
Repeated measures designs (also called within-subjects 
designs) are frequently used in disciplines like psycholin-
guistics, phonetics and speech and language pathology. 
They are potentially very powerful, although only a rela-
tively small number of subjects (participants) is required, 
as all subjects have to react to all items. We will use the 
term subject instead of participant to avoid any misunder-
standing about the more technical terminology of within- 
and between-subjects effects or factors. In this contribu-
tion we address questions that are relevant in the context 
of a repeated measures design that is common in psycho-
linguistic research—that is, a design with word materi-
als nested within type of words (nested within treatment). 
Many aspects of this design have been the topic of debate 
and of continuing research. Aspects discussed include the 
following: (1) the question as to whether items (“words”) 
used in current psycholinguistic experiments should be 
considered random or fixed effects and the associated 
problem of finding statistics that yield a fair balance 
between power and the chance of making Type I errors 
(Clark, 1973; Coleman, 1964); (2) the choice of design 
and test statistics with sampled word materials (Raaij- 
makers, Schrijnemakers, & Gremmen, 1999; Wickens & 
Keppel, 1983); (3) possible advantages of alternative ap-
proaches, such as multilevel analysis (Quené & van den 
Bergh, 2004). Of course, analysis of variance is not the 
only approach to the analysis of repeated measures data. 
Multilevel modeling (also known as hierarchical linear 
models) is a frequently used alternative, which is partic-
ularly useful when missing data are present, as is often 
the case in experiments with reaction times as outcome 
variable (Quené & van den Bergh, 2004). Yet, analysis of 
variance is still the default analysis instrument, and this is 

the case not only because researchers are used to it. One 
of the potential problems associated with the multilevel 
approach occurs in the analysis of small samples (see 
Gueorguieva & Krystal, 2004). Since the number of sub-
jects in repeated measures designs is often relatively small, 
we expect analysis of variance to be the default approach to 
repeated measures for the years to come. Moreover, it has 
still to be sorted out how multilevel analysis can deal with a 
within-subjects factor that is neither random nor fixed.

Clark, in his influential 1973 article, started a whole 
series of contributions by statisticians and psychologists 
examining the validity of test statistics when language ma-
terials are used. Following Clark’s advice, researchers now 
consider words as a random factor, also in an attempt to 
ensure generalizability of their results. To test the signifi-
cance of the factor treatment, they resort to the combined 
use of F1 (in which words are seen as a fixed and subjects 
as a random factor) and F2 (in which the assignment of 
random and fixed is the other way around). This use of F1 
and F2 has become standard practice in psycholinguistic 
research, even though it is not in accordance with Clark’s 
recommendation to use F ′ or, alternatively, min F ′ when 
language materials constitute a random factor.

We will deal with the question of why the combined use 
of F1 and F2 has become a standard in psycholinguistic 
research, and in relation to this we discuss two important 
and influential post-Clark articles: Forster and Dickinson 
(1976) and Wickens and Keppel (1983). Forster and Dick-
inson showed the enormous impact of a subject-by-type 
(type 5 treatment) interaction in combination with word 
variability on different test statistics. Wickens and Keppel 
made clear that the degree of systematic sampling needs 
to be related to the choice of a test statistic. In a series of 
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however, no statistical software currently available offers 
the possibility of calculating an F ′ directly. This seems 
to be one of the reasons why most researchers tend to re-
port other statistics: F1 and F2. Clark distinguished two 
F values in order to test the effect of the factor type: F1, 
in which words is considered a fixed factor (and subjects 
a random factor), and F2, with words as a random factor 
(and subjects as a fixed factor). Since the expected values 
of the mean squares vary as a function of the character of 
the factors (random/fixed), both F values are obtained on 
the basis of different error terms: F1 5 MST/MSS3T, and 
F2 5 MST /MSW(T). Most statistical software packages do 
not provide facilities to carry out analyses of variance on 
repeated measures data with different fixed/random labels 
for the factors. Moreover, and more problematically, the 
calculation of MSS3T and MSW(T) requires a complete data 
set, which is seldom available. Fortunately, Clark showed 
that F1 and F2 can also be obtained by simply pooling over 
words (items) or subjects, respectively. That is why F1 is 
also called Fs (Fsubjects) and F2 is called Fi (Fitems).2

Pooling over items results in a randomized block design, 
with one within-subjects factor, T. The F ratio for factor 
T is the same as F1. Pooling over subjects results—in our 
example—in a one-way analysis of the mean values of the 
words, obtained by averaging over the subjects. A one-way 
analysis (with type as the factor) applied to these data yields 
the same F ratio as F2. An advantage of the use of F1 and 
F2 is that it enables the researcher to calculate min F ′ quite 
easily: MST /(MSS3T 1 MSW(T)). This statistic, the lower-
bound value of F ′, is recommended by Clark (1973) and 
Coleman (1979) in order to avoid Type I errors. The easy-
to-calculate version of min F ′ is (F1 3 F2)/(F1 1 F2).

In most articles on research in which repeated measures 
designs are used with word materials nested within the 
factor type (5 treatment), only F1 and F2 are reported. As 
Wickens and Keppel (1983) and Raaijmakers et al. (1999) 
pointed out, both statistics are positively biased in many 
situations and consequently result in high Type I error 
rates. The ratios of mean squares used for these statistics 
are only unbiased if we can be sure that for F1, σ2

W(T) 5 0, 
and for F2, σ2

S3T 5 0 (see Table 1B), both of which obvi-
ously do not happen very often. Wickens and Keppel as 
well as Raaijmakers et al. therefore recommend the use of 
F ′ in those cases in which the language materials can be 
considered as being randomly sampled from a large popu-
lation. Although F ′ is an approximation of the genuine F 

simulation experiments, we will assess, under different 
statistical conditions, the behavior of F1, F2, F ′, min F ′, 
the conventional decision procedure of the F1 and F2 (F1 
& F2, in our terminology) combination and the decision 
procedure suggested by Forster and Dickinson. We will 
also put our own decision procedure to the test, which ex-
plicitly takes word variability and the subject-by-type in-
teraction into account. Particular attention will be paid to 
the question of whether the assumption that “randomness” 
and “fixedness” is a dichotomy is valid, and we will also 
discuss the statistical and methodological consequences 
of the subject-by-type interaction. Furthermore, we will 
discuss the effects of missing data on the statistical out-
comes, because a major reason for adhering to the F1 & 
F2 decision procedure seems to be the easy way this rule 
allows the researcher to disregard missing data.1

Current Practice: F1, F2, and min F ′

What is the current practice of analyzing and reporting 
experiments with repeated measures on subjects (S) who 
have to judge or react to words (W) that are nested within 
a type (T)? The design of such an experiment is given in 
Table 1A, with r subjects, p types, and q items per type. 
The sources of variation and the expected values of their 
mean squares are given in Table 1B.

If both words and subjects are regarded as random fac-
tors—which most researchers prefer—no error term can 
be found to test the factor type (T). One remedy, the F ′ 
ratio, can be calculated by summing mean squares both 
in numerator and denominator in such a way that the ex-
pected value of the former differs from the latter by just one 
term (5 the variance associated with the factor T): F ′ 5 
(MST 1 MSS3W(T))/(MSS3T 1 MSW(T)). To our knowledge, 

Table 1A 
The Classic Repeated Measures Design, With r Subjects (S) and 

With Words (W) Nested Within Type (T)

T1 T2 Tp

  W1  ……  Wq  Wq11  ……  W2q  W(p21)q11  ……  Wpq

S1
.
.
.
.

Sr                   

Table 1B 
Expected Values of Mean Squares for the Design Given in Table 1A

Source  df  E(MS )

S r21 σ2ε 1 [(Q2q)/Q] σ2
S3W(T) 1 pqσ2

S

T p21 σ2ε 1 [(Q2q)/Q] σ2
S3W(T) + qσ2

S3T 1 [(Q2q)/Q]rσ2
W(T) 1 qrσ2

T

W(T) p(q21) σ2ε 1 [(Q2q)/Q] σ2
S3W(T) + rσ2

W(T)

S3T ( p21)(r21) σ2ε 1 [(Q2q)/Q] σ2
S3W(T) + qσ2

S3T

S3W(T) p(q21)(r21) σ2ε 1 σ2
S3W(T)

Note—(Q2q)/Q is 0 when the factor word [5 W(T)] is fixed, and 1 when this factor is ran-
dom. Q, number of levels of words in the population; q, the associated number in the sample; 
S, subjects; T, type.
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zero, F1 is the test statistic required, for zero variability 
exactly defines a fixed word effect. If word variability is 
present, F1 becomes too liberal.

A striking effect of a zero interaction of subject-by-type 
(the component S3T ) is the proper statistical behavior of 
F2 in terms of Type I and Type II errors, independent of 
the presence or absence of word variability. These good 
properties disappear when the subject-by-type interaction 
effect increases, however. The power of F2 depends on 
the number of items, of course, which means that a de-
sign with only a few items (words) will have insufficient 
power. Forster and Dickinson calculated Monte Carlo es-
timates for F1, F2, F1 & F2, min F ′, and F ′, systematically 
manipulating the variance components σ2

S3W(T) and σ2
W(T). 

We summarize their results in Table 2 according to the 
presence or absence of these two variance components.

Table 2 illustrates that F1 & F2 only performs appropri-
ately in the “either–or” situation—in other words, the situ-
ation in which either σ2

W(T) or σ2
S3T is present. F ′ performs 

well under all circumstances, the exception being when both 
variance components are zero. The same goes for min F ′, 
but this statistic tends to be too conservative in other cases 
as well. The main conclusions to be derived from the results 
in Table 2 are (1) F2 performs well as long as there is no in-
teraction S3T; (2) since the presence of σ2

W(T) reflects item 
variability, and consequently the fixed or random charac-
ter of the associated factor, F2 appears to be insensitive to 
the question of whether the factor word is random or fixed; 
(3) the statistics F1 & F2, F ′, and min F ′ are too conservative 
if both variance components involved are absent. However, 
Forster and Dickinson (1976, p. 138) tell us not to worry too 
much, because in their simulations the nominal level of α 
was only affected moderately (from 5% to about 2.6% for 
F ′, to about 1% for min F ′, to about 2.2% for F1 & F2).

The variance components under discussion here, σ2
W(T) 

and σ2
S3T, are determinant factors for the behavior of the 

F statistics. It is surprising, therefore, that the meaning of 
these components has been largely neglected, both in the 
statistical literature and in the interpretation of the results 
obtained in psycholinguistic experiments with repeated 
measures. These two components will be central in our 
statistical simulations.

Fixed or Random Effects: Gradual Matching
Two standard strategies are in use to handle sets of stim-

uli in a (quasi)experimental design: (1) random sampling 

ratio, Wickens and Keppel made clear that tests based on 
F ′ are correct if the word materials—and subjects—are 
sampled in a random way. Moreover, Maxwell and Bray 
(1986) showed the robustness of F ′ to the common risk 
in repeated measures designs: the violation of sphericity. 
Thus basing ourselves on the literature, nothing prevents 
us from applying F ′ when language materials do consti-
tute a random factor. Nevertheless, the convention of re-
porting both F1 and F2 prevails in most journals.

The present situation has been thoroughly investigated 
by Raaijmakers et al. (1999), who rightly warned of “the 
F1 3 F2 fallacy.” To illustrate how widespread this fallacy 
is, they screened five volumes (1993–1997) of the Journal 
of Memory and Language. A total of 124 relevant articles 
were found, of which 120 reported F1 and F2 only, and of 
which 4 reported min F ′ as well as F1 and F2. By investigat-
ing a longer time span (i.e., from 1974 onward), they con-
vincingly pointed out a gradual change from a situation in 
which min F ′ was the standard toward the present situation 
in which the F1 & F2 criterion is used exclusively. Raaij-
makers et al. argued that in the case in which word vari-
ability is random, min F ′ is the proper statistic. The F1 & 
F2 criterion is positively biased (resulting in a Type I error 
that is too high) when words are random, as was shown by 
Forster and Dickinson (1976) in a series of Monte Carlo 
simulations. Raaijmakers et al. claimed that in practice the 
traditional F1 is the correct test statistic when word variabil-
ity in experiments is kept under control, which especially 
applies in the case of item matching and counterbalancing. 
Their advice does not cover, however, the common situation 
in which word variability floats somewhere between real 
randomness and strict experimental control (fixed). Sam-
pling three-syllabic words, for instance, gives a constrained 
set of possible words, and the reseracher has to take the 
test materials from the available language-specific (sub)
set. The degree of experimental control is determined by the 
size and properties of the set of words available. Sizes and 
properties of lexical (sub)sets are defined by the research 
questions, and when these questions, for instance, are de-
limited to homophones or homographs between language 
pairs, the resulting subset may be extremely small.

Characteristics of 
Word Materials

The Role of the Variance Components 
σ2

S3T and σ2
W(T)

Forster and Dickinson (1976) carried out a number of 
Monte Carlo simulations on the classic repeated measures 
design in psycholinguistic research, as discussed in the 
previous section. Two variance components were system-
atically varied, which are characteristic of the sources 
of variation that figure as error terms in the F1 and F2 
analysis when the full design is used: F1 5 MST/MSS3T, 
and F2 5 MST/MSW(T). Forster and Dickinson did not 
deal with these two components from an interpretive, but 
merely from a purely statistical point of view. An impor-
tant initial conclusion they drew is that the reduction of 
word variability (σ2

W(T)) clearly has a favorable effect on 
the statistical properties of F1. When word variability is 

Table 2 
Summary of the Forster and Dickinson (1976) Results As a 

Function of the Presence (5 1) or Absence (5 0) of the 
Variance Components σ2

W(T) and σ2
S3T

σ2
W(T)  σ2

S3T  F1  F2  F1 & F2  F ′  min F ′

0 0 OK OK 2 2 2
0 1 OK 1 OK OK(–) OK(2)
1 0 1 OK OK OK OK
1 1 1 1 1 OK OK

Note—The error rates of the F ratios for a type/treatment effect were 
calculated under the condition of no effect. OK, error rate of about 5%; 
2, error rate is too low (,3%); OK(2), tendency to be too low (between 
3% and 4%); 1, error rate is too high (.7%).
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of handling missing values does not mean that no choice 
has been made. Mean values are imputed implicitly, on 
the basis of pooling over items in F1 and pooling over 
subjects in F2. There are a number of ways in which miss-
ing data can be dealt with (cf. Allison, 2002; Gornbein, 
Lazaro, & Little, 1992; Little & Rubin, 1987; Rietveld 
& van Hout, 2005). The procedure described in Winer, 
Brown, and Michels (1991, pp. 487–490) has been the 
most frequently used method reported in psycholinguis-
tic literature. Below, we propose the use of an alternative 
procedure (“hot deck”).

Design-Dependent Statistics and 
Multistage Procedures

Raaijmakers et al. (1999) concluded that the traditional 
F1 leads to appropriate results in many cases, with the ex-
ception of designs in which items are fully nested within 
treatments. In such circumstances, (min) F ′ is the statistic 
required. In fact, they claimed a larger area of application of 
F1 than is commonly assumed in psycholinguistic research. 
They argued that the balancing of language materials leads 
to a model equation with subjects as random factor and ma-
terials as fixed factor. Wickens and Keppel (1983) came to 
the same conclusion on the basis of a series of simulations, 
which showed that balancing in general had a positive effect 
on the statistical properties of F1. Their final conclusion 
was that the choice of the test statistic ought to depend on 
the underlying model one wants to assume. Why did the 
conclusion of Wickens and Keppel hardly have any impact 
on the statistical practice in psycholinguistic research? And 
why can the same be said for Raaijmakers et al.’s recom-
mendations? One reason is that both sets of recommenda-
tions are difficult to handle in practice. They do not provide 
an answer to the question of how one should assess whether 
the properties of the word materials satisfy the conditions of 
a fixed factor. In such a situation, a researcher will take the 
safe track of double checking via F1 and F2. Paradoxically, 
this track is not safe at all.

If one accepts that no panacea is available, an attrac-
tive alternative is a multistage procedure. A well-known, 
but not frequently used, multistage procedure is the one 
given by Forster and Dickinson (1976). Since both F ′ and 
min F ′ are conservative tests, they suggested the following 
procedure for avoiding unacceptably high Type I errors.

Multistage Procedure of Forster and Dickinson 
(1976; Hereafter, F&D)

(A) Test min F ′. If it is significant, reject H0. If it is 
not significant, proceed to Step B.

(B) Test the effects of S3T and W(T). These effects 
are tested by dividing their MSs by MSS3W(T). If 
either of the effects produces a nonsignificant F, 
proceed to Step C. Otherwise accept H0.

(C) Test F1 and F2. If both F ratios produce a signifi-
cant result, reject H0; otherwise accept H0.

The simulation experiments of Forster and Dickinson 
(1976) validated this multistage procedure. Moreover, 

and (2) matching on item or word level. We will briefly 
review both strategies, assuming that the topic of research 
is the difference in how two word-class categories, nouns 
and verbs, are processed by human subjects.

1. Random sampling. Random samples of items are 
drawn, for instance 10 verbs and 10 nouns. The items 
drawn within the two word class categories are nested; 
they only occur within the word class category they be-
long to. A disadvantage of this strategy is the necessity of 
drawing fairly large samples of items, especially when the 
variance within the populations (the word-class catego-
ries) is large.

2. Item matching (5 blocking). For every noun item, 
a comparable verb item is selected. The word work, for 
instance, can be both noun and verb. The question is 
whether phonological similarity is a sufficient condition. 
It does not guarantee, for instance, that the frequencies of 
the noun and the verb items are similar. Moreover, many 
verbs and nouns are excluded from selection. In practice, 
it is rarely possible to get a completely satisfactory match 
per item. Anyway, if item matching can be carried out in 
a psycholinguistic experiment, the analysis of variance 
is self-evident in the sense that items can be included as 
a blocking factor (every item fully crossed with type—
e.g., word class). The item levels ought to be treated as a 
random factor. The corresponding expected mean squares 
when items are random can be found in Wickens and Kep-
pel (1983, p. 306; see also Raaijmakers et al., 1999).

Both the strategy of random sampling and the strategy 
of item matching are hardly ever used in psycholinguistic 
practice. There is a strong preference to use a mixed strat-
egy of matching on the level of sets of items in combina
tion with a deliberate item choice. Items in the noun cat-
egory are compared as a set to a set of verb items. The 
researcher wants to compare the two sets with regard to 
their frequency distribution, their syllable structure prop-
erties, their phonological form, and so on. The aim is to 
neutralize potentially confounding factors at the level of 
the items. The consequence of this is that the items se-
lected are not randomly chosen but are selected delib-
erately, in such a way that relevant characteristics at the 
set level are similar, which directly raises the question of 
whether items/words should be interpreted as a random 
factor. In any case, matching at set levels has become 
standard in psycholinguistic research, and therefore it de-
serves a separate label: “set matching.”

3. Set matching. Two or more sets of items are deliber-
ately and carefully selected in such a way that potentially 
confounding factors are neutralized. The neutralization 
effect is established by obtaining comparable values on 
relevant variables at the set level. Wickens and Keppel 
(1983, p. 306) summarized this approach as a “mixture 
of sensible selection, counterbalancing, informal block-
ing, and the elimination of extreme material.” Neverthe-
less, the factor word is nested, and it is unclear whether it 
should be given the status of a fixed or random factor.

Missing Data
The F1 & F2 procedure seems to be an elegant way to 

disregard missing values. However, avoiding the problem 
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data set comprised 900 data points, which functioned as 
simulated reaction time measurements. We assessed the be-
havior of these statistics as a function of three parameters:

(1) Effect size of the factor type, with values 0, 0, 0 
(no effect), and 215, 0, 115 (small effect);

(2) Presence or absence of the interaction effect 
subject-by-type: σ2

S3T;

(3) Degree of dependency (“common variance”) be-
tween words in different types (in this way, the 
matching of words between different types was 
simulated).

Three additional aspects will be discussed. The first one 
is the presence or absence of skewness in the distribution 
from which the words were drawn; the second, the impact 
of the effect size of the item variability; and the third, the 
way missing data can be handled.

Data Generation
In order to estimate probabilities of Type I and Type II 

errors associated with different statistics and different char-
acteristics of data sets, these data sets were generated by a 
FORTRAN program with routines from the Library Mark 
18, made available by the Numerical Algorithms Group 
Ltd., Oxford, U.K.,3 implemented on an IBM RS6000-R50 
computer. For each condition, 10,000 data sets were gen-
erated. Since there were 2 (effect size) 3 2 (presence/ab-
sence of the interaction S3T) 3 11 (degree of dependency 
between words in different types: varied in steps of 10% 
between 0% and 100%) conditions, the results reported 
here are based on 44 3 10,000 5 44,000 data sets.

The model equation for the repeated measures design 
we used is

	 Xijk 5 µ 1 αi 1 πj 1 απij 1 βk(i) 1 εijk,	 (1)

in which

µ 5	 overall population mean (630 msec);

πj 5	 the effect of subject πj, random factor sam- 
	 pled from N(0, 70), with a variance of σ2

S;

αi 5	 the fixed effect of the three types i, with two 
	 options:
	 Effect (0, 0, 0) 5 0,
	 Effect (215, 0, 115) 5 15

απij 5	 the interaction between subjects and type,	  
	 with values set at 0 (S3T 5 0) or taken from 
	 N(0, 35) (S3T 5 35), and variance σ2

S3T;

the procedure is clear and precise. Why has it not become 
standard procedure? We assume that the problems in test-
ing the effects of S3T and W(T) when missing data occur 
have severely restricted the use of their procedure. There 
are no easy ways of “repairing” the resulting empty cells. 
Perhaps this was a good reason to forget about Step B and 
to remember Steps A and C only. As was pointed out ear-
lier, Step A has disappeared as well in the course of time, 
leaving the scene to Step C.

Despite the good results of the F&D procedure in their 
Monte Carlo studies, we suggest that an even better mul-
tistage procedure can be set up. The following consider-
ations should play a role. F1 and F2 should be applied sep-
arately, depending on the properties of the data. Here the 
variance components σ2

S3T and σ2
W(T) appear again. Table 2 

substantiates the appropriateness of F2 when the variance 
component σ2

S3T is absent and the appropriateness of F1 
when the variance component σ2

W(T) is absent. We attach 
more importance than Forster and Dickinson did to the 
test of the interaction effect of subject-by-type (S3T), 
both for statistical and methodological reasons. Thus, we 
suggest the following multistage procedure.

Multistage Procedure of Rietveld and van Hout 
(Hereafter, R&H)

(A) Test the effects of S3T and W(T).

(B) If the effect S3T is not significant, test F2.

(C) If the effect S3T is significant and the effect 
W(T) is not significant, test F1.

(D) If both effects S3T and W(T) are significant, 
test F ′.

This decision procedure is not meant to be applied au-
tomatically. If the effect S3T is significant, an acceptable 
explanation is required. If the effect W(T) is not signifi-
cant, indicating that there is no item variability effect, an 
explanation is needed as well, since item variability is a 
typifying source of variation in psycholinguistic experi-
ments. For obvious reasons, the suggestion to “look for 
an acceptable explanation” was not formally used in the 
simulations reported in this article. The reason we prefer 
F ′ over min F ′ is its less conservative behavior. In Table 3, 
an overview of the two multistage decision procedures is 
given that illuminates the differences. Both of the proce-
dures especially agree on the crucial role played by the 
two variance components σ2

S3T and σ2
W(T).

Statistical simulations

Parameters
In the simulation experiments reported below, we wanted 

to assess the behavior of the four F statistics that are cur-
rently in use when the results of repeated measures designs 
are reported—namely F1, F2, F ′, min F ′—and three deci-
sion procedures: the conventional F1 & F2, the F&D pro-
cedure, and the R&H procedure that we propose. The basic 
design comprised two within-subjects factors (type, with 
three levels, and word nested within type, 10 words [5 
items] per level of type) and 30 subjects. Thus, a complete 

Table 3 
Overview of the Multistage Decision Procedures of F&D 

(Forster & Dickinson, 1976) and R&H (Rietveld & van Hout) in 
Relation to the Presence (= 1) or Absence (= 0) of the Variance 

Components σ2
W(T) and σ2

S×T

σ2
W(T)  σ2

S×T  F&D  R&H

0 0 min F ′ F2
0 1 min F ′; if not significant, F1 & F2 F1
1 0 min F ′; if not significant, F1 & F2 F2
1  1  min F ′  F ′
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In our simulations, both random sample values are ob-
tained from populations with the same mean (5 0) and the 
same standard deviation. The two samples are weighed by 
w1 and w2. The word n gets the same mean and standard de-
viation, when the following relationship holds between the 
two weights (see Rietveld, van Hout, & Ernestus, 2004):

	 w1
2 1 w2

2 5 1.	 (3)

The degree of matching increases by taking higher w1 val-
ues. For example, if we take a value of .80 for w1, w2 has 
the value .60. This results in a common variance of 64% 
(.80 3 .80) and a word-specific variance of 36% (.60 3 
.60) of the total variance.

The procedure of partial matching has two obvious 
advantages over the blocking method applied by Wick-
ens and Keppel (1983). They split up their population of 
words in a varying number of layers, but the number of 
layers did not have a transparent statistical interpretation. 
Our matching procedure has a statistical interpretation in 
terms of common variance. Second, the blocking method 
as applied by Wickens and Keppel systematically uses the 
complete range of variation in the population (they ex-
cluded only the extreme tails). This automatically means 
that (most of ) the blocks can be reconstructed from the 
sample values of the selected words. In partial matching, 
the way the population variation is covered varies, which 
matches better the practice of word selection in psycho-
linguistic research, in which selection is often more de-
termined by available words than by coverage of the full 
range between easier and more difficult words in terms of 
reaction time.

Skewness
The distributions from which the words were sampled 

were skewed in order to create ecologically valid condi-
tions; skewness—[Σ(x 2 µ)3/n]/σ3—was set at a value 
of 1, a value estimated on the basis of a data set used in 
Schreuder, Burani, and Baaijen (2003).4

Missing Data
Most of our simulations were carried out on complete 

data sets (30 subjects, 3 word types with 10 words nested 
within types, resulting in 900 “observations” in total), 
but additional simulations were carried out on similar 
data sets with 90 missing data each (10%). The miss-
ing data were obtained as follows: In each generation of 
a data set, two uniform distributions (ranging from 1 to 
30) were sampled, each time generating the tuple (i, j); 
this tuple determined the cell in the z-transformed data 
matrix, with z values being calculated per word. In the 
next step, a value Pu drawn from a uniform distribution 
ranging from .00 to 1.00 was compared with the left tail 
probability of z(i, j). If Pu , P[left of z(i, j)], the corre-
sponding cell was given the code of “missing value.” This 
procedure favored higher values being labeled as missing 
values, a process quite similar to what is found in real ex-
periments with reaction times (the missings can be labeled 
nonignorable according to Allison, 2002). There are many 
imputation procedures, all with their own pros and cons 

βk(i) 5	 the effect of the k words nested within i types, 
	 random factor sampled from N(0, 35)—this 
	 is the “item variability,” with variance σ2

W(T);
εijk 5	 the error component, encompassing random 
	 error σ2ε and the interaction σ2

S3W(T) sampled 
	 from N(0, 105).

Both the effects of the subjects and of the nested words 
were estimated on the basis of the variance components 
calculated for a fairly common data set with reaction 
times (Schreuder, Burani, & Baaijen, 2003).

Common Variance
How can the research practice of set matching be simu-

lated? Wickens and Keppel (1983, p. 305) characterized 
item matching as matching samples on a number of relevant 
dimensions. They simulated it by stratifying word materials 
before selection. The distribution of words was divided into 
a number of strata or regions (5 b). When b 5 2, there was a 
region with words below the population median and a region 
above it. From each region a sample of w words was ran-
domly chosen. In essence, they added a blocking factor to 
the experimental design, varying the number of blocks (5 b) 
from which words were sampled (the number of words 5 w) 
holding b 3 w (5 12) constant. The introduction of more 
blocks means a higher degree of matching. Next, the sta-
tistical analysis was performed without the blocking factor. 
They were interested “in the consequences of the relatively 
common practice of balancing samples of materials in the 
design of experiments without formally treating any block-
ing factor in the statistical analyis” (Wickens & Keppel, 
1983, p. 306). The appropriate analysis was used (F ′ for 
the design in which the blocking factor was included) as a 
reference point for the conventional F1 and F ′ analyses (the 
latter two were computed without the blocking factor). Their 
outcomes show that an increase in the number of blocks en-
hances the statistical performance of F1 in a highly effective 
way (by reducing the Type I error rate). When blocking is 
ignored, F ′ substantially lacks power.

We implemented a comparable procedure for set match-
ing, but we opted for the explicit control over the common 
variance between sets of words. Our implementation is 
based on partially matching the sets involved at word level. 
Partial matching means that a specific degree of similarity 
is assumed between specific words in the sets. This degree 
of similarity is operationalized by assuming a common vari-
ance component between words and a unique component 
for each of the items. An example can easily demonstrate 
what partial matching is. Suppose we have a set of nouns 
and verbs and both sets have the same number of words. 
Each item in the noun set partially matches one item in the 
verb set. In fact we apply word-by-word matching. The word 
matching is partial, however, and in the final result at the set 
level no information is left with regard to which particular 
nouns were matched with which verbs. Word n in the noun 
set is matched with word n in the verb set as follows:

	 word n 5 w1 	3 (sample value from common
	 distribution) 1 w2 3 (sample value
	 from word-specific distribution).	 (2)
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calculating (F1 3 F2)2/(F1
2/dfW(T) 1 F2

2/dfS3T) (see Clark, 
1973, pp. 356–357).

F1 & F2. The conventional decision procedure: Both 
F1 and F2 have to be significant to declare the factor type 
significant.

F&D. The procedure suggested by Forster and Dickin-
son (1976).

R&H. The procedure suggested by the authors (Riet-
veld & van Hout).

Moreover, we tested systematically the significance of 
the two effects that we manipulated in our simulations, 
namely S3T and W(T).

Results

The Three Main Parameters
In the following, we present figures that contain the 

relative frequencies of occurrence of significant values 
(the significance level was set at .05) of the F statistics 
and decision procedures. As explained earlier skewed data 
were used. Skewness of the distribution from which words 
are sampled, does not affect the F ratios and associated 
p levels substantially (see Kirk, 1995, p. 99). However, 
since the assumption that words are sampled from skewed 
distributions is more in agreement with reality than the 
assumption that they are taken from normal distributions, 
we have used skewed distributions throughout the simula-
tions described below.

The simulations are based on three parameters. The first 
two are the absence/presence of an effect in the population 
and the absence/presence of the interaction S3T. Crossing 
these two parameters gives the four basic configurations 
in which the simulation results are presented in Figure 1. 
The third parameter is the degree of common variance 
which is varied between 0% and 100% in steps of 10%.

Our first simulations were carried out under the condi-
tion of no effect and no S3T interaction. Figure 1A gives 
the Type I errors of the different F statistics and decision 
procedures.

The most conspicuous statistic in Figure 1A is F1. As 
expected, this statistic turns out to be far too liberal, espe-
cially when the degree of common variance is low. When 
words is really a random factor (common variance 5 0), 
the Type I error is even almost 50%. The Type I error rate 
of the F1 drops quickly with increasing common variance, 
but it is only from a level of common variance of 80% or 
onward that the error rate reaches a level of about 5%. 
The remaining six statistics are not too liberal. They all 
perform at the 5% level or less. F2 and R&H remain fairly 
constant at a 5% level. F&D starts at the 5% level, but its 
error rate clearly drops with increasing common variance. 
From a common variance of 50% onward, it gets the same 
low error rates as min F ′. F1 & F2 and F ′ show a drop in 
error rate as well with increasing common variance, but 
their drop is less steep.

(see Allison, 2002). We used the “hot deck” procedure, 
also mentioned by Forster and Dickinson (1976) in their 
study of repeated measures designs in psycholinguistics. 
Of course, there might be some debate on this choice. We 
decided to use this procedure because it does justice to the 
randomness of both subjects and items (words), and be-
cause it was relatively easy to implement this procedure in 
our simulations. Our version of this procedure consists of 
randomly selecting—per subject and per type (treatment), 
with replacement—observed values to fill in the missing 
data. Conventionally, F1 is calculated on the mean values 
per subject, pooled over words, and F2 is calculated on the 
mean values per word, obtained by pooling over subjects.5 
The procedure was assessed by inspection of the Type I 
errors obtained when all requirements of the ANOVA pro-
cedure were met.

Statistics
The outcomes of the simulations are evaluated on the 

basis of four statistics and three decision procedures.
F1. Calculated either on the basis of a complete design 

in which words constituted a fixed factor and subjects a 
random factor (imputed data sets) or on the pooled data 
sets. As long as there are no missing data, F1 calculated 
on the basis of means obtained by pooling over words is 
equal to the F1 for the complete data set.

F2. Calculated on the data set obtained by pooling over 
subjects, which was subsequently analyzed with a one-way 
analysis of variance. As long as there are no missing data, 
F2 calculated on the basis of means obtained by pooling 
over subjects is equal to F2 for the complete data set.

F ′. Calculated for complete sets (see the formula 
below); obviously, this statistic cannot be calculated if 
only mean values of items are available; F ′ is either based 
on complete data sets or sets in which missing values are 
replaced by imputation.

The F ′ ratio is calculated as follows:

	
′ =

+
+

×

×
F

MS MS

MS MS
T S W T

S T W T

( )

( )

,
	

(4)

in which T 5 type of words, W(T) 5 word within type of 
words, and S 5 subject, with

	 df1 5 (MST 1 MSS3W(T))2/(MST
2/dfT

	 1 MS2
S3W(T)/dfS3W(T))

	 df2 5 (MSS3T 1 MSW(T))2/(MS2
S3T/dfS3T

	 1 MS2
W(T)/dfW(T)).

This corresponds to Equation 5, located at the bottom of 
the page, in which p 5 number of types, q 5 number of 
words at each level Tj, and r 5 number of subjects.

min F ′. Minimum F ′, calculated as (F1 3 F2)/(F1 1 
F2). The degrees of freedom of the numerator are calcu-
lated as df2 for F ′; the same result can be obtained by 
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in which the S3T interaction is absent. The error rates in 
Figure 1C make clear, once again, that F1 is too liberal, but 
its behavior improves as a function of increasing common 
variance. As expected, F1 is perfect when the word effect 
reaches the level of fixedness. F2 has the inverse problem: 
Its error rate rapidly inflates at higher levels of common 
variance. The consequence is that the F1 & F2 combina-
tion is too liberal as well, because both Fs are too liberal 
in overlapping areas. F1 & F2 only gets an acceptable error 
rate at higher levels of common variance (70% and higher). 
Min F ′ and F ′ turn out to be conservative over the whole 
range of common variance. Both F&D and R&H perform 
well with a slight tendency to be conservative at low levels 
of common variance.

Figure 1D shows again the remarkable F1 versus F2 pat-
tern that we found in Figure 1C. Because of their high 
Type I error rates, their power levels are of no interest 
here. F&D and R&H show the best power results, espe-
cially R&H when the whole range of common variances 

Figure 1B gives the power ratings for the statistics in-
volved, when an effect is present, in combination with 
the absence of an S3T effect. All lines in this figure rise, 
which means that higher levels of common variance yield 
higher power ratings for all statistical measures involved, 
including F ′ and min F ′. F1 has the highest power ratings, 
but we already saw in Figure 1A that the Type I error rates 
are much too high. Min F ′ and F&D lag behind in power, 
min F ′ over the whole common variance range, F&D 
when the common variance gets more substantial. The two 
best performing statistics are F2 and R&H. This outcome 
confirms that F2 is an excellent statistic, insensitive to the 
fixed-random distinction, as long as there is no S3T inter-
action. In that situation, the R&H procedure relies on the 
qualities of F2.

The performances of F1 and F2 in Figures 1C and 1D are 
remarkable. The two figures cover the situation in which 
an interaction effect S3T is present. They show that the 
statistics involved behave differently than in the situation 
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Figure 1. Type I error rates (%) and power rates (%) for four F statistics and three decision 
procedures as a function of σS3T (either S3T 5 0 or S3T 5 35) and the degree of common 
variance; power rates are based on effect (215, 0, 15).
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jects and types interact. Their performance substantially 
improves when common variance is high. A minus sign 
in Table 4 should not be seen as a negative qualification. 
Although a low Type I error value must have immediate 
implications for the power of the associated statistic or de-
cision procedure, this does not matter in this table.

The power of the test statistics and decision procedures 
involved can be evaluated on the basis of the outcomes in 
Figures 1B and 1D. In Table 5, the results are summarized 
for the effect size of 15. Again, the relevant dimensions 
are the amount of common variance and the absence or 
presence of the interaction S3T. A plus for a specific cell 
in Table 4 was a knock-out condition for the correspond-
ing cell in Table 5; this is marked by the label “No.” The 
remaining cells contain their rank order in power row-
wise. A higher rank means more power.

is taken into account. The power rates in Figure 1D are 
lower than in Figure 1B, which is the consequence of the 
presence of the interaction effect S3T.

In Tables 4 and 5, we summarize our statistical findings 
by classifying the performances of the statistics involved. 
In Table 4 labels are assigned to the behavior of F1, F2, 
F1 & F2, min F ′, F ′, F&D, and R&H with respect to the 
Type I error. The relevant dimensions are again the amount 
of common variance and the absence or presence of the 
S3T interaction. The labels for the F statistics and the de-
cision procedures are based on the outcomes presented in 
Figure 1. A plus sign in Table 4 means a Type I error value 
that is too high; this is a direct disqualification and, in fact, 
dismisses the associated statistic or decison rule as a seri-
ous candidate. F1, F2, and F1 & F2 fail to meet the Type I 
error requirements, and they particularly fail when sub-

Table 4 
Type I Errors of F Statistics and Decision Procedures As a Function of Common 
Variance and the Absence/Presence (0/1) of the Interaction S3T, Effect Size = 0

Common
Variance  σ2

S×T  F1  F2  F1 & F2  min F ′  F ′  F&D  R&H

0 0 1 OK OK 2 OK(2) OK OK
20 0 1 OK OK 2 OK(2) OK(2) OK
40 0 1 OK OK 2 2 2 OK
60 0 1 OK OK 2 2 2 OK
80 0 OK OK OK(2) 2 2 2 OK
100 0 OK OK 2 2 2 2 OK

0 1 1 1 1 2 OK(2) 2 OK(2)
20 1 1 1 1 2 OK(2) OK(2) OK
40 1 1 1 1 2 OK(2) OK OK
60 1 OK(1) 1 OK(1) 2 OK(2) OK OK
80 1 OK 1 OK 2 OK(2) OK OK
100 1 OK 1 OK 2 OK(2) OK OK

Note—OK, error rate of about 5%; 2, error rate is too low (<3%); OK(2), tendency to be too 
low (between 3% and 4%); 1, error is too high (>7%); OK(1), tendency to be too high (be-
tween 6% and 7%); F&D, the decision procedure suggested by Forster and Dickinson (1976); 
R&H, the procedure suggested by Rietveld and van Hout.

Table 5 
Power of F Statistics and Decision Procedures As a Function of Common 

Variance and the Absence/Presence (0/1) of the Interaction S3T, Effect Size 5 15

Common
Variance  σ2

S×T  F1  F2  F1 & F2  min F ′  F ′  F&D  R&H

0 0 No   2.5   2.5 6   5 2.5 12.5
20 0 No   2   2 6   5 4 12.5
40 0 No   2   2 6   4 5 12.5
60 0 No   2   2 6   4 5 12.5
80 0 1   3   3 7   5 6 13.5
100 0 1   3   3 7   5 6 13.5
Total 0 2 14.5 14.5 38 28 18.5 14.5

0 1 No No No 3.5   1.5 3.5 11.5
20 1 No No No 4   2.5 2.5 11.5
40 1 No No No 4   3 1.5 11.5
60 1 1.5 No   1.5 6   5 3.5 13.5
80 1 2.5 No   2.5 6   5 2.5 12.5
100 1 2.5 No   2.5 6   5 2.5 12.5
Total 1 2 2 2 29.5 22 16 12.5

Note—Cells marked with a “1” in Table 4 referred to decisions with an error too high, and 
they are not considered here for power ranking; in this table, they are marked “No.” The 
power of the F statistics is ranked row-wise, with a higher rank (= a lower number) indicat-
ing a higher power; differences of 2% or less are considered to be ties. F&D, the decision 
procedure of Forster and Dickinson (1976); R&H, the decision procedure of Rietveld and 
van Hout.
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used. Therefore, we carried out a series of simulations 
with a common variance of 60%, with word variability 
set at 105 (σW(T) 5 105). The results are given in Figures 
2A to 2D, which reflect again the four basic conditions 
we distinguished.

Figures 2A and 2C give the Type I error rates of the 
statistics and decision procedures for word variabilities 
of 35 and 105. The statistics and decision procedures 
do not exhibit much sensitivity to the two conditions of 
word variability, except for F1 and F2. We found a simi-
lar sensitivity to differing degrees of common variance. 
The other statistics and the two decision procedures seem 
fairly robust.

Figures 2B and 2D make clear that higher word vari-
ability leads to lower power. The relative positions taken 
by the statistical measures do not really change. If we rule 
out F1, F2, and F1 & F2 because of their high Type I error 
rates, R&H is still the best choice, as well as in cases of 
higher word variability.

Missing Data
Missing data is an important topic in our context, be-

cause it seems to have been a factor contributing to the 

Table 5 shows that F2 and F1 & F2 have high rankings 
when they are not excluded from the ranking procedure 
because of unacceptable Type I errors. The four statistical 
measures that are not marked by a “No” label (min F ′, F ′, 
F&D, and R&H) can be evaluated by comparing their total 
“power ratings” (obtained by summing their ranks). In the 
case of no interaction, R&H clearly has the best results, 
with a total power rating of 14.5. The totals of min F ′, F ′, 
and F&D indicate their conservative nature. In the case 
of the presence of an S3T interaction effect, both F&D 
and R&H have high rankings, with those of R&H being 
slightly better.

Increasing Word Variability
An important question is how robust the results are. An 

essential aspect is the impact of word variability, which 
was set at 35 in the simulations we have presented thus far 
(σW(T) 5 35). Word variability is important because the 
degree of common variance and the degree of word vari-
ability are interrelated phenomena. More common vari-
ance will reduce the word variability found in data sets. 
One could imagine that the results found are determined 
strongly by the relatively low level of word variability we 
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Figure 2. Type I error rates (%) and power rates (%) for four F statistics and three decision 
procedures as a function of item variability (σW(T) 5 35 vs. σW(T) 5 105) and σS3T (either 
S3T 5 0 or S3T 5 35); power rates are based on effect (215, 0, 15); common variance is 
60%.
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the W(T) effect in a systematic way in order to grasp their 
roles in the statistical evaluation of the type effect. We 
introduced a method of simulating set matching in lan-
guage data (words), producing a factor that does not have 
an obvious fixed or random status. This method is based 
on the concept of common variance that makes it possible 
to define a scale between random and fixed.

We would like to point out here that the interaction S3T 
is not only a complicating factor from a technical and sta-
tistical point of view (its presence makes F2 a useless test 
statistic, as was already pointed out by Forster & Dickinson, 
1976). Textbooks on statistics remind us that the presence 
of an interaction effect sheds doubts on the relevance of the 
associated main effects. This is especially the case when 
the interaction is of the disordinal type (see Rietveld & van 
Hout, 2005). Interaction in our type of design means that 
subjects exhibit differential reactions to levels of the fac-
tor type; in the case of a disordinal interaction, they even 
show opposite patterns. Although this is common knowl-
edge, it is amazing that a discussion of this interaction is 
absent in the psycholinguistic literature. We suggest that 
in psycholinguistic research more attention should be paid 
to differences between subjects, especially (so we would 
emphasize) when these differences have specific patterns 
related to the primary effects in the design such as type (see 
Baaijen, Tweedie, & Schreuder, 2002).6

Assessing the significance of the variance components 
S3T and W(T) is only possible—with the currently avail-
able statistical software for analysis of variance—if there 
are no missing data. When there are missing data, which 
is nearly always the case in psycholinguistic experiments, 
they have to be imputed. We found that the hot deck pro-
cedure is suitable for this purpose, both with low and high 
degrees of common variance between words. The hot deck 
procedure yields results similar to the ones obtained with 
F1 and F2 when missing values are ignored. The last aspect 
we want to mention is the assumption that many designs 
with repeated measures cannot be binarily categorized as 
designs with the factor word as either fixed or random. On 
the basis of the concept of “set matching,” we claim that 
using a scale of “randomness” instead of the “random/
fixed” dichotomy offers a more realistic approach to this 
problem. This scale was implemented in our simulations 
on the basis of two components, “common” variance and 
“word-specific” variance. It showed quite clearly the ef-
fects of the position of the factor word on this scale on 
Type I error and power.

All these considerations seem to be in favor of our deci-
sion procedure (R&H), which resembles the one suggested 
by Forster and Dickinson (1976), but differs in some es-
sential respects. Relevant differences are that neither F1 & 
F2 nor min F ′ are components of our decision procedure 
(see Table 3). The advantages and disadvantages of the 
various statistics and decision procedures are summarized 
in Table 6, which may function as a kind of consumer’s 
guide.7

Although our findings, summarized in Table 6, are clear, 
it is hard to predict whether researchers in the field of psy-
cholinguistics will follow our suggestions. Nevertheless, 
it cannot be denied that four procedures warrant a cor-

existing preference for F1 and F2. However, we do not 
know how robust our statistical indices are when miss-
ing data occur. As said earlier, we also generated data 
sets with 10% missing values. We opted for a procedure 
that favored higher values of simulated reaction times to 
be missing. For F1, F2, F1 & F2, and min F ′, the pooled 
procedures were used, disregarding the missing values, as 
is common practice in psycholinguistic research. For F ′, 
F&D, and R&H, missing data were imputed on the basis 
of the hot deck procedure sketched earlier. The degrees of 
freedom were adjusted accordingly.

No important differences were found for the four F sta-
tistics and the three decison procedures with respect to 
Type I errors, neither in the S3T 5 0 condition nor in the 
S3T 5 35 condition. Both pooling and imputation return 
Type I error rates that are somewhat lower compared to 
the situation where the data sets are complete, implying 
that the outcomes in case of missing values are somewhat 
more conservative. At the same time, this conclusion im-
plies that the imputation procedure produces acceptable 
results.

For the two conditions in which an effect is present, we 
would expect a loss of power, since missing data entail 
loss of information in the data set. This is exactly what 
we observed in our simulations. There is another trend: 
The lower the common variance, the larger the losses in 
power. The losses in power relative to the nonmissing con-
ditions vary between 0% and 10%, but these losses never 
change the general patterns we found for the simulations 
with nonmissing data. We may conclude that the simple 
hot deck procedure performs well and can be used when 
researchers opt for F ′ or the decision procedures F&D and 
R&H. From a methodological point of view, the hot deck 
procedure is to be preferred over the pooling procedures.

Conclusions

The simulation studies on the behavior of a range of sta-
tistics and decision procedures used in the analysis of re-
peated measures designs we have reported here, confirm a 
number of results and advices which have been mentioned 
in the literature since Clark’s (1973) article on this subject. 
Our simulations were carried out in the framework of a 
simple, frequently used design with repeated measures, 
with two within-subjects factors (“type of words” and 
“word nested within type”). The relevance of the follow-
ing points was confirmed in our simulations:

•	When the nested factor word is a random factor, 
	 F1 is not a suitable statistic because the associated 
	 Type I error is much too high. This effect is strength- 
	 ened by higher word variability.

•	The presence of the interaction of subject-by-type 
	 increases Type I error of F2, which means that it is no 
	 longer a suitable statistic in this condition.

•	Type I error associated with F ′ and min F ′ is low, at 
	 the expense of quite a low power.

We tried to put these points into a more general frame-
work. First of all, we dealt with the interaction S3T and 
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Quené, H., & van den Bergh, H. (2004). On multi-level modeling of 
data from repeated measures designs: A tutorial. Speech Communica-
tion, 43, 103-121.

Raaijmakers, J. G. W., Schrijnemakers, J. M. C., & Gremmen, F. 
(1999). How to deal with “the language‑as‑fixed‑effect fallacy”: Com-
mon misconceptions and alternative solutions. Journal of Memory & 
Language, 41, 416‑426.

Rietveld, T., & van Hout, R. (2005). Statistics in language research: 
Analysis of variance. Berlin: Mouton de Gruyter.

Rietveld, T., van Hout, R., & Ernestus, M. (2004). Pitfalls in corpus 
linguistics. Computers & the Humanities, 38, 343-362.

Schreuder, R., Burani, C., & Baaijen, R. H. (2003). Parsing and 
semantic opacity. In E. M. H. Assink & D. Sandra (Eds.), Reading 
complex words (pp. 159-189). Dordrecht: Kluwer.

Wickens, T. D., & Keppel, G. (1983). On the choice of design and of 
test statistics in the analysis of experiments with sampled materials. 
Journal of Verbal Learning & Verbal Behavior, 22, 296-309.

Wilcox, R. R. (1987). New designs in analysis of variance. Annual Re-
view of Psychology, 38, 29-60.

Winer, B. J., Brown, D. R., & Michels, K. M. (1991). Statistical prin-
ciples in experimental design. New York: McGraw-Hill.

Notes

1. There are other problems involved in the use of F1 and F2 that are 
never mentioned in psycholinguistic research, but for which there are 
solutions in standard statistical packages. When we calculate F, we deal 
with a repeated measures design. In repeated measures designs the as-
sumption of “sphericity” must be met, a condition for the structure of 
the covariance matrix of differences between the levels of the within-
subjects factor(s). Huynh and Feldt’s index ε assesses the extent to which 
this assumption is not met. The next step is to use the value of ε to adjust 
the degrees of freedom involved. If ε is smaller than 1, the dfs are re-
duced, making the F test more conservative but bringing its significance 
level closer to the nominal value. As mentioned, F2 is calculated on the 
basis of a one-way design. This one-way design assumes equal vari-
ances in the cells, an assumption currently tested with Levene’s test. If 
this assumption does not hold, an inflation of the Type I error may occur 
(Wilcox, 1987). Both diagnostic statistics, ε (Huynh & Feldt, 1976) for 
F1 and Levene’s test (Levene, 1960) for F2, are hardly ever reported.

2. This also holds for the Mixed Models procedure in SPSS, in which 
maximum likelihood estimates are used.

3. The following NAG routines were used: G01EAF (returns a one- or 
two-tail probability from the standard normal distribution), G05CAF 
(returns a pseudorandom number taken from a uniform distribution 
between 0 and 1), and G05FDF (generates a vector of pseudorandom 
numbers taken from a normal distribution with mean a and standard 
deviation b). Details on the routines can be obtained via the NAG library 
manual, which is available on the Web: www.nag.co.uk/numeric/FL/

rect Type I error level in all conditions: min F ′, F ′, and 
the decision procedures F&D and R&H. In light of our 
results, the conventional F1 & F2 procedure needs to be 
abandoned.

Author note

We are indebted to Rob Schreuder (Centre for Language Studies, Rad-
boud University of Nijmegen) for his generous and thoughtful counsel 
on many points in this article. Correspondence related to this article 
may be sent to T. Rietveld, Department of Linguistics, Radboud Univer-
sity Nijmegen, Erasmusplein 1, 6525 HT Nijmegen, The Netherlands  
(e-mail: a.rietveld@let.ru.nl).
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Table 6 
Evaluation Table of the Seven F Statistics and Decison Rules, 

on the Basis of Type I Error and Power

Statistic/Decision
Procedure  Type I Error  Power

F1 OK, OK
iff common variance is high
and word variance is restricted

F2 OK, OK
iff S3T is absent 

F1 & F2 OK, OK
iff S3T is absent, or
iff common variance is high
and word variance is restricted

min F ′ OK too conservative

F ′ OK tendency to be too conservative
*F&D OK OK, slightly conservative
*R&H OK OK
*Procedures adequate in all conditions.
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to fill in the missing data. Thus, the subject effect will be saved at the 
expense of the word effect; we think that this is in agreement with the 
purpose of a within-subjects design, in which the random factor word 
is seen to provide equivalent items, and subjects are assumed to behave 
with their own bias throughout the experiment. In simulations with the 
hot deck procedure, the percentage of incorrect significant S3T interac-
tions dropped substantially, to 6.22%; the mean F ratio was 1.02, with 
SD 5 0.20. We thank Jan van Leeuwe (technical support group, Faculty 
of Social Sciences, Radboud University Nijmegen) for his comments on 
the approaches to missing data.

6. The role of the nested factor word, W(T), is somehow difficult to 
grasp conceptually. One of the primary reasons may be that it virtually 
conflates two variance (sub)components, σ2

W3T and σ2
W. Of course, these 

two components cannot be separated as long as words are nested within 
type, but we need these two components in order to understand what hap-
pens to this effect when set matching is applied. Increasing set matching 
implies a (serious) decrease in power in the detection of word variability. 
Another way of putting this is that set matching decreases the impact of 
word variability. Our simulations show that it is a successful strategy to 
use F1 when W(T) is a nonsignificant effect.

7. Independent of the decision taken to use a particular statistic or 
decision procedure, the normal tests for assumptions underlying the sta-
tistics should be carried out: For F1 it is Huynh–Feldt’s test for spher
icity, and for F2, Levene’s test of homogeneity. In an informal survey 
of articles published in authorative journals in the last 4 years, we have 
hardly ever seen reports of Huynh and Feldt’s test for sphericity and 
Levene’s test of homogeneity, which adds to our doubts about the validity 
of reported F1s and/or F2s.

(Manuscript received April 4, 2006; 
revision accepted for publication December 11, 2006.)

manual/html/. Seeds were provided by the internal computer clock. Out-
put data sets were tested for accuracy by inputting them into SPSS. The 
data sets turned out to reproduce the intended characteristics.

4. We thank Ton de Haan of the Department of Medical Informatics, 
Epidemiology and Statistics of Radboud University Nijmegen for pro-
viding us with the algorithm to implement skewness in our simulations.

5. Recent approaches to missing data are the maximum likelihood 
(ML) and estimation maximum likelihood (EM) methods; for SPSS, 
the latter is only available in the Windows version, and not in SPSS-
Unix, the software we had to use for our simulations. The Winer, ML, 
and EM approaches all result in covariance matrices of the completed 
(“imputed”) data set per condition which are maximally similar to ap-
proximations of the covariance matrices of the original (incomplete) data 
sets. An unwanted by-effect of these procedures, however, is the emer-
gence of an S3T interaction, which will be declared significant on the 
basis of the high power of the associated F ratio, with df1 5 58 and df2 5 
693 (for 90 missing data). In simulations with 10,000 data sets with no 
effect for type, with an S3T interaction, and with the k words nested 
within the i types sampled from N(0, 35) and εijk (the error component) 
sampled from N(0, 105), 35.76% significant F ratios (at the 5% level) 
for this interaction (mean F ratio is 1.27, with SD of 0.25) were found for 
the Winer procedure, and for ML this percentage was about 10% lower: 
25.48%, with mean F ratio of 1.23 and quite a high SD of 0.93. The low F 
ratios suggest small effect sizes for S3T. Since the detection of an S3T 
interaction is important both for methodological reasons and for the as-
sessment of F2—which is quite sensitive, as our results will confirm, to 
the presence of this variance component—we decided to implement a 
version of an imputation procedure known as “hot deck” (see Little & 
Rubin, 1987; this procedure is also mentioned by Forster & Dickinson, 
1976). Our version of this procedure consists of randomly selecting—per 
subject and per type (treatment), with replacement—observed values 


