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Abstract The proper analysis of experiments using
language materials has been a source of controversy
and debate among researchers. We summarize the main
issues and discuss the solutions that have been present-
ed. Even though the major issues have been dealt with
extensively in the literature, there still exists quite a bit
of confusion about how to analyze the data from such
experiments. We discuss a number of the most fre-
quently voiced objections. In particular, we discuss the
issue of what happens if in a counterbalanced design
only some of the items show the treatment effect.
Finally, a possible solution is discussed for the case
where only partial matching of items between condi-
tions is possible.

One of the most intriguing controversies in the use
of statistics in behavioural science concerns what is
known as the “language-as-fixed-effect fallacy.” This
controversy refers to the statistical problems that occur
when in an experiment the items that are presented to
a subject are drawn from a population of items and the
researcher wishes to draw conclusions that are valid
not just for the particular sample of items used in the
experiment but for the population of items from which
that sample was drawn. The controversy is intriguing
because there is a remarkable discrepancy between the
published recommendations for how to analyze such
designs and the actual approach followed by many Gf
not most) researchers. In this paper I will try to analyze
the reasons that may be responsible for this state of
affairs. In doing so, I hope to be able to make it clear
for an audience of nonstatisticians what the underlying
issues are that should be considered when evaluating a
particular approach to this problem.

As its name already suggests, the issue becomes rel-
evant whenever a researcher designs an experiment in
which natural language materials are used as stimuli.
This also explains why the issue has been most strong-
ly debated by researchers in psycholinguistics, although

the problem is certainly not unique to language
research (memory researchers, for example, hardly ever
pay attention to the problem even though there are
quite a few cases where that would be warranted).
Moreover, exactly the same problem of generalization
to a population of stimulus items occurs in research
using other types of stimuli such as pictures.

To make the issue more concrete, suppose that a
researcher wants to test the effects of language fre-
quency on lexical decision times. In order to do so,
two sets of 20 items each are selected, one of high-fre-
quency nouns (HF) and one of low-frequency nouns
(LF). The two sets of items are presented in a mixed list
together with a set of nonwords to a group of, say, 40
participants. For the present purposes we will focus on
the lexical decision times for the words and we will
disregard the nonword data.

Let us assume that the researcher observes a mean
difference of 30 ms between the HF and LF conditions.
Obviously, such a difference cannot be taken at face
value but will have to be evaluated in light of the vari-
ability of this outcome that will inevitably occur when
the experiment would be repeated. In order to get
some idea of the magnitude of this variability, we have
to consider which aspects might be different in an
independent replication of the experiment. In this
experiment, there are four reasons why the outcome
might be different. The first and simplest one is of
course the inherent variability or random error that is
due to the fact that even when everything is kept the
same (same design, same participants, same items), the
outcome will always be somewhat different.

The second one is that in a replication the partici-
pants will be different. Since each participant gets both
conditions, any overall difference between participants
(i.e., some participants will be faster overall) will not
affect the difference between the mean RT in the two
conditions. However, some participants will have a
somewhat greater difference between the two condi-
tions (i.e., the Subjects x Treatment interaction effect).
Hence, when the experiment is replicated with new
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TABLE 1
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Expected Mean Squares for Repeated Measurements ANOVA With Words Sampled Randomly

Source of variation Label df Expected mean squares
Treatment A p-1 OF +Gjy 45 + 4055 + NGy + NG0%
Words (within Treatment) W(A) (gD o +0';i/u)s + "G;i/u)

Subjects S n-1 ol + GfV(A)S +pqo;

Treatment x Subjects AS @»-D(n-1 . + Gy s + q0ss

Words x Subjects WI(A)S Pg-D(n-1) ol + 0';24/( S

Note. p = number of levels of the treatment variable; 7z = number of subjects; ¢ = number of items.

Words and Subjects are assumed to be random effects.

participants, the mean observed difference between the
conditions will be affected somewhat.

The third reason why the observed difference might
be different is that the items that are used will be dif-
ferent (i.e., a valid replication will not necessarily use
the same set of HF and LF words). Some words might
be reacted to faster overall (the main effect of items);
hence the mean difference between the HF and LF con-
ditions will vary when a new set of items is used. In
addition to the main effect of items, the difference
between the HF and LF conditions will also be affected
by the fact that some subjects will react relatively faster
to some items than others, the Item x Subjects interac-
tion effect (the Item x Treatment interaction effect is not
defined in this design since items are nested under
treatments). Note, however, that in this design this
effect will be completely confounded with the random
error component.

The above analysis may also be formulated using
the standard linear model that is used in the analysis of
variance approach. In the present case, the linear
model is

Xije = W+ 0 + Bjgy + T + 0T + Wik + oy (D
where @ = overall mean, o = main effect of experi-
mental treatment k, By, = main effect of item j (nested
under treatment condition k), w; = main effect of sub-
ject i, amy, = the Treatment x Subject interaction, nBi]-(k)
= the Subject x Item interaction, and &gy = experi-
mental error (the dummy subscript o is conventionally
used to indicate that the experimental error is nested
within the individual observation; as mentioned above,
this term cannot be distinguished from the Subject x
Item interaction; therefore these two terms are often
combined into a single “residual” term). In the ANOVA
approach, the differences between the experimental
conditions are expressed as sums-of-squares. In the
present example, the sums-of-squares corresponding to
the difference between the HF and LF items is given by

SS4 and is proportional to the squared difference
between the treatment means. Similar sums-of-squares
may be defined for other averages that might be calcu-
lated (i.e. the differences between the items, the sub-
jects etc.). Thus, the variation in the experimental data
is partitioned into sums-of-squares as shown in Table 1.

When we perform a statistical significance test for
the difference between the treatment means, we are
essentially determining whether the observed differ-
ence is larger than might be expected on the basis of
the other sources of variation that contribute to the
variability between the treatment means. Which sources
of variation are contributing to the difference between
the treatment means may be determined by calculating
the expected values for the sums of squares (or rather
the mean squares, i.e., the corresponding variances).
For most experimental designs, these expected values
are listed in standard textbooks on ANOVA or may be
obtained from simple algorithms (such as the Cornfield-
Tukey algorithm). For the linear model of Equation 1,
the expected mean squares are listed in the rightmost
column of Table 1.

As can be seen in Table 1, the expected value for
the treatment mean square is equal to G2 + G5 +
qojs + noy4) + nqoj, which corresponds to the
sources of variation discussed earlier plus the “real”
treatment effect (63)." That is, 62 corresponds to the
random error variation, 63 to the Subjects x Treatment
interaction effect, (S%V( ) O the main effect of items, and
G%v(A)S corresponds to the Item x Subjects interaction
effect.

In this derivation two assumptions are made. First,
replications of the experiment will use different ran-
dom samples of HF and LF items in the two experimen-
tal conditions. This is essentially what it means when it
is said that Items is a random factor. If exactly the
same items would be used in every possible replica-

' For simplicity, the notation 62 is used, irrespective of whether
the effect A is fixed or random.
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tion, the factor would be called fixed. If that was the
case, the term corresponding to the item variation
would drop from the formula for the expected mean
square for the treatment effect. This follows from the
observation that the items no longer make a contribu-
tion to the variation in the difference between the treat-
ment means in independent replications of the experi-
ment. The second assumption is that the variation in
the difference in the item means between conditions
may be estimated from the variation within the condi-
tions. That is, the variability in the item means for the
two conditions is directly related to the variability of
the items within each condition. This is usually
expressed by the assumption that the items within each
condition are sampled randomly and independently
from populations having identical distributions (i.e.,
each distribution has the same variance, G%V(A)). As we
will see later, there are designs where this latter
assumption would not be correct, for example, when
the items are selected in such a way as to minimize the
difference between the mean item effect between con-
ditions. In such a case the assumption that the two sets
of items have been sampled independently no longer
holds.

The Problem and Proposed Solutions

The Standard F-test is Biased

Given that the analysis described above is relatively
simple, one may wonder why such designs have led to
so much debate. One of the reasons is that in a typical
experiment with language materials and with latencies
as the dependent variable, one almost never has a
complete set of data. For example, in a lexical decision
experiment, some items will be responded to incorrect-
ly. Since reaction times are calculated using only the
correct responses, there will be missing data. The usual
approach is to compute for each subject the mean reac-
tion time for each experimental condition and use
these means in the ANOVA. Since such data appear to
be identical to those of a standard design where one
observes just a single value for the dependent variable,
it is not surprising that researchers assumed that the
same type of analysis could be used. The F-test statistic
that would be used is that case is

MS,

Fi=t
MS ¢

@)
(note that MS, and MS,s have the same value as in the
original analysis described in Table 1).

Such an approach would in fact have been correct,
if each participant had been presented a different set of
items (the random effect of items then becomes part of
the within-cell error term). However, if each participant
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gets the same set of items, this is no longer true. The
crucial difference is that if the same set of items is
given to each subject, chance fluctuation in the mean
effect of items will not average out when averaging
over subjects. In that case, F; as defined above is
severely biased as may be seen if we substitute the
expected values for MS, and MS,s from Table 1 into
Equation 2:

EMS,) _ o, +O-;/(A)S +q0js+nofV(A) +nqo;24

EF, =
() E(MS,5) O'ez +O-;'(A)S +q Ojs

€))

Clearly, even when 63 = 0, F; may still be signifi-
cant due to the G%v( 4 term being larger than zero.

The Quasi F-ratio Cannot be Computed

Coleman (1964) and Clark (1973) argued that in
order to test the null hypothesis of no differences
between the treatment conditions, a quasi F-ratio or F'-
ratio had to be used, that is, a statistic that has the form
of an F-ratio but is not a true F-statistic (it is not based
on independent sums-of-squares). For this design the
F'has the following structure:

_MS, 4+ MSy s
MS s + MS,

1

€))
()

F' has an approximate F-distribution with degrees of
freedom for the numerator and the denominator that
may each be calculated by applying the following gen-
eral formula:

df = (MS, + MS, }* /(MS? / df, + MS? | df,) )

where MS; and MS, are the two mean squares in the
numerator or the denominator and df; and df, are the
corresponding degrees of freedom (see Clark, 1973, p.
338).

Unfortunately, in most situations F' cannot be com-
puted due to missing data (error responses). Clark
(1973) therefore advocated the use of a lower bound
for F' termed minF'. MinF' was defined as

MsS,

minF'=s ———M4——
MS ¢ +MSW(A)

©

(note that minF'is always smaller than F' and equals F'
if MSwiays = 0).

The simplest way to obtain all of the quantities
required for the calculation of minF' is to run two
ANOVAs: one in which one collapses or averages over
items (usually termed a subject analysis) and one in
which one collapses over subjects (termed an item



144

analysis). In fact, it may be shown that the minF’ statis-
tic is equal to (F;F,)/(Fi+F>) where F; is the F-ratio for
the treatment effect in the subject analysis and F> is the
F-ratio for the treatment effect in the item analysis (see
Clark, 1973).

Shortly after Clark’s paper was published, there was
a discussion in which some critics (Smith, 1976; Wike &
Church, 1970) rejected the use of the F’ (and minF’) as
being an unduly conservative test. However, Monte
Carlo simulations with 7’ as in Equation 4 have demon-
strated that it is a good approximation to the normal F
statistic and not unduly conservative, given that the
variance components Gy, and Gig, expressing item
and subject variability, are not too small (Davenport &
Webster, 1973; Forster & Dickinson, 1976). In addition,
Santa, Miller, and Shaw (1979) demonstrated that the
F’ is robust against violations of homogeneity and
normality.

Confusion in the Interpretation of F; and F»

In hindsight it appears unfortunate that the statistics
F; and F, were introduced as a means to compute the
value of minF'. Although researchers (especially in the
language area) did take the fact that items are a ran-
dom factor seriously and followed Clark’s advice to cal-
culate F; and F,, confusion soon emerged about the
exact nature of the problem and Clark’s solution to it.
As documented by Raaijmakers, Schrijnemakers, and
Gremmen (1999), researchers started to treat F; as a
test for generalization over subjects and F, as a test for
generalization over items rather than as a intermediate
result in the computation of minF'. Although initially
the majority of papers that calculated F; and F, did at
least also report minF', the proportion of papers that
did so steadily decreased in the years between 1975
and 1997 (see Figure 1 in Raaijmakers et al., 1999). By
the end of that period almost no article published in
the Journal of Memory and Language reported the
mink”’ statistic.

One of the reasons for this may have been the fact
that researchers noticed that sometimes F; and F,
would be significant but minF' would not. Since a sta-
tistically significant result is still a major factor in getting
one’s results published, it is perhaps understandable
that researchers began to view minF' as overly conser-
vative (see Raaijmakers et al., 1999, for an example).
However, it should be clear that this practice is without
foundation since for the design given in Table 1, both
F; and F, are biased; hence the fact that sometimes
both of these statistics are “significant” but minF' is
not, is to be expected. As mentioned previously, simu-
lation results do not support the assertion that minF" is
a too conservative test.

Raaijmakers

Overgeneralization to Other Designs

Presumably due to the misunderstanding of the
relation of the statistics F; and F, to the “language-as-
fixed-effect” problem, researchers also incorrectly gen-
eralized the solution to other designs than the standard
one given in Table 1. Two designs in particular have
been discussed in the literature: matching of items on
relevant properties between conditions and counterbal-
ancing of items across conditions. Both of these
designs differ in important respects from the standard
design in which items are randomly sampled within
conditions. The consequences of matching of items
were investigated by Wickens and Keppel (1983) who
showed, using simulation results, that the bias in F; is
greatly reduced when such matching is used. Wickens
and Keppel (1983) discussed the case where individual
items are matched using a blocked design. They
showed (see also Raaijmakers et al., 1999) that if in
such a design the blocking factor is ignored (i.e., the
same analysis design is used as in Table 1), the best
approach would be to perform a F; analysis because,
in that case the usage of F' or minF' leads to a consid-
erable reduction in power (see Wickens & Keppel,
1983, p. 307).

In order to understand why this is the case, it
should be remembered that in the standard design it is
assumed that the variability in the mean effect of items
between conditions is directly related to the variability
of items within conditions. That is, the term that
occurs in the expected mean square for the treatment
effect is the same as the corresponding term in the
expected mean square for the Words within Treatments
effect. However, if the items are matched between con-
ditions, the variability (in replications of the experi-
ment) in the mean item effect between conditions will
be much reduced compared to the variability of the
item effect within conditions. Hence, trying to compen-
sate for the bias in F; using the term obtained from
the Words within Treatments effect (as would be the
case if one would compute F' or minF"), would be an
overcompensation and hence too conservative.

In actual practice, however, researchers often do
not use matching at the level of individual items.
Rather, the two (or more) sets of items to be used in
the two conditions are matched on a number of rele-
vant variables by ensuring that the mean values for
those variables (and sometimes the variances) are com-
parable in the two conditions. This might be termed a
set-matching procedure since the two sets of items are
matched, not the individual items. Following the rea-
soning above, it can be seen that in such a case too,
the variability of the average item effect between con-
ditions will be much smaller than that within each of
the two conditions (if it were not, the matching would
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TABLE 2
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Expected Mean Squares for Repeated Measurements ANOVA With Counterbalanced Lists

Source of variation

Expected mean squares

G (groups) (= AXL between)
S(G)

A

L (lists)

AXL (within)

Residual

(p-D(@p-2)

P-D(p-1) o’

G, + POy + npsg
ol + PGE(G)

o’ + nc’, +npc?,
o’ +npc?

o’ +no?,

e

Note. p = number of groups = number of levels of the treatment variable = number of lists; 7z = number
of subjects within each group. Lists and Subjects are assumed to be random effects.

not have been very successful). Hence, a set-matching
procedure will also significantly reduce the bias in F;
that would exist had the items been sampled complete-
ly randomly without any attempt to match the two sets
of items.

Note that whether F; or minF' is to be preferred,
depends on the extent to which matching has been
successful. If the matching hardly reduces the variabili-
ty in the difference in the mean item effect between the
conditions, minF" will still be the preferred method of
analysis. However, in most cases the matching will
indeed result in a much reduced variability, and hence
in most cases, F; should be the preferred analysis.

Matching of items (at least at the set level) is a com-
mon procedure that is used when the experimental
effect to be tested involves some property of the words
(such as natural language frequency or nouns versus
verbs, etc.). In many experiments, however, it is possi-
ble to use the same items in both experimental condi-
tions. For example, in a primed lexical decision experi-
ment the same target words might be paired with an
associatively related prime as well as with an unrelated
prime. If that is the case, a counterbalanced design
might be used in which two lists of items are construct-
ed and one group of subjects receives List 1 in condi-
tion 1 and List 2 in condition 2, and a second group of
subjects receives List 2 in condition 1 and List 1 in con-
dition 2. Such counterbalanced designs were discussed
in detail in Pollatsek and Well (1995). Raaijmakers et al.
(1999) showed that in such a design the treatment
effect can be tested directly without the need to per-
form both a subjects and an item analysis, contrary to
the suggestion of Pollatsek and Well (1995). Rather, for
each subject one simply computes the mean value for
each separate list. Note that in this design the random
effect of words is taken into account through the

assumption that in replications of the experiment, dif-
ferent lists might be used; hence the Lists factor is treat-
ed as a random effect.

The ANOVA model for this design is as follows:

Xy =M +0,+7, +o, +B, +af) +€,,, . (D
where @ = overall mean, 6, = effect of group t (= the
between component of the Treatment x List interac-
tion), Ty = effect of subject m (nested within group
0, o; = effect of the experimental treatment i, Bi = effect
of list j, affjj = the within component of the Treatment
x List interaction, and &g = experimental error (a
residual term equivalent to the interaction between
Treatment, List, and Subjects plus “real” error). Due to
the nature of this design (each group receives only p of
the pxp combinations of Treatment and List), the inter-
action between Treatment and List is divided into two
components, one between-subjects and one within-
subjects. To see this, note that if one makes a table list-
ing all pxp combinations of Treatment and List (which
together comprise the interaction of Treatment and
List), p of the cells correspond to Group 1, p to Group
2, etc. Thus, part of the differences that make up the
interaction is equivalent to the differences between the
groups, the main effect of Groups. Since Groups is
obviously a between-subjects factor, this part of the
interaction is conventionally termed the between-sub-
jects part of the interaction, and the remaining part is
called the within-subjects part of the interaction.

In the ANOVA model, it is assumed that Subjects
within Groups as well as Lists are random factors
(Groups might also be said to be random since it corre-
sponds to an interaction between a fixed and a random
effect). Table 2 gives the expected mean squares for
this design under these assumptions. Note that the
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interaction term Treatment x List (within) does not exist
for the case p = 2 (this interaction is then completely
confounded with the Group main effect).

Since the same lists are used in all experimental
conditions, there will be no contribution to the variabil-
ity between conditions due to lists and hence due to
the main effect of items. Note that there will be an
effect due to the interaction between items and condi-
tions (some items might show a larger treatment effect
than other items). This is reflected in the Lists x
Treatments interaction component 163, in the expected
mean squares for the treatment effect, as shown in
Table 2. However, since that term also occurs in the
expected mean squares for the A x L (within) effect,
the treatment effect can be directly tested using the A x
L (within) effect as the error term.? Raaijmakers et al.
(1999) give all the necessary details for the computa-
tion of the required mean squares listed in Table 2.

Criticisms and Evaluation

What if the Effect Occurs Only for a Subset of the Items?

Despite the fact that the results summarized above
have been known for some time and have resulted in
clear recommendations for how to proceed in any
given case, there still seems to exist a resistance among
language researchers to change the existing practice of
always performing both subjects and item analyses
without computing minF', even though there is no sta-
tistical rationale for such a procedure. Over the past
couple of years, I have seen many instances, in some
cases because researchers contacted me with specific
questions and in other cases because I received copies
of the comments that reviewers made on manuscripts
that did not follow the standard (but incorrect)
approach. Below I will give a few examples but first I
would like to stress that the major problem still seems
to be an incorrect or at least, imprecise, understanding
of why it matters that items are a random effect and
why sometimes item analyses should be performed.
Some researchers seem to believe that item analyses
are always necessary, irrespective of whether the F-test
is biased or not, simply because there might be vari-
ability between the items and one has to perform an
item analysis to determine whether the effect holds for

2 It is generally advisable to first test whether there is a signifi-
cant A x L (within) effect. If this test is not significant by a con-
servative criterion (say o =.25), then the mean square for the A
x L (within) effect may be pooled with the error (residual)
mean square, giving a much more powerful test for the treat-
ment effect (since the error term will be based on a large num-
ber of degrees of freedom). Note that if p = 2, the A x L (with-
in) effect does not exist. In that case the treatment effect is
always tested against the residual error mean square.

Raaijmakers

all items rather than for a subset of the items.
For example, one reviewer noted:?

My only substantive concern is about the item analyses.
Perhaps the authors were making a little joke when they
said in their letter that Reviewer A “noted” that Raaijmakers
et al. have “shown” that you don’t need item analyses in
certain situations. I do not believe that Raaijmakers et al.
have shown that, and literally (not virtually) every psy-
cholinguist T know also does not believe that. If a small
minority of items produces an effect, even with counterbal-
ancing, you can get a significant result by running more
subjects, but you can’t get a significant effect in the item
analysis that way. For this reason, item analyses are still
required by JML and other psycholinguistic outlets.

Another reviewer voiced similar concerns:

The claim that counterbalanced designs don’t need item
analyses... is absolutely untrue. Such a design removes one
problem that normally requires an item analysis (inadequate
matching of materials across conditions), but it does not
eliminate the issue of generality. Consider the possibility
that, say, 25% of the items show a priming effect, and the
remainder show random effects. This could give you a
very strong effect in the subject analysis, but a non-signifi-
cant effect in the item analysis. A counterbalanced design
doesn’t help here. And if one is tempted to say that an
effect in 25% of the items is still an effect, consider the mir-
ror image case: an effect in only 25% of the subjects, and
random effects for the remainder.

These quotes demonstrate a concern that one fre-
quently encounters, although one rarely sees it in print.
The idea seems to be that a treatment effect should be
present for each and every one of the subjects and
items, otherwise it is not a real effect, and that an item
analysis shows whether or not this is the case.
However, it is not difficult to show that such an idea is
incorrect. First, it should be noted that if one tests for a
treatment effect, one tests whether the population
means for the two conditions are different. It should be
clear that even if only 25% of the items (or subjects for
that matter) show the effect, the population means will
still be different. For example, if 25% of the items have
an effect of 40 ms and the remainder none, the differ-
ence between the population means for the two condi-
tions will be 10 ms, and any valid test should give a
significant result given enough power. The standard F-

*  Since I do not intend to criticize specific individuals, the identi-
ties of the persons who made specific comments is kept confi-
dential.
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TABLE 3
Example Data for Design Using Counterbalanced Lists
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TABLE 4
Data From Table 3 Collapsed Over Items

Condition 1 Condition 2 Condition 1 Condition 2
Group | Subj | item 1 item 2 item 3 item4 | item 5 item 6 item 7 item 8 Group  Subj List 1 List 2
1 1 505 491 498 566 503 497 493 500 1 1 515.00 498.25
2 495 495 494 569 505 503 496 500 2 513.25 501.00
3 497 496 501 549 510 498 492 498 3 510.75 499.50
4 492 489 506 559 500 504 498 511 4 511.50 503.25
item 5 item 6 item7 item8 | item 1 item 2 item 3 item 4 List 2 List 1
2 5 557 558 559 512 491 494 504 503 2 b) 546.50 498.00
6 558 558 557 497 496 497 503 502 6 542.50 499.50
7 561 567 570 508 487 504 493 495 7 551.50 494.75
8 558 560 504 492 507 502 494 499 8 543.50 500.50
TABLE 5
ANOVA Summary Table for Example Data of Table 4 ing to this analysis (see also Table 2). Just as was to be
— expected, the treatment effect is significant as well as
Source of variation SS df MS F . . . . .
the List main effect and the interaction between List
G (groups) (= AxL) 9649 1 96488 54207 and Condition (which in this design is equivalent to the
S(G) 107 6 1.78 0.13 main effect of Groups). Note that the List factor is sig-
A 3,592.5 1 3,59250  263.09 nificant due to the fact that the crucial items (4-7) are
L (lists) 1273.6 1 127360 93.27 n'ot’d1str1b'uted evenly across the lists. If an item analy-
sis is carried out on these data (even though such an
error 81.9 6 13.66

test in the item analysis does not test whether the effect
is the same for all items but whether the population
means are different, taking the variability between
items into account (though ignoring the variability
between subjects). In order to test whether the effect is
the same for all items, one would have to test the Item
x Treatment interaction effect (assuming such an effect
does exist in the design). However, even if the Item x
Treatment is significant, that says little or nothing about
the difference between the population treatment
means. Conversely, the fact that the treatment means
are different does not imply that the effect holds for
each and every item.

It is surprising (and somewhat disturbing) that such
ideas appear to be relatively common, at least within
the language community. A (constructed) example may
show more clearly what is happening in such a case. In
this example, we have constructed a set of data for a
counterbalanced design with two conditions and two
lists of items (see Table 3). The data are constructed in
such a way that Items 4, 5, 6, and 7 have an effect of
60 ms and the remainder of the items have no effect at
all. Apart from this, no other effects were included in
the generated dataset except a small amount of random
noise. If one uses the approach advocated by
Raaijmakers et al. (1999), the data are averaged within
the lists, which results in Table 4.

Table 5 gives the ANOVA summary table correspond-

analysis lacks a clear statistical rationale in this case),
an I, value of 7.44 (df = 1,6) is obtained (assuming that
the group factor is included in the analysis). Despite
the claims to the contrary, it is not at all evident how
one would be able to determine from this statistic that
the effect is limited to a subset of the items.

A second example using matched items (or if that is
experimentally feasible, the same items) in the two
conditions is shown in Table 6. In this example, only
the items (or blocks) 1-4 show a treatment effect (of 60
ms), while the remaining items show no effect at all.
The corresponding ANOVA summary table is given in
Table 7 (see also Table 5 in Raaijmakers et al., 1999).
Since there are no missing data, it is in this case possi-
ble to compute the quasi F-ratio using the equations
given in Raaijmakers et al. (1999, Equation 8). For these
data, F'= 5.62 (df = 1,7). Using either the statistics from
Table 7 or by running separate subjects and item analy-
ses, we obtain F; = 226.1 (df = 1,3) and F> = 5.75 (df =
1,7). This leads to minF' = 5.61 (df = 1,7). Thus, even
though the effect is only present for a subset of the
items, it is significant at the .05 level, for F' as well as
for minF'. Note that this analysis also shows that the
extremely large interaction component Items x
Treatments that was introduced in this constructed
example does lead to a large bias in F; (see Equation 9
in Raaijmakers et al., 1999).

What such comments do show is that the interpreta-
tion of the item analyses has changed from a tool for
the computation of minF' to a tool for testing whether
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TABLE 6

Raaijmakers

Example Data for Repeated Measurements ANOVA With Items Crossed With Treatment

condition  subj item 1 item 2 item 3 item 4 item 5 item 6 item 7 item 8
1 1 505 491 498 506 503 497 493 500
2 495 495 494 509 505 503 496 500
3 497 496 501 489 510 498 492 498
4 492 489 5060 499 500 504 498 511
2 1 557 558 559 572 491 494 504 503
2 558 558 557 557 496 497 503 502
3 561 567 570 568 487 504 493 495
4 558 560 564 552 507 502 494 499

TABLE 7
ANOVA Summary Table for Example Data of Table 6

Source of variation df Mean Square
A (Treatment) 1 14,370.02
B (Items) 7 2,163.57
S (Subjects) 3 1.35
AXB 7 2,497.12
AXS 3 63.56
BxS 21 33.50
A x B xS (residual) 21 29.09

the effect is specific to certain items rather than all
items. Now the original (and correct) use of item analy-
ses did of course have something to do with the gener-
ality of the observed result, but the generality that was
meant there had to do with the generalization of the
difference between treatment means to the population
from which these items were sampled, not the general-
ization to each and every individual item.

To reiterate, the idea that the inherent variability
between items always necessitates doing an analysis
over items irrespective of the actual nature of the design
appears to be virtually ineradicable. Many language
researchers seem to be routinely applying statistical
procedures without regard for the actual nature of the
design that is used. Item analyses may be interesting in
their own right but it should not be assumed that such
analyses should always be used for testing the treat-
ment main effect, irrespective of the properties of the
design.

What if the Restrictions Used Exbaust the Population of
Items?

Another objection is that in a particular experiment
the items may have been selected subject to so many
restrictions that the items that have been used virtually
exhaust the population. Therefore, the Item factor can-
not really be considered random since that would

imply a virtually infinite population of items that could
have been used (hence, Items should be treated as a
fixed effect). This might indeed be true given the
restrictions used, but the real question is whether the
researcher would indeed refuse to consider a “replica-
tion” of the experiment in which a different set of
restrictions was used (e.g., a different range of frequen-
cies) as a valid replication. And what about a replica-
tion of the experiment in a different language? These
are real problems to which there is no easy answer but
that should be considered before jumping to the con-
clusion that Items should be treated as fixed. A variant
of this is when a researcher does admit that there may
be other samples of items that could have been used
but believes that the sample actually used in the exper-
iment represents a sizeable fraction of all possible items
(e.g., when one used 20 items in the experiment and
one estimates that the population contains 50 potential-
ly suitable items in total).

It is indeed true that such cases violate the assump-
tions underlying the random effects model. One solu-
tion would be to use appropriate correction factors in
the formulas for the expected mean squares (known as
the finite population correction). However, in my opin-
ion one should be cautious in using such an approach.
It is often the case that a researcher uses a particular
set of restrictions but does believe that the conclusions
should hold more widely. An analogy that illustrates
the problem is the following. Suppose that a researcher
does an experiment on spatial attention in air traffic
control. In order to get participants, he contacts a near-
by airport and succeeds in obtaining the cooperation of
all 20 air traffic controllers from that airport. Should he
then treat the subjects factor as fixed rather than ran-
dom? Probably not. It is more likely that he will assume
that his group of air traffic controllers are sufficiently
representative for air traffic controllers in general (at
least with respect to the experimental treatment
effects). Note that this is an example of the general rule
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that in order to answer questions regarding the random
or fixed character of experimental effects, one has to
consider the set of valid replications of the experiment.
If there is no a priori reason to assume that items (or
subjects) could not have been selected in a different
way, using different restrictions, it is probably best (i.e.,
the most conservative) to treat the Item factor as ran-
dom rather than fixed.

How do You Know That the Matching of Items was
Successful?

A third objection is that even though careful matching
may have been used, one can never be sure that the
items or the lists have been matched on all relevant
dimensions. In particular, it may be the case that the
matched items differ with respect to the treatment
effect even though they may be comparable overall.
There is no easy solution in this case. On the one
hand, it might be better to assume complete matching
(especially since the main effect of items will usually
be larger than the interaction between items and treat-
ment); on the other hand, it could in principle also be
defended to assume that the matching does not signifi-
cantly reduce the variation due to items (even though
one would be tempted to question why the researcher
took the trouble to search for matching pairs if that
does not really accomplish what it was supposed to
do).

The problem is that if the matching is only partially
successful, the minF' test will be too conservative but
the F; test will be too liberal. There might be a solution
to this problem, even though it may involve some extra
work by the researcher. Let us again assume that there
are two experimental conditions, and that we are able
to select two samples of 20 words, one for each condi-
tion (i.e., words are nested within conditions) where
the two samples are matched (in terms of their mean
values) on a number of relevant dimensions. If that is
possible, it might also be possible to select four lists of
10 items each, two for each condition, that are also
matched on those dimensions. Let us denote the two
lists for Condition 1 as List 1 and List 2 and the two lists
for Condition 2 as List 3 and List 4.

In the proposed analysis we will use the mean
score for List 1 as the dependent variable. If words are
assumed a random effect, then this new list factor will
also be a random effect. Note that even though partial
matching may have been used, the variability between
lists within a particular experimental condition will still
be comparable to the variability between conditions.
Hence, in such a design the assumptions for the stan-
dard design (see Table 1) are met, provided that one
substitutes Lists for Items. We could therefore do an
ANOVA with subjects and lists as random effects using
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the scheme described in Table 1. In all respects, the
design is exactly the same as in the case considered by
Clark (1973) except that “words” has been replaced by
“lists.”

One objection might be that we now have only two
“items” per cell; hence there will be a loss in the
degrees of freedom and hence a loss in power.
However, it should be realized that the variability
between the lists, as defined here, will be substantially
smaller than the variability between words, and this
will at least partly compensate for the decreased num-
ber of “items.” In addition, the error variability will of
course be reduced since we are using averages. In
addition, such a procedure eliminates the problem of
missing data and hence we can now compute F’ direct-
ly rather than its lower bound minF' (see Equation 1).

More generally, the number of items within each
condition may be divided into as many lists as are fea-
sible, and are still sufficiently large to ensure that no
subject has all missing scores for any of the lists (i.e.,
there are no missing data in the analysis in which the
data have been reduced to list means per subject).

Although we have not carried out a full simulation
study to study the properties of this approach (and in
particular its power), a few numerical examples show
that the approach at least deserves further analysis. For
example, using artificial data in a design with 2 treat-
ment conditions, 10 subjects and 2 lists of 5 items each
in each condition, in which 80% of the item variance
was matched between lists, the analysis based on the
average scores per list showed a treatment effect that
was just significant, F'(1,3) = 9.17, p < .050, while the
analysis in which the items within a list were not aver-
aged, did not show a significant effect, F'(1,20) = 2.80,
p < 106 and minF'(1,20) = 2.80, p < .110. However,
other examples in which the proportion of matched
variance was lower showed a reversed pattern (i.e., the
F' for the analysis based on “Lists” was less significant
than the minF' for the analysis based on the individual
items). At this moment it is not clear exactly when the
one analysis is to be preferred over the other.

Thus we are left with the somewhat unsatisfactory
conclusion that the proposed analysis may provide a
better way to test treatment effects than the standard
minkF’-test, especially when the item variance is large
and a substantial portion of the item variance is con-
trolled through matching, but the precise conditions
that have to be fulfilled are not yet clear.

Conclusion
I conclude by summarizing the main recommenda-

tions. First, in those cases where items cannot be coun-
terbalanced across conditions and matching of items
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across conditions is not feasible, the appropriate proce-
dure is to calculate minF’. Second, if matching of items
across conditions is possible, the optimal procedure
would be to assume a blocked design. If matching is
only possible at the set or list level, then one should
use F; if one has sufficient confidence that the blocking
was successful. If, however, there is reason to doubt
the efficacy of the matching procedure, it might be bet-
ter to use at least two lists (constructed according to
the same matching procedure) for each treatment con-
dition and to calculate the F’ statistic as described by
Clark (1973) with the average list score substituted for
the item scores. Finally, if the experiment allows coun-
terbalancing of items across conditions the correct pro-
cedure is the one described in Raaijmakers et al. (1999)
since that procedure allows a direct test of the main
hypothesis even if items are assumed to be a random
effect.
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Sommaire

L’analyse convenable des expériences a I'aide dun
matériel langagier est source de controverse et de
débats entre les chercheurs. Le probleme est soulevé
de facon tout a fait éloquente dans une conception
d’expérience ou les mots sont enchassés dans les con-
ditions de traitement, par exemple en comparant des
noms et des verbes ou des occurrences élevées par
opposition a faibles. Dans une telle conception la
variabilité¢ de Iéchantillonnage des items contribue au
carré moyen du facteur de traitement. Il s’ensuit que le
test F standard (obtenu en établissant la moyenne des
items) sera biaisé. Clark (1974) préconisait le calcul de
la donnée statistique minF' pour éliminer ce biais.
Méme si cette solution a fait 'objet de nombreuses
discussions, il existe encore de la confusion entourant
son utilisation adéquate et particulierement en ce qui
touche les conditions dans lesquelles ces données
statistiques sont adéquates (en terme de biais et de
puissance).

Un certain nombre d’objections contre l'utilisation
de minF' sont abordées. Nous montrons qu’une telle

procédure ne sera pas adéquate si la variabilité du
score moyen des items entre les conditions est (beau-
coup) moindre que ce 2 quoi on pourrait s’attendre
selon la variabilité de la condition intrinséque. Une
telle situation survient si les items ont été appariés
entre les conditions d'un certain nombre de propriétés,
soit au niveau individuel ou au niveau de la moyenne
de chacune des conditions. Dans de tels cas les don-
nées statistiques de minF' seront trop prudentes. Dans
le méme ordre d’idée, si les items ont été contreba-
lancés entre les conditions, il faudrait tenir compte de
l'aspect de cet équilibrage dans l'analyse statistique.
Raaijmakers, Schrijnemakers et Gremmen (1999)
décrivent comment de telles données devraient étre
analysées en tenant compte du fait que les items et les
sujets sont aléatoires dans le compte rendu.

Nous décrivons un certain nombre d’objections qui
ont été soulevés par rapport a ces recommandations.
La plus importante étant la croyance (erronée) que
I'approche consistant a contrebalancer les données pré-
conisée par Raaijmakers et al. (1999) ne pallie pas au
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besoin d’effectuer des analyses d’items distinctes étant
donné qu’il pourrait se trouver un item par interaction
de traitement qui soit tel que l'effet ne se produit que
pour un sous-ensemble d’items. Il semblerait qu’on
croit que si c’est le cas, l'effet du traitement ne devrait
pas étre significatif. Cependant, cette supposition est
fausse étant donné que méme lorsqu’un effet ne se
produit que pour un sous-ensemble d’items du groupe,
il restera tout de méme un effet de traitement principal
dans le groupe et tout test suffisamment sensible
devrait montrer un effet principal significatif pour le
traitement. Evidemment, litem de leffet d’interaction
par traitement (s’il existe) devrait aussi étre significatif,
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mais que ce soit ou non le cas, il n’indique a peu pres
rien sur la différence entre les moyens de traitement du
groupe. Nous illustrons ces problémes a I'aide de deux
ensembles de données simulées. Nous abordons aussi
brievement ce que serait la meilleure pratique si les
items étaient choisis en fonction d’'un nombre de
restrictions si grand que les items utilisés dans l'expé-
rience épuisent a toute fin pratique le groupe. En
dernier lieu, nous décrivons une solution possible pour
le probléeme que l'on ne peut jamais étre certain que
l'appariement qui a été utilisé est tel que les items ont
en effet été appariés en fonction de toutes les dimen-
sions pertinentes.



