Introduction to MVPA

Alexandra Woolgar 16/03/10

MVP....what?

 Multi-Voxel Pattern Analysis (MultiVariate Pattern Analysis)

Overview

- Why bother?
- Different approaches
- Basics of designing experiments and analysis for MVPA

- Overlapping representations
- New inferences:
 - Regularities in voxel-wise patterns suggest consistent underlying neural code
 - Beyond "what brain area active in task X?"
 - What information represented by patterns of activity in that area?

Approaches to MVPA

- Test / Train Classification
- Distance measures

A single participant:

Average error score for this ROI, for this subject, for this contrast (blue vs pink)

- Significance testing:
 - Average score for each contrast for each subject for each ROI
 - Are the patterns reliable?
 - Is the average classification score greater than I would expect by chance?
 - One-sample t-test across subjects, against 50 %, within each ROI for each effect of interest separately
 - Differences between conditions
 - Paired t-tests, ANOVA etc etc

- Pros:
 - (Fairly) easily interpretable
 - Well established
- Cons:
 - Basically limited to two way discriminations
 - Uses only part of your data at any one time

An example...

Rule Position Response

* Condition (hard and easy perceptual difficulty)

An example...

An example...

Position Coding

Low Perceptual Difficulty High Perceptual Difficulty

**

Distances

 Are within condition distances smaller than between distances?

Distances

Euclidean Distance (Pythagorus)

Mahalanobis Distance

N dimensions:

$$\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 \dots + (n_1 - n_2)^2}$$

= $\sqrt{\Sigma} (x_i - x_j)^2$

(where σ is the covariance matrix of errors for the n dimensions)

 $\sqrt{\Sigma} (X_i - X_j)^2 / \sigma$

Correlation

Distances

- Two conditions:
 - Are patterns of activation pertaining to the same event more similar than patterns pertaining to different events?
- More exploratory:
 - Multi-dimensional scaling (visualisation)
 - Cluster analysis
 - Representational similarity analysis (RSA)

Multi-dimensional scaling

Kriegeskorte 2008

Cluster analysis

Kriegeskorte 2008

Representational Similarity Analysis

*

Representational Similarity Analysis

Representational Similarity Analysis

Distance measures

- More exploratory
- More flexible (possibility to test a range of models)
- Inference (e.g. test specific computational model)

Which shall I use?

- Depends on your question!
 - Few conditions incorporating binary distinctions -> classification
 - E.g. rule 1 vs rule 2, head turn left vs. right
 - Huge stimulus set varying along many dimensions -> RSA or similar
 - E.g. objects, semantics etc

Designing experiments

- What's your question?
 - Best suited to univariate or multivariate analysis?

Faces & Houses...

- A region that simply *responds more* to faces than houses, might be said to do face processing
 - Univariate question: where in the brain is there more activity for faces than for houses?
- But a region that was specialised for processing faces, might also *discriminate between* faces.
 - Not good enough to have a region doing "face detection" – that says "yes, it's a face" every time we see a person: we'd be hopeless at face recognition!
 - Need a region that discriminates BETWEEN faces
 - Multivariate question: are patterns of activity evoked by *different faces* discriminable?

(don't really need houses at all, no specific prediction there)

Designing experiments

- What's your question?
 - Best suited to univariate or multivariate analysis?
- How many repetitions?
 - What analysis are you planning?
 - Classification need lots of repetitions of each condition in blocks of time. Mine ~12 repetitions per condition per block, 10 blocks.
 - RSA need repetitions of each ITEM for matrix. Don't need data in blocks. Niko: 12 repetitions of each item across the whole experiment. Need at least 8 items in your matrix to make the statistics work.
 - Talk to people (Johan, Russell, Alex)

Basics of analysis

- Use unsmoothed native space images
 - Fine-grained patterns (lost in smoothing)
 - Pattern analysis at level of individual brain (no assumptions about correspondence of particular voxels between brains)

Overview of analysis

First level...

-> betas for each item or experimental condition

-> do MVPA on these

Resources for MVPA

- PyMVPA toolbox for classification
 - http://www.pymvpa.org/
 - -/imaging/aw02/examples/
- RSA toolbox under development by Cai Wingfield, Su Li and Hamed Nili

Useful papers

- Pereira et al 2009 "Machine learning classifiers and fMRI: a tutorial overview", NeuroImage 45
- Mark Stokes' Thesis (chapter on methods for MVPA)
- Kreigeskorte Respresentational Similarity paper, Frontiers in Systems Neuroscience 2008: <u>http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid</u> <u>=2605405</u>
- Haynes & Rees 2006 Review "Decoding mental states from brain activity in humans", Nature Reviews Neuroscience 7

Summary

- New inferences available from examining "fine-grained" patterns of fMRI activation
- Variety of techniques available depending on your question
- Design your experiment with your question in mind, different techniques for different types of questions