as can be seen below: 
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For the target stimuli boy and cat, we find a huge effect in the expected direction, 
whereas for the stimuli bread and nurse, we find a small effect in the opposite direction, 
even though nearly all the individual participants showed the predicted semantic priming 
effect. If we do the calculations, we find F2(1,3) = .489, MSe = 5158, p = .535, eta 
squared = .140. Needless to say, such a low F2 value will also result in a low minF’.  
 
One way to increase the power of this design is to add a Latin-square variable to the 
design. The words bread and nurse were seen in the related condition by one group of 5 
participants, and in the unrelated condition by another group of 5 participants. And vice 
versa for the words boy and cat. Therefore, what we can do to get rid of the difference in 
average RTs between the groups, is to add the following between-items variable: 
 
 

 
 Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 
factor1 Sphericity Assumed 2520.500 1 2520.500 5.910 .136 .747
  Greenhouse-Geisser 2520.500 1.000 2520.500 5.910 .136 .747
  Huynh-Feldt 2520.500 1.000 2520.500 5.910 .136 .747
  Lower-bound 2520.500 1.000 2520.500 5.910 .136 .747
factor1 * 
LS_group 

Sphericity Assumed 
14620.500 1 14620.500 34.280 .028 .945

  Greenhouse-Geisser 14620.500 1.000 14620.500 34.280 .028 .945
  Huynh-Feldt 14620.500 1.000 14620.500 34.280 .028 .945
  Lower-bound 14620.500 1.000 14620.500 34.280 .028 .945
Error(factor1) Sphericity Assumed 853.000 2 426.500      
  Greenhouse-Geisser 853.000 2.000 426.500      
  Huynh-Feldt 853.000 2.000 426.500      
  Lower-bound 853.000 2.000 426.500      
 
 
Although the small number of stimuli in our example does not allow us to reach 
significance, the F2 test now looks much more convincing (F2(1,2) = 5.910, MSe = 
426.5, p = .136). A look at the ANOVA table shows that a lot of the noise in the F2 
analysis caused by the slow participant 3 has been captured by the interaction effect 
between semantic priming and Latin-square group. In the same way, unintended variation 
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between the stimuli that make up list 1 and list 2 can be partialed out by including a 
Latin-Square variable in the F1 analysis. Another way to get rid of unintended variation 
due to slow participants, is to use the z-scores per participant (i.e., the (RTs – 
Mparticipant)/sdparticipant, a technique used by Balota and Besner).  
 
 
 
4. Being put down again 
 
Just when psycholinguists thought they were getting savvy enough to run proper 
analyses, they were attacked anew. First, there was Raaijmakers’ comment that a 
significant F1 and a significant F2 were not enough to generalize across participants and 
stimuli. This prompted JML to require all its authors to report minF’ in addition to F1 and 
F2. As a kind of consolation, Raaijmakers et al. (1999) added that an F2 analysis is not 
always required and in some cases can even lead to a needless loss of power. Ironically, 
by doing so Raaijmakers et al. repeated Clark’s (1973) mistake, because ever since I’ve 
seen more references to Raaijmakers et al. by authors claiming that their non-significant 
F2 analysis is of no real concern than by authors arguing why they believe minF’ is more 
important than separate F1 and F2 analyses. 
 
At the same time, Baayen started to launch the claim that the minF’ analysis as a 
combination of F1 and F2 is needlessly complicated and should be replaced by mixed-
effects (or multi-level) modeling (Baayen, 2007; Baayen et al., 2006). Unfortunately, 
Baayen’s language is so specialized that it took me a few months and the help of others to 
realize what he was talking about. In particular, I’ve been able to make headway by 
comparing Baayen et al. (2006) with Locker, Hoffman, and Bovaird (2007) and by trying 
to understand what Van den Noortgate and Onghena (2006) were doing. Below you find 
my current understanding of these techniques. It may be wrong in a number of details (in 
which case I would appreciate your feedback), but at least it looks pretty convincing to 
me (at the moment). Here we go. 
 
 
5. Jumping a few levels higher 
 
Just like an ANOVA at its basis is nothing else than a multiple regression, so you can 
approach the problem of random participants and random stimuli as a regression 
problem. You try to predict an observed RT as the end result of (i) a participant, (ii) a 
stimulus, and (iii) the contribution of one (or more) IVs. So, what you try to do is to see 
whether your manipulation is explaining anything more than what could be predicted on 
the basis of the participants and the stimuli. The only real thing you need is an algorithm 
that goes beyond simple linear regression. Turns out that SPSS has such an algorithm! 
(At least from version 11 on). It is called MIXED. I will go through the procedure on the 
basis of Table 1 (LDT to high and low frequency words). 
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The first thing to do is rewrite everything as you would for a multiple regression analysis. 
So, you have three predictor variables: participant, stimulus word, and frequency 
condition (the latter is recoded as -.5 for a low frequency word +.5 for a high frequency 
item; by using this code, you can easily interpret the regression weight). So, this gives the 
following input file: 
 

 
 
 
The nice thing about this input is that it makes no great deal if there are a few missing 
observations. You just skip the line (e.g., word 3 for participant 1). The regression 
method is reasonably robust against empty cells (at least that’s what I’ve read). Then we 
have to enter our model. Here it is a bit tricky because you must enter the syntax editor. 
You do this as follows: 
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This opens a syntax file. Another, more easy way to open a syntax file is to open a ready 
made file (or to click on it in windows explorer). Then everything opens automatically in 
SPSS. In the syntax file you write the following: 
 

 
 
 
First, you have to indicate where the computer can find your data file. Then, you indicate 
what the dependent variable is of your MIXED program (RT) and which predictor 
variables (Participant, Word, Frequency). Participant and Word are random variables 
(i.e., a random sample from the population). Frequency is a fixed effect (you are 
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interested in these two levels). Basically this is all you have to do. You indicate that each 
participant and each stimulus word can have a different intercept value (i.e. need more or 
less time to process) and in addition you want to see whether frequency adds enough 
weight to be significant. The /EMMEANS command gives you the maximum likelihood 
estimator of the condition means. Once you’ve entered everything (do not forget the full 
stops!) you click on RUN. If everything goes well, this is what you should get (among 
other garbage): 
 
 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 11.747 1284.077 .000
Frequency 1 7.988 2.860 .129

a  Dependent Variable: RT. 
 
 
 Estimates of Fixed Effects(b) 
 
Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

            Lower Bound Upper Bound 
Intercept 637.8481631 24.4844447 10.318 26.051 .000 583.5204508 692.1758754
[Frequency=-.5] 54.1145501 31.9990880 7.988 1.691 .129 -19.6941046 127.9232048
[Frequency=.5] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: RT. 
 
 
 Frequency(a) 
 

95% Confidence Interval 
Frequency Mean Std. Error df Lower Bound Upper Bound 
-.5 691.963 24.517 10.374 637.602 746.324 
.5 637.848 24.484 10.318 583.520 692.176 

a  Dependent Variable: RT. 
 
 
The F-value is given in the first table. The second table contains the t-values of the 
planned comparisons. The F-value is: 
 
F(1,7.988) = 2.860, p = .129 
 
For the sake of comparison, this was the minF’ value we obtained: 
 
minF’(1,9) = 2.699, p = .135. 
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Not bad if you look at the ease with which you can do this analysis!!!  Baayen et al. 
(2006) have done quite some simulations with this technique (albeit on an R version of 
theirs, which gives the same results) and they claim that it is safe (i.e., does not result in 
spurious significant effects and is not too conservative). In addition, once you know the 
technique, it is very versatile. Below, I give a few more examples. 
 
 
6. Getting carried away (again) 
 
 
One way to check the adequacy of a procedure is to apply it to the classic data sets that 
have been used in the literature on F2 effects. Most of them come from Raaijmakers et al. 
(1999). 
 
For instance, Raaijmakers et al. (1999) give the following example (also analyzed by 
Baayen et al., 2006). It concerns a hypothetical study in which 4 participants take part in 
a priming study and see 4 items with a short SOA and 4 (different) items with a long 
SOA. 
 

 
 
For this table Raaijmakers et al. report: 
 
F1(1,7) = 7.41, p = .0297 
F2(1,6) = 2.17, p = .1912 
minF’(1,10) = 1.68, p = .224 
 
So, how does the multilevel analysis cope?  To find out, we again have to write the table 
in a long form and then run the analysis. 
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These are the results: 
 
 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 12.590 2655.786 .000
SOA 1 8.250 1.717 .225

a  Dependent Variable: Response Time in Milliseconds. 
 
 
 Estimates of Fixed Effects(b) 
 
Parameter Estimate Std. Error df t Sig. 95% Confidence Interval 

            Lower Bound Upper Bound 
Intercept 563.3125000 12.3815143 9.543 45.496 .000 535.5445293 591.0804707
[SOA=-.500] -22.4062500 17.1014526 8.250 -1.310 .225 -61.6356214 16.8231214
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
These findings [F(1,8.25) = 1.72, p = .225] agree pretty well with those of minF’. 
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The second example Raaijmakers et al. (1999) gave was a priming study in which the 
SOA between prime and target was manipulated and in which the items were matched in 
4 pairs (called blocks). This is how the data looked like: 
 

 
 
F1(1,7) = 0.86, p = .385 
F2(1,3) = 7.19, p = .075 (by making use of a repeated measures design; see the semantic 
priming experiment above) 
minF’(1,3) = 0.77, p = .445 
 
The picture below shows how to do the multilevel analysis: 
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 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 4.721 2637.865 .000
SOA 1 52.000 3.411 .070

a  Dependent Variable: Response Time in Milliseconds. 
 
 Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 543.50000 10.814031 5.019 50.259 .000 515.7339981 571.2660019
[SOA=-.500] 6.9375000 3.7564648 52.000 1.847 .070 -.6003980 14.4753980
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
Here we see something ‘strange’: The multilevel analysis is much more ‘lenient’ than 
minF’ (F(1,52) = 3.41, p = .07). What is happening here? To be honest, I don’t know. 
The only thing I know is that when Baayen et al. (2006) discussed this example, they 
included an additional random variable, next to participants and items, namely SOA 
(which is random by participant; the authors do not explain why). If we do so, we get the 
following: 
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 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 4.857 2600.649 .000
SOA 1 6.714 .862 .385

a  Dependent Variable: Response Time in Milliseconds. 
 
 
 Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 543.50000 11.600214 6.163 46.853 .000 515.2966380 571.7033620
[SOA=-.500] 6.9375000 7.4729796 6.714 .928 .385 -10.8872079 24.7622079
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
Now, the F-value looks much more like what one would expect: F(1,6.7) = .862, p = 
.385. Apparently in a blocked design you need to define the block as a random variable (I 
hope to clear this out in a later version). 
 

 21



The final example Raaijmakers et al. (1999) gave was an example in which a Latin-
square design is used. It was a priming study with 3 SOA levels (short, medium, and 
long) and 12 items that were rotated over the three conditions. 
 

 
 
Raaijmakers et al. calculated a reasonably complicated F-statistic for this design, which 
yielded F(2,20) = .896, p = .424 (see also below for the ‘usual’ F1, F2, and minF’). The 
multilevel analysis gave the following results. 
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 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 19.798 1530.967 .000
SOA 2 119.000 .944 .392

a  Dependent Variable: Response Time in Milliseconds. 
 
 
 Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 533.95833 13.709801 20.084 38.947 .000 505.3678104 562.5488563
[SOA=-.500] -.4583333 2.0058829 119.000 -.228 .820 -4.4301819 3.5135152
[SOA=.000] 2.1250000 2.0058829 119.000 1.059 .292 -1.8468486 6.0968486
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
Interestingly, in this analysis Baayen et al. (2006) do not define an extra random variable 
to capture the repeated measures element. Still, the F-value is quite comparable to the one 
obtained by Raaijmakers et al., even though it has a much bigger df2 (due to the fact that 
much less parameters must be estimated). 
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A concern about the above analysis may be that it doesn’t matter that much which 
analysis you use when the effect is small. So, to see how the different analyses compare 
when the effects are slightly more interesting, I added 4 ms to the medium SOA condition 
(half of the data got +4, one quarter +2, and the remaining quarter +6). Given that the 
variability of the data is quite low, this should suffice to find significance, which is 
indeed what I found when I ran the usual F1, F2, and minF’: 
 
F1(2,18) = 5.481, p = .014 
F2(2,18) = 9.426, p = .002 
minF’(2,34) = 3.456, p = .043 
multilevel F(2,119) = 6.742, p = .002 
 
The multilevel analysis gave the following: 
 

 
 
 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 19.797 1538.707 .000
SOA 2 119.000 6.742 .002

a  Dependent Variable: Response Time in Milliseconds. 

 24



  Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 533.95833 13.709200 20.082 38.949 .000 505.3689197 562.5477469
[SOA=-.500] -.4583333 2.0020390 119.000 -.229 .819 -4.4225705 3.5059039
[SOA=.000] 6.1250000 2.0020390 119.000 3.059 .003 2.1607628 10.0892372
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
 
Something else I tried, was see what happens if one participant gets an extra 100 ms on 
all items (see the example above for the slow participant). If the underlying reasoning of 
the technique is what it claims to be, then this should have no effect on the F-statistic for 
SOA, because the change can easily be captured by a different intercept for the 
participant involved. So, we should get rid of the requirement to introduce between-items 
Latin-square variables or the necessity to work with z-scores. This is exactly what 
happened, as can be seen in the following tables: 
 

 
 
 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 18.743 1383.900 .000
SOA 2 119.000 6.742 .002
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a  Dependent Variable: Response Time in Milliseconds. 
 
 
 Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 542.29167 14.673791 18.978 36.956 .000 511.5766442 573.0066891
[SOA=-.500] -.4583333 2.0020390 119.000 -.229 .819 -4.4225705 3.5059039
[SOA=.000] 6.1250000 2.0020390 119.000 3.059 .003 2.1607628 10.0892372
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
 
Finally, I wanted to see what happens when 1 observation in Raaijmakers et al.’s table 
got a much higher value (participant 1, item 5 +120 ms). Will this turn the multilevel F-
statistic into a spurious significance? 
 

 
 
 Type III Tests of Fixed Effects(a) 
 

Source Numerator df Denominator df F Sig. 
Intercept 1 19.421 1610.356 .000
SOA 2 119.000 2.055 .133

a  Dependent Variable: Response Time in Milliseconds. 
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 Estimates of Fixed Effects(b) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 533.95833 13.436372 19.984 39.740 .000 505.9291461 561.9875206
[SOA=-.500] -.4583333 2.7740527 119.000 -.165 .869 -5.9512348 5.0345681
[SOA=.000] 4.6250000 2.7740527 119.000 1.667 .098 -.8679014 10.1179014
[SOA=.500] 0(a) 0 . . . . .

a  This parameter is set to zero because it is redundant. 
b  Dependent Variable: Response Time in Milliseconds. 
 
 
The obtained F-value [F(2,119)=2.055, p < .133] compares favorably to what happens 
with F1 and F2 (although not to minF’, which is a good reminder that the F1 x F2 
criterion may give the wrong impression): 
 
F1(2,18) = 2.739, p = .092 
F2(2,18) = 3.061, p = .072 
minF’(2,36) = 1.44, p = .249 
 
 
Finally, the multilevel design is not limited to a single IV. Locker et al. (2007) give an 
example of an LDT experiment in which the effects of phonological neighborhood 
frequency and semantic neighborhood size were measured. This is their code (which can 
easily be adapted). 
 

MIXED rt BY Subject Item Freq Size 
   /FIXED  = Freq Size Freq*Size 
   /METHOD = REML 
   /PRINT  = SOLUTION TESTCOV 
 /RANDOM = INTERCEPT | SUBJECT(Item) COVTYPE(UN) 
  /RANDOM = INTERCEPT | SUBJECT(Subject) COVTYPE(UN) 
 /EMMEANS  TABLES (Freq*Size). 

 
 
In summary, I am becoming more and more convinced that multilevel modeling is the 
way forward. The analyses are easier than than the F1, F2, and minF’ calculations and 
they seem to be of a higher quality. In the final section, I refer to one more advantage of 
the multilevel approach. 
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7. Beyond dichotomizing 
 
For someone with a bit of experience in analyzing psycholinguistic data, the idea of 
simultaneously controlling for item and participant variation must ring a bell. In 1990, 
Lorch and Myers published an article on how to do a proper linear regression in a 
repeated measures design. The problem is analogue to the one discussed in Figure 1, 
although now it involves generalization over participants. 
 
The problem is illustrated in Table 4, where the results are shown for 6 participants on 10 
items that vary in log10(frequency). 
 

 
Table 4 : Example of regression data in a design with a repeated measure (LDT to 
10 words varying in frequency). 
 
 
If we average the data over the 6 participants and calculate the regression analysis, we 
get: 
 
RT = 702 – 33.5 LogFreq (LogFreq: t(8) = -7.588, p < .001, R² = .88). 
 
 
A look at Table 4 makes clear where this huge frequency effect comes from (and how 
things can go pear-shaped). Only one of the participants (i.e., part1) shows a substantial 
linear frequency effect. All the others show either no effect or even a slight opposite 
effect. Unfortunately, this variability is lost when the regression is based on the mean RT 
over participants. 
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To counter this problem, Lorch & Myers (1990) suggested to do a separate analysis per 
participant and then to run a t-test on the regression weights obtained. So, they would do 
the following calculations: 
 
Part1 :  950 – 200 LogFreq 
Part2 :  651 – 11.3 LogFreq 
Part3 : 599 + 18.1 LogFreq 
Part4 : 687 –     .9 LogFreq 
Part5 : 843 – 13.9 LogFreq 
Part6 : 485 +  7.0 LogFreq 
 
 
A simple one-sample t-test reveals that in the Lorch & Myers (1990) analysis, the effect 
of LogFreq is not significant (t(5) = -.996, p = .365). 
 
Ever since many psycholinguists have happily spent days calculating regression weights 
of individual participants and running one-sample t-tests on them, even though apparently 
there is a simpler way to get at it directly from the ANOVA table. 
 
If you want to have a go at this type of analysis, here is the example Lorch & Myers 
worked with in their article. It deals with sentence reading times as a function of the rank 
order of the sentence, the number of words in the sentence, and the number of new words 
in the sentence. 
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This is the analysis Lorch & Myers reported: 
 

 
 
From this they concluded that the serial position of the sentence and the number of words 
were significant predictors of reading time, but not the number of new words. 
 
Van den Noortgate and Onghena (2006) used this example to show how much easier 
multilevel programming is. The nice thing about the MIXED function is that it not only 
works with discrete variables but also with continuous variables (the only thing you have 
to change is to use WITH instead of BY in the model specification). This is the program 
Van den Noortgate & Onghena used: 
 

 
 
with the following results: 
 
 Estimates of Fixed Effects(a) 
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95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept -2.586950 .7425953 19.755 -3.484 .002 -4.1372114 -1.0366896
sentence .3333728 .0989789 36.617 3.368 .002 .1327516 .5339941
words .4585893 .0680731 36.617 6.737 .000 .3206113 .5965673
new .1516299 .2560739 36.617 .592 .557 -.3674087 .6706684

a  Dependent Variable: Reading time. 
 
 
 
When we do the same analysis on on our simple example with the word frequency data, 
we get 
 
 

 
 
 Estimates of Fixed Effects(a) 
 

95% Confidence Interval 
Parameter Estimate Std. Error df t Sig. Lower Bound Upper Bound 
Intercept 702.42222 68.77472 5.000 10.213 .000 525.6311788 879.2132657
LogFreq -33.50708 33.646936 5.000 -.996 .365 -119.9992728 52.9851314

a  Dependent Variable: ReadTim. 
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8. Conclusion 
 
 
There is an ongoing complaint among teachers and lecturers that students nowadays 
know less than students some time ago (despite the Flynn-effect). Until recently I thought 
this was because teachers and lecturers were good students themselves and therefore have 
a biased view of the motivation and the level of knowledge of their cohort (as they did 
not tend to interact a lot with the ‘bad’ students). A few months ago, however, I came 
across an article in which an educational psychologist gave another explanation. 
According to him, teachers in particular see the lack of knowledge in students for what 
they themselves know well on the basis of their education (e.g., history, geography, 
correct spelling, algebra, elementary statistics, …), but they fail to notice the knowledge 
pupils/students have that is not shared by teachers/lecturers. When it comes to acquiring 
new knowledge and skills, teachers are no better than students if the immediate use of the 
knowledge is not obvious. 
 
This view has crossed my mind a few times in the past couple of days: Is it possible that 
we keep on clutching to the familiar F1 and F2, because we’ve learned to calculate them 
in our undergraduate studies (in my case even by hand)? My present journey most 
certainly has convinced me that I seem to have missed a few steps in current statistical 
sophistication. It certainly is an incentive to explore the lme4 package (http://cran.r-
project.org), which has many more goodies and possibilities than what is on offer in 
SPSS (Baayen, 2007; Baayen et al., 2006). The present review shows that a better 
understanding of multilevel analysis techniques (or mixed-effects techniques) is likely to 
be rewarding, although it is amazing how much is already available in the statistical 
program we use daily, at no larger clicking cost than we are doing now (often quite the 
contrary as I have found out)! 
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