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Although Clark’s (1973) critique of statistical procedures in language and memory studies (the
“language-as-fixed-effect fallacy”) has had a profound effect on the way such analyses have been
carried out in the past 20 years, it seems that the exact nature of the problem and the proposed solution
have not been understood very well. Many investigators seem to assume that generalization to both
the subject population and the language as a whole is automatically ensured if separate Bybject (
and item £,) analyses are performed and that the null hypothesis may safely be rejected iFthese
values are both significant. Such a procedure is, however, unfounded and not in accordance with the
recommendations of Clark (1973). More importantly and contrary to current practice, in many cases
there is no need to perform separate subject and item analyses since the traBlitisnidle correct
test statistic. In particular this is the case when item variability is experimentally controlled by
matching or by counterbalancinge 1999 Academic Press
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Suppose that in a primed lexical decisiorvariable (the individual word pairs) is a fixed
experiment we want to investigate the effect ofactor and it does not take into account the fac
stimulus-onset asynchrony (SOA, the length ahat the items are sampled from a larger popu
the interval between the onset of the prime anidtion of items. The major problem with this
the onset of the target). To keep it simple, wgo-called “language-as-fixed-effect fallacy” is
use two levels of SOA. We start by selectinghat it increases the probability of Type | errors,
from some corpus a set of 40 related primete., concluding that a treatment variable has ai
target pairs. We divide this list randomly intoeffect where in reality there is no such effect.
two lists of 20 pairs, one for each SOA. In arhe reason for this is not difficult to see: since
within-subjects design, each subject is then prgome items are easier or are reacted to fast
sented both lists. Such a design is typical ahan others, the difference between the exper
many studies in the field of memory and lanmental conditions might be (partly) due to dif-
guage. How should these data be analyzed? ferences between the sets of items used in ea

In a highly influential paper, Clark (1973)of the conditions. Selecting language material
argued that the then-traditional way of analyz,-andom|y or pseudorandomly leads to sampling
ing such data (averaging the data for each suBariance that must be taken into account. Oth
ject over items within conditions and usingeryise this variance will be confounded with the
these means in the ANOVA) was incorreCkffect of the treatment variable. This problem
since it implicitly assumes that the material§,5q peen previously discussed by Colema

_ (1964), but his paper did not get the attention i
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MISCONCEPTIONS OF THE “LANGUAGE-AS-FIXED-EFFECT FALLACY” 417

TABLE 1

Expected Mean-Squares for Repeated-Measurements ANOVA with Words Sampled Randomly

Source of variation Label df Expected mean-squares
Treatment A p-1 0 + Olums T UoRs + NoRw + NGoA
Words (within Treatment) W(A) p(q — 1) 02 + Ohws T Noww
Subjects S n—1 0% + ohws + Paod
Treatmentx Subjects AS 0 — 1 — 1) 0% + Ows + qois
Words X Subjects W(A)S p(g — 1)(n — 1) 2+ Ohws

Note. p= number of levels of the treatment variabfe= number of subjects] = number of items. Words and Subjects
are assumed to be random effects.

fixed-effect fallacy is to treat language materialexpected value of the denominator plus a tern
as a random effect, as is the case with subjectbat reflects the effect to be tested. However, fo
An effect is called random if the levels of thatthe experimental design where both subject
factor are sampled from some population. Thiand materials are treated as random-effect var
is not a trivial aspect because whether an effeables, the expected mean-squares for the val
is treated as random or as fixed has conseus effects (see Table 1) are such that compt
guences for the way in which the experimentaiation of a conventiondF ratio is not possible.
effects should be tested. In order to see this, note that in order to test the
In order to understand the problem, it may béreatment effect (A), i.e., the hypothesi$ = 0,
helpful to consider the linear model that formsve would need to construct dnratio with the
the basis for the ANOVA analysis. In thenumerator equal tMS, (=02 + oius + 0as

present case, the linear model is + na&v(A) + ngoi) and in the denominator a
term with expected mean-squares equatior
Xiw = i+ o+ Bigg + Tms + doas + Nodw." As can be seen in

[1] Table 1, no such term exists. The traditional
solution to such problems is to compute a quas
F ratio, F':

+ oy + 71'Bij(k) t €Eqiky

wherepu = overall meang, = main effect of

experimental treatment I8;,, = main effect of

word j (nested under treatmentl;; = main =
effect of subject i,am;,, = the Treatmentx

Subject interaction,mB;,, = the SubjectX ) ] o ]
Word interaction, and,,, = experimental er- F' has an approximatE-distribution with de-
ror (in practice this term cannot be distinguishe§'€€s of freedom for the numerator and the
from the Subjectx Word interaction, therefore d€nominator given by

these two terms are often combined into a single

“residual” term). In the ANOVA, the variation df = (MS; + MS,) ?/(MS{/df,

in the experimental data is partitioned i_nto in- + MS¥/df,), g
dependent sums-of-squares as shown in Table

1. Using the linear model of Eq. (1), itis POS\whereMS, andMS, are the two mean-squares
sible to derive the expected values for the Vak: the numerator or the denominator aifg and
lous sums-of-squares. These are shown in “&‘?z are the corresponding degrees of freedor

rightmost column of Ta*?'e_l_- . (see Clark, 1973, p. 338). The rationale behinc
In order to test for significance, an ratio

must be constructed in such a way that the : For simplicity, the notations? is used, irespective of
expected value for the numerator is equal to thenhether the effect A is fixed or random.

_ MS, + MSugs 2
MSss + MSyg
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TABLE 2

Simulated Data for Repeated-Measurements ANOVA with Words Sampled Randomly

Short SOA Long SOA
Subject Item 1 Item 2 Item 3 Iltem 4 Iltem 5 Item 6 Item 7 Item 8
1 546 567 547 566 554 545 594 522
2 566 556 538 566 512 523 569 524
3 567 598 568 584 536 539 589 521
4 556 565 536 550 516 522 560 486
5 595 609 585 588 578 540 615 546
6 569 578 560 583 501 535 568 514
7 527 554 535 527 480 467 540 473
8 551 575 558 556 588 563 631 558

the use ofF’ becomes evident when the ex-domly assigned to each of the two conditions
pected values for the mean-squares are subslihe data were generated using a model in whic

tuted in the equation: there was no real effect of condition. Table 3
gives the ANOVA table corresponding to these

E(MS,) + E(MSyus) data. Appli_cation of Eq. (2) gi_velé’(l,G_))_z 1.70.

E(F') = E(MS.) + E(MSya) In practice, howeverE" will be difficult to
nS @ compute due to missing data (e.g., error re
202+ 2(7\2,\,(A)S+ qois [4] sponses) and limitations in the size of the
+ Nodyu + NGoi ANOVA designs in most statistical packages
= 202 + 20—\2/\1(/-\)5 + qods + ngsv(A)- (especially if a program based on the Genere

Linear Model is used). It is then easier to com-
pute its lower boundninF’, using theF values

As can be seen from this equatidf, has the : ;
L of separate subject and item analyses, usual
structure of regulaF statistics, i.e., the numer- .
referred to asF,; and F,, respectively. In a

ator is equal to the denominator plus one extra

term corresponding to the effect to be tested ubject analysigach data point in a cell of the

However, since it is not based on the computaqes'gn 'S _computed by col_lapsmg over items
. ) o whereas in anitem analysisdata points are
tion of independent sums-of-squares, it is not a

true F statistic and only approximately distrib-compmed by collapsing over subjects. Althoug

uted asF, although it is the best approach.mmF is linked to an analysis that treats sub-

. . o jects and language materials (items) as rando
:x:::gg:z given that a trué statistic is not effects in asingle ANOVA model, this statistic

Table 2 gives a numerical example with sim-
ulated data (example data have been included
for most designs discussed in this article; the
purpose of these examples is not to demonstrattNOVA Summary Table for Example Data for Table 2
a particular point but primarily to enable the

TABLE 3

. . Source of variation df Mean-square
interested reader to verify the results by carry- d
ing out the _ap_propriate analyses using his/hgteatment 1 8032.6
favorite statistical package). In the present exwords (within Treatments) 6 3695.7
ample, eight subjects are each tested under tobjects _ 7 3750.2
conditions (a short and long SOA, respectively)lreatmentx Subjects 7 1083.8
ords X Subjects 42 100.2

There are eight items, four of which are ran-
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can be computed by tHe values from separate count before deciding on the particular ANOVA
subject and item analyses. As shown by Clarto be performed.

(1973):
CURRENT PRACTICE:
THE F, X F, FALLACY
minE — MS, F.F, Although there was some controversy in the

MSys + MSya - F,+F, [5] late 1970s regarding the necessity and appropr
ateness of treating items as a random factor i
the analysis of experiments with language ma

For the data in Table £ ,(1,7) = 7.41 and terials (see Cohen, 1976; Smith, 1976; Wike &

F»(1,6) = 2.17,henceminF'(1,10) = 1.68. Church, 1976; see also Clark, 1976), by the

It is evident that using=, would lead to an early 1980s the issue was more or less settle

incorrect conclusion. In this examplg, does and researchers started to routinely perforn

much better anchinF’ is actually quite close to both subject and item analyses. However, man

F'. These data reiterate the point made by Clamesearchers seem to believe that the subje

(1973) about the bias that would be preseft;if analysis F;) makes it possible to test for reli-

was used to test the difference between thaility of the effect over subjects and that the

conditions. item analysis ,) makes it possible to test for
Clark’s paper was highly influential and it isreliability of the effect over items. Hence, if
now customary (especially among language rd&oth F statistics are significant, it should (ac-
searchers) to routinely run both an item and eording to this reasoning) be the case that th
subject analysis. But it appears that there hadfect is reliable over both subjects and items.
been some misconception with respect to the However, this is incorrect since in the stan-

nature of the problem and the solution proposedard design considered by Clark (19Hjth F,

by Clark (1973). Many researchers have beesndF, will be biased when subjects and items

testing their treatment effects on the basis adre sampled randomly. To see this, note that i

separate subject and item analyses and hake and F, are equal,F, = F, = F, hence

rejected the null hypothesis if both analyseminF’ = F/2. Thus, bothF; andF, could be
showed significanf values. However, this pro- significant, whileminF" would not. If this hap-
cedure, which will hereafter be denoted as thpens, many researchers seem to be hesitant

F, X F, criterion, is not equivalent to the accept that the effect is not significant. An ex-

minF’" solution and leads to positive bias (eample may be found in Katz (1989, p. 492).

highera than the nominak) if item variance is After obtaining anF; of 10.8 and arF, of 5.44

not controlled for, as a theoretical analysigboth p’'s < .05), Katz reluctantly concludes:

shows and as Forster and Dickinson (1976)he effect of concreteness was marginally sig-
demonstrate by Monte Carlo simulations. Ofificant when the overly conservativeinF test
course asserting a difference when eitRgror was computed;minF(1,44) = 3.62, p <

F, is significant would result in an even greater10.” Most researchers today do not even com

bias. pute or report the value ominF'. In some

In this article we first review Clark’s solution cases a rather curious mixed approach is use

and show that th&, X F, criterion, although For example, Seidenberg et al. (1984, p. 386

widely used, leads to positive bias. Next, weeport: “Min F’ statistics were calculated, and

discuss alternatives to thminF’ approach and are reported when they were significant; other
consider the effects of commonly used variawise, the significanF statistics for the subject
tions in the exact nature of the design (such amnd item analyses are reported.”

matching of items and counterbalancing of lists) Sometimes this procedure is justified by the

that affect the outcome of the analysis. We hopargument that theminF’ procedure is a too

to convince the reader that it is necessary to tak®nservative test (see the quote above) and th
the details of the experimental design into achisF,; X F, procedure avoids both this bias in
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minF’' as well as the bias if,. For example, shown by means of Monte Carlo simulations,
Smith (1976) and Wike and Church (1976) critthe F; X F, procedure has a larger error rate
icized the use of’' (and minF’) as being an than .05 although of course not as large a
unduly conservative test. The power of the testeparatd~, or F, analyses.
based onF’ depends on a number of factors To give some indication of thisF;, X F,
such as the structure & (the terms included fallacy”, we screened Volumes 32-37 (1993-
in its calculation), the size of the error variancel997) of theJournal of Memory and Language
the number of the degrees of freedom, and thrend counted how many of the published paper
number of levels of the treatment variablereported bothF, andF, in at least one exper-
However, Monte Carlo simulations with’ as iment. In these volumes there were a total o
in Eg. (2) have demonstrated that it is a goo@20 papers, of which 120 reportéd and F,
approximation to the normdf statistic (Dav- without mentioning anyminF’ values. In only
enport & Webster, 1973; Forster & Dickinson4 papers werd-,, F,, and minF’" values re-
1976). Furthermore, as Forster and Dickinsoported. Thus, these statistics clearly show the
(1976) have showminF’ is a good estimate of the F, X F, fallacy is quite widespread.
F’, and both statistics are not unduly conserva- Widespread as it may be, this fallacy did not
tive, given thatr\i,(A) andojs, the variance com- become common practice immediately after the
ponents expressing item and subject variabilitgppearance of Clark’s paper. Initially, research
are not too small (relative t@r\ﬁ,(A)s). In most ers based their conclusions on the outcome c
experiments this is likely to be the case. theminF’ test and often did not even report the
In addition, Wike and Church (1976) com-F, and F, statistics. Today, the situation is
mented that althougk’ has an approximaté completely the opposite. To demonstrate this
distribution, little is known about the characterwe first counted all papers between 1974 an
istics of its distribution. In most psycholinguis-1997 of theJournal of Verbal Learning and
tic and semantic memory tasks dependent vaNferbal Behavior/Journal of Memory and Lan-
ables such as reaction times are not normallyuagethat reportedminF’ and/orF, and F,
distributed. The conventiondt test is robust and then computed the proportion of those pa
against violations of homogeneity of varianceers that reportechinF’ and not just; andF,.
and normality of the distribution of the depen-These proportions are plotted in Fig. 1. The
dent variable. However, Santa, Miller, andesults are clear: there is a steady change from
Shaw (1979) demonstrated that tii€ and situation in which theF, X F, criterion is
minF’ are also robust against violations of honever used to a situation in which tmeinF’
mogeneity and normality. They showed bycriterion is almost never used.
means of Monte Carlo simulations that with Of course, the conclusions that were based o
heterogeneous treatment group variances atite F, X F, testing procedure in the screened
with five types of error distributions (normal, papers need not be incorrect. As we show be
exponential, log-uniform, binary, and log-nor-low, if the researchers experimentally con-
mal) theF’" andminF’ have real alpha valuestrolled for item variability, the use of; by
that are near the nominal alpha value of .05tself might have been the correct procedure. Ir
Only when the variance component&,(A) and that case, the use &f, X F, would only have
ois are small do both statistics tend to be conbeen a more conservative procedure and a
servative. significant results would remain significant (al-
Thus, there is no justification for the assertiothough some results that were reported as nc
that theminF’ procedure advocated by Clark
(1973) is too conservative. Hence, the argumem2 It is of some interest that the use of item analyses anc
that theF, X F, procedure may be justified minF’ seems to be r_estricte'd to 'those analyses in which t'h‘
because of the conservative naturer@hE’ is erend_ent var!able is regcnon time, although from a statis
. . Co tical point of view there is no reason why the “language-
incorrect. Rather, the situation is the other ways.fixed-effect” issue should not be relevant when accurac
around. As Forster and Dickinson (1976) haveweasures are analyzed.
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1.00 not affect the differences between the treatmer
conditions and it would be best to perform a
subject §,) analysis, where subjects form the
only random variable. Wickens and Keppel
(1983) showed that if item variance is con-
trolled in this manner, the bias iR, is indeed
greatly reduced. Moreover, if the blocking fac-
tor is ignored in the analysis, it is best to per-
form a F, analysis because in that case the
usage ofF’ or minF' leads to a considerable
reduction in power (see Wickens & Keppel,
1983, p. 307). Of course, if it were possible to
0.00 -+ t t t } + + + + + . . . .
75 77 79 81 83 85 a7 8 9o 93 ss o7 O the full analysis (including subjects as well
year as blocks), that would be the preferred analysis

However, as explained earlier, this is rarely
FIG. 1. The proportion of papers that reponinF" of all ossible.

papers that repoft, andF, (based on a count of all papers

in JVLVB/JML between 1974 and 1997). Data are grouped To illustrate th_ese pomt;, We. WI”. take a
in 2-year intervals. closer look at the ideal case in which this type of

blocking or matching captures all of the system-
atic variability between items. That is, the two
significant might in fact be significant). How- (or more if there are more treatment conditions
ever, if in these studies subjects and items werems within a block are perfectly matched. The
in fact sampled (quasi-)randomly the use o¥arious blocks are still assumed to be sample
minF" might have led to different conclusions.randomly from a larger population of blocks.
The major difference in such a design is that the

MATCHING OF ITEMS blocks factor will becrossedwith treatments
Error variance introduced by random or pseuinstead of being nested under treatments as wi
dorandom selection of items can be controllethe case when items are randomly sampled. T
by statistical or experimental procedures. Stanake it easier to understand the nature of thi
tistical control can be achieved by adding amesign, we constructed a small set of simulatel
item variance component to the ANOVAdata in which there are again eight subjects
model, and hypothesis testing is then based @ach tested under two conditions (see Table 4
the computation ofF’ or its lower bound Suppose that we are able to select pairs of item
minF'. This was the solution proposed byin such a way that they are matched on the mo:s
Clark. Item variance can, however, also be conmportant item variables that affect the lexical
trolled by experimental procedures such adecision times. Hence, there will be four pairs
matching stimulus materials in different treatof matched items or blocks. Within each block,
ment groups with respect to variables that colne item is assigned to each of the two experi
relate highly with the dependent variable. Thisnental conditions. Note that both items of a
seems to be the preferred approach in curregiven pair of matched items have been given the
research. It is rarely the case that investigatosame block label in order to emphasize the
select their stimulus materials in a truly randonilocking. The data were again generated using
fashion. Normally, items are carefully selectednodel in which there was no real effect of

and balanced on important variables that correondition.

late with the response measure. Of course, if Table 5 gives the expected mean-squares fc
balancing is used to control item variance it willsuch a design. This case is similar to the tradi

replace the requirement to control by statisticalonal case in that here too there is no simple
procedures, i.e., applying the random effectatistic to test the significance of the treatmen

model F'). In that case item variability would effect. A quasiF ratio that may be used to

e g e
N ) 1
=) =) e

| '

proportion min F'

o
h
=)
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TABLE 4

Simulated Data for Repeated-Measurements ANOVA with Matched Items

Short SOA Long SOA
Subject Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4
1 493 519 513 542 499 525 502 557
2 562 552 565 591 544 536 533 563
3 519 558 555 567 575 582 551 587
4 518 523 514 563 523 565 539 597
5 567 562 577 595 521 563 559 575
6 520 534 527 568 512 541 531 559
7 516 544 513 575 555 569 550 601
8 525 528 528 559 551 542 529 578

evaluate the significance of the treatment effedtjence the bias i, is now a function ofozg,

is given by

" MS,s+ MSs”

(6]

the interaction between blocks and treatments
and this will usually be smaller tham&v(A), the
variability of items within treatments that is
responsible for the bias in the case where item
are sampled randomly (i.e., not matched).

Wickens and Keppel (1983) showed that in Table 6 gives the full ANOVA table corre-
such a design with blocking of materials, thesPonding to the example data of Table 4. Apply-
bias in theF ratio from the standard subjectind Ed. (6) gives='(1,8) = 0.87. For these data,
analysis F,) is greatly reduced. To see thisFi(1,7) = 0.86 andF,(1,3) = 7.19 (if the match-

more clearly, note that

E(Fy)

_ E(MS)
"~ E(MSy)

(7]

02+ 03gs + qois + Noig + NQoa

7 2 3
O¢ T Opss T Q0as

ing is taken into account, i.e., if a repeated-mea
sures design is used in the item analysis, as woul
be appropriate), henaainF(1,3) = 0.77. If the
matching is not taken into accourf,(1,6) =
0.27, henceninF'(1,10) = 0.20. It is evident that
if the matching is taken into account batfinF
andF; give a good approximation to the “trué”.

If the matching is not taken into accour; is
quite a bit smaller andhinF underestimates the

TABLE 5

Expected Mean-Squares for Repeated-Measurements ANOVA with Blocks or Matched Items Crossed with Treatn

Source of variation df Expected mean-squares
A (Treatment) p—1 o% + Ohps + Qois + NoAs + NQoR
B (blocks) q-1 ot + poss + Npog
S (Subjects) n-1 0% + pogs + pood
A XB (p—1)g—-1) O + Opps + NOAg
AXS P - 1N -1) 0% + ORes + Qois
BXS - 1)(n — 1) o? + pods
AXBXS (P - 1@~—- nh - 1) or + Ohes

Note. p= number of levels of the treatment variable;= number of subjectsg = number of blocks. Blocks and
Subjects are assumed to be random effects.



MISCONCEPTIONS OF THE “LANGUAGE-AS-FIXED-EFFECT FALLACY” 423

TABLE 6 a design, the mean difference between the trea
ANOVA Summary Table for Example Data of Table 4 Ment conditions (and hence the treatment effec
is not affected by any difference that might exist
Source of variation df Mean-square between the lists.
Table 7 gives a numerical example with three

A (Treatment) ! 770.1  experimental conditions and three lists of four
B (blocks) 3 56618 . h H th h

S (Subjects) 7 18226 tems each. Hence there are three groups ¢
A XB 3 107.1 subjects and the assignment of lists to condi
AXS 7 893.5 tions is counterbalanced across groups. As be
BxS 21 1438 fore, it is normally not possible to analyze such
AXBXS 21 102.1

a complete design and the experimenter wil
have to average the scores for the four item:
within each condition. These averages are give
correct value ofF’. As we mentioned before, in Table 8. How should such data be analyzec
Wickens and Keppel (1983) showed that this is taking into account that the factor Lists should
general finding in this type of design. Thus, if it isbe a random effect?

not possible (because of missing data) to do the In order to answer this question, we will take
full analysis that includes the blocking factora closer look at the expected mean-squares ft
(leading toF'), it is better to simply us€&, rather this design (see Table 9). This type of design i
thanminF', especially when the matching of thediscussed by Winer (1971, pp. 712, 716) anc
items is not taken into account in the item analysiKirk (1982, p. 648), although they treated the

used to determing.. factor corresponding to Lists as fixed. Kirk re-
fers to this design as a Latin Square Confounde
COUNTERBALANCED DESIGNS Factorial design (LSCF). The ANOVA model

In many cases, however, better ways of corfer this design is as follows:
trolling item variability are possible. One such
approach involves the case where items AR o= B+ T T
sampled randomly for each subject separately.

In this case each subject receives a different set + B+ aBi t €jmy,

of words under each of the treatment levels.

This case was briefly mentioned by Clarkvheren = overall meanp, = effect of group t
(1973, p. 348) as one where the traditional ana{= the between-component of the Treatmant
ysis (F,) is correct (see also Winer, 1971, pList interaction); m,,, = effect of subject m
365). In such a design where Items are nestédested within group t)e; = effect of the ex-
within Subjects and Treatments, the treatmemerimental treatment ip; = effect of list j;
effect may be tested against the Treatm&nt o = the within-component of the Treat-
Subjects interaction, which is equivalent to thenentX List interaction; and;,,,, = experimen-
regularF, test when the data are collapsed overl error (a residual term equivalent to the in-
items. teraction between Treatment, List, and Subject

An alternative approach that is frequentlyplus “real” error; this term might be further
used in memory research is the use of countedecomposed but this would not affect the re-
balanced lists. In such a design, one group &llts). Due to the nature of this design (eact
subjects receives List 1 in condition 1 and Lisgroup receives onlp of the p X p combina-

2 in condition 2, and a second group of subjectsons of Treatment and List), the interaction
receives List 2 in condition 1 and List 1 inbetween Treatment and List is divided into two
condition 2. In this design, the between-groupsomponents, one between subjects and or
variability is confounded with (part of) the in- within subjects.

teraction between list and treatment. However, In the ANOVA model it is assumed that
and this is of course the rationale for using suc®roup, Subjects within Groups, as well as List

(8]
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TABLE 7

Simulated Data for Design Using Counterbalanced Lists

Short SOA Medium SOA Long SOA

Group Subjectltem 1 ltem?2 Iltem3 Iltem4 Item5 Item6 Item7 Item8 Item 9 Item 10 Item 11 Item 1:

1 1 532 508 522 482 468 496 544 547 475 522 502 484
2 542 516 545 483 509 519 588 583 499 535 535 486
3 615 584 595 560 542 591 630 617 543 606 560 545
4 547 553 584 535 514 555 591 606 538 565 546 527
Item 9 Item 10 Item 11 Item 12 Item 1 Item2 Item3 Item4 Iltem5 Item6 Item7 Item 8
2 5 553 598 581 551 619 576 606 561 548 590 614 631
6 464 502 485 451 484 479 499 471 447 486 514 523
7 481 511 492 472 531 506 542 475 471 510 539 556
8 541 588 551 533 582 556 589 515 538 545 601 576
ltem5 Item6 Item7 Item8 Item 9 Item 10 Item 11 Item 12 ltem 1 Item 2 Item 3 Item 4
3 9 482 530 571 563 501 561 500 506 543 539 558 497

10 559 570 632 639 551 592 572 561 617 587 616 549
11 462 497 546 538 487 546 491 470 529 508 525 473
12 460 463 511 528 457 506 487 453 498 479 512 443

are random factors (Group is random since itsis in which all items from a single list are
corresponds to an interaction between a fixeaveraged) will give all the information that is
and a random effect). That is, it is assumed thaequired to test the significance of the treatmen
the lists are based on a random sample of wor@éfect. Moreover, there is no necessity to com:
from a larger population of words. Table 9 givegpute a quask ratio: regularF-ratios will be
the expected mean-squares for this design undssrrect.
these assumptions. Note that the interaction This design was also discussed by Pollatse
term Treatmentx List (within) does not exist and Well (1995, Table 4), except that they de-
for the casep = 2 (this interaction is then noted the main effect of List as the Groups
completely confounded with the Group mainTreatment interaction. However, as mentione
effect). above, these two effects are equivalent in th
As can be seen from Table 9, in order to tegt = 2 case. In the cage > 2, the Groupsx
the treatment effect, the treatment mean-squafeeatment interaction consists of two terms,
should be tested against the Treatmantist namely the main effect of List and the within-
(within) mean-square. If thE test for the Treat- part of the Treatmentx List interaction. In
ment X List (within) interaction effect is not order to separate these effects, two ANOVA'’s
significant by a conservative criterioa € .25), should be run, the traditional one without the
this mean-square may be pooled with the errdrist effect but with the Groups< Treatment
(residual) mean-square, giving a much mormmteraction and a second one with the List effec
powerful test for the treatment effect. In thebut without the Groups< Treatment interac-
special case whene = 2, the treatment effect tion. The latter analysis gives the correct value
is always tested against the error mean-squafer the List sums-of-squares, and subtracting
Hence, in all of these cases there is no necessthyis from the sums-of-squares for the Groups
to run two analyses, one over subjects and off@eatment interaction gives the correct value fol
over items. The subject analysis (i.e., the anathe within-part of the Treatment List interac-
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TABLE 8 Treatment effect can always be tested directh
Data from Table 7 Collapsed over Items using the mean-squares obtained from the stal
dard subject analysis (averaging over items).
Short SOA Medium SOA Long SOA In Table 10 we present the ANOVA sum-
Group Subject  List 1 List 2 List3  mary table for the data presented in Table 8. A:
explained above, the Treatmenrt List Sums-
1 1 511 514 496 ; . .
2 502 550 514 of-Squares was obtained by subtracting the Lis
3 588 595 563 main effect Sums-of-Squares (3106.2) from the
4 554 567 544 Group X Treatment Sums-of-Squares (3152.3)
If we test the Treatment main effect against the
List 3 List 1 List2  Treatmentx Lists interaction, the resulting
) 5 571 501 506 ratio equaIsF(2,2_) = _1.116._H0vyever, since
6 476 2483 492 the TreatmentX Lists interaction is not signif-
7 489 514 519 icant [F(2,18) = 0.786], amore powerful test
8 553 560 565 may be obtained by pooling this interaction anc
the error Sums-of-Squares and testing the trea
List 2 List 3 List1  ment effect against this pooled error. Note tha
3 9 536 517 534 th!s pool_ed error Sums—of-Sque_lres may be ob
10 600 569 592  tained directly from the analysis that includes
11 511 498 509 the List main effect but not the Group Treat-
12 490 476 483 ment interaction effect. This gives an error term

for the F test that is based on 20 degrees o
freedom instead of just 2. In the present exam
tion. This partitioning of the GroupX Treat- ple, the resulting= value is 0.896.

ment interaction was also briefly discussed by

Pollatsek and Well (1995, Appendix A, espe- CONCLUSION

cially Table A2), although the expected mean- There are two important conclusions that we
squares that they present apply to the case ttdraw from these analyses. The first is that man
the List factor is assumed fixed rather thatanguage researchers are applying statistic:
random. Contrary to the suggestion of Pollatsefgrocedures that do not match the details of th
and Well (1995), however, it is not required toactual design that they are using. In many case
do separate analyses over subjects and itemstire design does not require separate analys
order to test the effect of the treatment factoover subjects and items, yet such analyses a
The expected mean-squares, under the assumpuatinely run, without taking into account that
tion that List is a random effect, show that thehis procedure was originally introduced for a

TABLE 9

Expected Mean-Squares for Repeated-Measurements ANOVA with Counterbalanced Lists

Source of variation df Expected mean-squares
G (groups) €A X L between) p—-1 a2 + pode + Npod
S(G) p(n — 1) o; + Poe
A p—-1 o + noj + npoi
L (lists) p-1 o2 + npot
A X L (within) (p— D -2 ol + noa
Residual p(n — L)(p — 1) ol

Note. p= number of groups= number of levels of the treatment variallenumber of listsn = number of subjects
within each group. Lists and Subjects are assumed to be random effects.
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TABLE 10
ANOVA Summary Table for Example Data of Table 8

Source of variation SS df MS F

G (groups) EA X L between) 1720.2 2 860.08 0.164
S(G) 47206.2 9 5245.13 178.527
A 51.5 2 25.75 1.116
L (lists) 3106.2 2 1553.08 52.862
A X L (within) 46.2 2 23.08 0.786
Error 528.8 18 29.38

Error (pooled) 575.0 20 28.75

very specific design, namely a design where the nal of Verbal Learning and Verbal Behavidr5, 135-
items are nested under the treatment variable. Ift 112-N 1689, On choosing fhe vehicles of metaghors
this is not in fact the case, e.g., when the mat&?% A N- (1989). On choosing the vehicles of metaphors
. B Referential concreteness, semantic distances, and ind
rials have been m_atChed on a number of vari- vidual differencesJournal of Memory and Language,
ables or when the lists are counterbalanced over 28, 486-499.
different groups of subjects, there is no need tdirk, R. E. (1982).Experimental design: procedures for the
compute (in) F’ and the simple subject anal- behavioral scienced?acific Grove: Brooks/Cole.

. . . . é’ollatsek, A., & Well, A. D. (1995). On the use of coun-
ysis (averaging over items) will be correct. Th P o i

L . . terbalanced designs in cognitive research: A sugges

second cor_lclusmn IS that the prac_tlce of runn'_ng tion for a better and more powerful analysisurnal of
both a subject and an item analysis and of using Experimental Psychology: Learning, Memory, and
the F, X F, criterion is both widespread as  Cognition,21, 785-794.
well as without any foundation. EithefF, is Santa, J. L., Miller, J. J., & Shaw, M. L. (1979). Using quasi

correct or it is incorrect. In the latter caseif) ESt;’cEL‘T;’gi':a?'gﬂﬁe't?;ggogﬂ‘i% to stimulus variation.

L. .
F’ is the correct statistic to compute. Seidenberg, M. S., Waters, G. S., Barnes, M. A., & Tan-
nenhaus, M. K. (1984). When does irregular spelling or
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