van Casteren & Davis
The Match program
Page 11

Running Head: Matching Conditions in Factorial Experiments
Match: a program to assist in
matching the conditions of factorial experiments

Maarten van Casteren

Matthew H. Davis

MRC Cognition and Brain Sciences Unit

Cambridge, UK

Address for correspondence:

Maarten van Casteren

Tel:
+44 1223 273628

MRC Cognition & Brain Sciences Unit
Fax:
+44 1223 359 062

15 Chaucer Road

Email:
Maarten.van-Casteren@mrc-cbu.cam.ac.uk
Cambridge CB2 2EF

United Kingdom

Abstract

In most experiments that involve between-subject or between-item factorial designs the items and/or the subjects in the various experimental groups differ on one or more variables, but need to be matched on all other factors that can affect the outcome measure. Matching large groups of items or subjects on multiple dimensions is a difficult and time consuming task and will in many cases be sub-optimal. We present a computer program, 'Match', that automates this process, by applying a well known AI method called Constraint Satisfaction. In most cases the program produces near-optimal solutions in a matter of minutes and selects matches that are typically superior to hand matching or other semi-automated processes.

Introduction

Factorial experimental designs typically involve contrasting two (or more) sets of experimental items or subjects that differ on some (hypothesised) critical dimension and yet are matched on all other dimensions that could conceivably affect the measure(s) that are obtained. For example, in experiments on language processing, researchers might want to contrast response times to two sets of words that differ on some critical property (e.g. imageability) and yet are matched on all other properties that affect RT (e.g. frequency of occurrence, bigram frequency, number of syllables, number of letters, etc). Similarly, in studies comparing a group of abnormal participants with a control population, a researcher might need to select control participants that were matched to the experimental group on a number of factors that could affect performance, such as age, sex, IQ, handedness etc.

In both of these scenarios, scientific progress will inevitably increase the difficulty of producing matched sets of items or subjects for a factorial experiment. Every study that discovers a factor that affects the experimental measure (RT, error rate, etc.) introduces another potential confound that must be controlled in future experimentation. In a psycholinguistic context, Anne Cutler noted 25 years ago that 'Making up materials is a confounded nuisance' (Cutler, 1981) and expressed a doubt as to whether it would even be possible to perform experimental comparisons of different language materials in future. Nonetheless factorial experiments remain the standard tool of experimental psychology and many other fields.
Help is at hand for the frustrated experimental psychologist. For many properties that could influence the response to specific items databases that will allow stimulus matching already exist (e.g. the Celex database, Baayen et al, 1995). When new properties of words or individuals are discovered that affect response time in a number of tasks, the psycholinguistic community will often circulate databases of measured norms of all the relevant properties. These are usually made available online, or in printed form [e.g. loads of citations]. Similarly for researchers in the field of individual differences – new tests are continually being developed to measure individual characteristics that are relevant for behavioural investigations [e.g. loads of citations of tests of IQ, handedness, etc.]. The raw materials are therefore readily available for researchers to acquire the data that they need in order to match their groups of items or subjects.

However, although the increased availability of tests and norms are crucial if confounding factors are to be controlled, they also introduce a substantial additional problem. How should researchers faced with several hundred potential items or subjects that must be matched on perhaps a dozen different dimensions select a correctly matched subset for their experiment? As one might imagine, the number of possible solutions to this type of problem can be enormous. For instance, there are more than 1015 (i.e. a million billion) ways of selecting 12 control participants from a pool of 100 individuals. For psycholinguistic experiments in which the candidate set may only be limited by the number of words known by a typical participant (approximately 50 000 words) this combinatorial explosion becomes even more severe. Trying to get a good match between two sets of items or subjects can therefore be a time consuming and tedious task, even where the relevant data has already been collected (Cutler, 1981). On the other hand, taking shortcuts and failing to correctly match your experimental conditions (either stimuli or subjects) will introduce noise into experimental data, reduce the significance of measured effects or even invalidate experimental results where confounding factors remain uncontrolled.

In this paper, we describe a computerised solution to this combinatorial explosion. 'Match' is a computer program that will match two or more groups of stimuli/subjects on multiple numerical measures. The program tries to find a solution that will get the groups of items or subjects as close as possible in mean, median and standard deviation values for all the measures involved. Since a precise solution may not be possible in all cases each measure can be assigned a weight to indicate its relative importance in the matching process.
We believe that the use of this 'Match' program will substantially benefit experimental research in a number of different areas of psychology and other disciplines. The factorial designs that can be constructed using this program will ordinarily be more closely matched than could be obtained by hand or by using semi-automated approaches (e.g. sorting and resorting the materials). Using Match requires minimal intervention on the part of the experimenter apart from some simple parameter setting. This also ensures that the selection of experimental materials or participants is entirely unbiased (Forster paper).
In this paper, we start by describing the 'constraint satisfaction' algorithm that is at the heart of the program, describing how researchers can enter their items or subjects to be matched as well as the parameters by which researchers can optimise the operation of the program. We then describe a case study in which we use 'Match' to generate matching stimuli for an already published experiment on the effect of length and frequency of occurrence of English words on the EEG (Hauk & Pulvermüller, 2004). We show that this automated approach produces better matched stimulus sets than those previously generated by hand, and in much less time.

Algorithm

Match uses a generic AI method called Constraint Satisfaction Programming (CSP). This is a standard method of searching for solutions to problems in very big search spaces. Rather than exhaustively searching a large space of possible matches, CSP optimises the search process by eliminating search paths as soon as possible. This process of pruning the search space is crucial if we are to match sets of items or subjects without a combinatorial explosion. Even trying to find the best matching 5 items from a set of 50 will produce more than a quarter of a billion possibilities, all of which have to be checked to guarantee an optimal solution. For bigger sets the number becomes astronomical very quickly, so clearly a brute force search for the best solution is usually not possible.

'Match' will match any number of sets of items or subjects on any number of dimensions. Each set needs to be provided in a separate input file, along with all the relevant properties. The goal of the matching process is to select a subset of items from each set in such a way that the selected subsets are optimally matched. The degree of match will be established by comparing the sets on all dimensions, which may be factors such as word frequency and length in the case of matching items, or age and IQ in the case of matching subjects.

Match uses a distance measure that reflects the degree of similarity between items as the variable to optimise. This distance measure is computed using the normalised standard Euclidean distance between item pairs, calculated over the vector of values on all the dimensions involved in the matching process. The actual metric to be minimised is the sum of the squares of all these Euclidian distances.

In operation, Match will first of all read in all the sets of items or subjects along with the values on all of their associated dimensions. These values are then normalised and weighted, if weights were specified. Normalisation will ensure that a dimension that happens to have large values will not dominate the matching process at the cost of dimensions with smaller average values. Values for all dimensions that are specified to be matched are normalised to the average mean of each dimension over all input sets.

Since items will be matched pairwise, what we ultimately need to do is select the best matching item for each item. The total matching metric will be the summed mismatch over all these groups. To enable this matching process we create a set of CSP-variables for each group. Initially each of these variables will contain all available items in the corresponding input set. The set of possible values for a CSP variable is called its domain.

The simplest solution would be to just select the best matching candidate items for each and every item in all sets. However, this will usually not be possible since some items will appear as best matching items in more than one place. This is an important constraint on our goal of choosing the best possible item for each item set. The crucial part of the optimisation process therefore involves removing invalid items from each set. If an item is assigned to a group, meaning that it will be part of the matched output for that group, it should be removed from all other groups. This is required since each item can only be assigned to a single group, as items cannot appear more than once in the output. This process of elimination is called 'pruning'. It will be applied, iteratively, until no more items can be removed. At this point, all domains have been pruned to the smallest size possible, reducing the total search space, but without affecting the optimal solution available in that space.

The next step in the matching process is to start an active search for solutions within this pruned search space. The CSP algorithm used in Match will alternate between two subprocesses, pruning and selecting, and will backtrack to an earlier state when a search path fails (i.e. when there is a set that contains no more items).

After pruning the set of domains (as described above), there are three possible outcomes:

1) All domains have at least one entry and some have more than one.

2) All domains have precisely one entry.

3) One or more domains are empty.

In case (2) we have reached a solution to our problem, which can be stored or reported. In case (3) there are no solutions possible anymore and we need to backtrack. We will describe this backtracking process shortly.

The most likely outcome of pruning, however, is case (1) which indicates that although a complete solution has not been found, such a solution may still be possible. In this case, the program will select a domain and instantiate it – that is, the best-matching entry is selected and all other entries are removed. The algorithm then returns the beginning of the process and prunes the domains again, which again leads to one of the three possible outcomes etc.

Each time the program finds a solution, it is compared to the best solution found until now, and if it is better it will be stored as the best solution. The criterion used to compare solutions is the total (i.e. summed squared) distance within all groups of variables.

Each time the program finds that, after pruning, a domain for a reference item is empty, it will have to backtrack. This means going back to the last instantiation choice that the program made, putting back all items that were removed from all variables since that last instantiation and then removing the instantiated item, as this choice has now been exhaustively tried. After this we can continue the search again, starting with a pruning pass.

The process of finding the best possible solution to the matching problem is a recursive, depth-first search process through a tree that contains the entire space of possible matches. Since an exhaustive search through this tree is computationally extremely expensive, we can improve efficiency by adding two extra strategies at the instantiation stage. These will ensure that the algorithm spends most of its time engaged in searches that are likely to lead to a better solution than has currently been saved.

First of all, the choice of best item for the next instantiation is crucial. But, selecting the best item to be assigned to a variable is a problem in itself. The quality of match for a given item is completely dependent on the items that have been selected for all other items within its group. When no items have been selected at all it is rather difficult to decide which item is the best one to be selected next. It is in principle equal to selecting a complete solution for the whole group. And that in itself would mean going through all possible combinations for that group, which is precisely the thing we want to avoid by using CSP in the first place. The solution is to use a 'rule of thumb' heuristic that will point the process in approximately the right direction, and let the CSP algorithm do the rest. The heuristic chosen here is a simple random selection: we will loop through all variables in a group and select the one that matches best with all other choices. Doing this in a random order for all initial groups will ensure that at least one reasonably good solution will be created somewhere.

Secondly, we can use a simple procedure to decide when a certain search path cannot produce a better solution than has already been discovered. We do this by adding up all the squared distances of all the best items in all domains after pruning. As soon as the best currently possible solution is inferior to the best solution that had previously been found, we can stop the search in this direction, and backtrack. Of course, this will only work correctly if we made the perfect choice for our best matching items. But since we only used a stochastic 'quick and dirty' heuristic we have to be careful and leave a small margin. This means only discarding search paths that are clearly worse than the current best solution.

If we are looking for the best possible solution, and not just for any solution, we will have to backtrack after we have found a solution. This will eventually lead to and exhaustive search, which can be very time consuming, but guarantees the best possible solution to this particular matching problem will be found.

The program can be terminated earlier, where the best solution found so far will be reported. Since the program always tries to instantiate the best possible domain first, the solution after a limited time will be reasonably optimal.

Case-study

To demonstrate the capabilities of our 'Match' program we selected a published study where a complicated matching solution was needed, and where this had already been solved by hand. The study chosen was "Effects of word length and frequency on the human event-related potential" by Hauk and Pulvermüller (Hauk & Pulvermüller, 2004). They performed a Visual Lexical Decision experiment to investigate the influence of word length, wordform frequency and lemma frequency on the ERP. Their stimuli were in 6 conditions, in a 2 by 3 factorial design with length (short, long) and frequency (low, medium, high) as independent variables. Words had to be matched in length across the frequency conditions, and in both wordform and lemma frequency within the frequency conditions. Hauk & Pulvermüller also took care to make all conditions as well matched as possible on the standard deviation of these matching properties. They performed an ANOVA on the matched stimulus sets, and could not find any significant differences in length, both wordform and lemma frequency, the base 10 logarithm of both these frequency measures, bigram and trigram frequency. The ANOVA did reveal some significant differences in orthographic neighbourhood size for both length and frequency, as well as an interaction between the two. This was attributed to the fact that short, high frequent words tend to have fewer neighbours in general.
Matching the 6 conditions was performed by hand by the authors and took considerable time. We had access to the same initial sets of stimuli to see how the Match program would perform in this case. Table 1 shows the matches of word length for both the original data as well as the Match program. As can be seen 'Match' consistently produces equally good or better matches, both in mean as well as standard deviation. Actually, for the lengths the program seems to have found perfect matches for all conditions. Table 2 shows the results of the frequency matching. Here the program betters the human results in every case, both in mean and standard deviation value.

So, the results seem to be better than matching performed by humans. On top of that, the program only needed to run for half a day to produce these results. This was just because we wanted the best possible results to publish. A very good match was obtained after as little as 10 minutes. Writing and testing the script took no more than 15 minutes.

Program

Match is a command-line program that will only run in Microsoft Windows 32 bit systems. The program is written in standard C++, so could possibly be ported to other systems as well. There is no graphical user interface: all necessary settings and parameters are entered in a very simple script file, which is then passed to 'Match' as a command-line argument. The program can be told to run in the background, at a lower priority, to enable running scripts for a longer time without interfering with other activities on the same computer. The program can be stopped at any time, and the best solution at that point can then be written to file.

References
Cutler, A (1981), Making up materials is a confounded nuisance, or: Will we be able to run any psycholinguistic experiments at all in 1990, Cognition, 10, 65-70.

Hauk O., Pulvermüller F.(2004), Effects of word length and frequency on the human ERP, Clinical Neurophysiology, 2004, 115(5):1090-1103.

Baayen, R.H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX Lexical Database (Release 2) [CD-ROM]. Philadelphia, PA: Linguistic Data Consortium, University of Pennsylvania [Distributor].

Acknowledgements:

We would like to thank Olaf Hauk for his help with the case study involving his experiment.

Tables

	Variable
	Condition
	Hauk & Pulvermüller
	Match

	
	
	Mean
	Std
	Mean
	Std

	Length
	Short-Low
	4.101
	0.84
	4.101
	0.79

	
	Short-Med
	4.116
	0.87
	4.101
	0.79

	Length
	Short-Low
	4.101
	0.84
	4.101
	0.79

	
	Short-High
	4.101
	0.81
	4.101
	0.79

	Length
	Short-Med
	4.116
	0.87
	4.101
	0.79

	
	Short-High
	4.101
	0.81
	4.101
	0.79

	Length
	Long-Low
	6.275
	0.80
	6.203
	0.81

	
	Long -Med
	6.246
	0.91
	6.203
	0.81

	Length
	Long -Low
	6.275
	0.80
	6.203
	0.81

	
	Long -High
	6.246
	0.83
	6.203
	0.81

	Length
	Long -Med
	6.246
	0.91
	6.203
	0.81

	
	Long -High
	6.246
	0.83
	6.203
	0.81

Table 1: Length match comparison

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Variable
	Condition
	Hauk & Pulvermüller
	Match

	
	
	Mean
	Std
	Mean
	Std

	Lemma
	Short-Low
	0.836
	0.266
	0.812
	0.271

	
	Long-Low
	0.770
	0.302
	0.818
	0.264

	Lemma
	Short-Med
	1.594
	0.238
	1.541
	0.245

	
	Long-Med
	1.537
	0.284
	1.540
	0.242

	Lemma
	Short-High
	2.240
	0.250
	2.246
	0.232

	
	Long-High
	2.247
	0.261
	2.245
	0.231

	Wordform
	Short-Low
	0.666
	0.227
	0.642
	0.228

	
	Long-Low
	0.604
	0.244
	0.642
	0.228

	Wordform
	Short-Med
	1.422
	0.226
	1.416
	0.232

	
	Long-Med
	1.412
	0.275
	1.412
	0.237

	Wordform
	Short-High
	2.127
	0.246
	2.140
	0.231

	
	Long-High
	2.145
	0.267
	2.141
	0.232

Table 2: Frequency match comparison

