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Two types of distributions

Joint probability p(X ,Y )
Conditional probability p(X |Y )

Are X and Y independent?
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Ernst and Banks (2002) asked subjects which of two sequentially
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touch alone or a combination of the two.

If vision v and touch t information are
independent given an object x then we have

p(v , t, x) = p(v |x)p(t|x)p(x)
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produces a posterior density
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For a Gaussian likelihood with mean md and precision λd and
a Gaussian prior with mean m0 and precision λ0
the posterior is a Gaussian with

m = λd
λ md + λ0

λ m0

λ = λd + λ0

The two solid curves show the
probability densities for the prior
m0 = 20 , λ0 = 1 and the likelihood
md = 25 and λd = 3. The dotted curve
shows the posterior distribution with
m = 23.75 and λ = 4. The posterior is
closer to the likelihood because the
likelihood has higher precision.

23.75 = 3
425 + 1

418
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For a Gaussian likelihood with mean md and precision λd and
a Gaussian prior with mean m0 and precision λ0
the posterior is a Gaussian with

m = λd
λ md + λ0

λ m0

λ = λd + λ0

I Precisions add

I The posterior mean is the sum of
the priorand data means, each
weighted by their relative precision
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Complex inference with BN

I In many practical settings the BN is unknown and one needs
to learn it from the data.

I Problem: Given data and prior information, estimate the
graph topology G and the parameters Θ.

Four cases of BN learning problems

Case Structure Observability Learning method
1 Known Full Maximum-likelihood estimation
2 Known Partial EM (or gradient descent), MCMC
3 Unknown Full Search through model space
4 Unknown Partial EM + Search through model space
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Complex models with BN

A Unifying Review of Linear Gaussian Models, Sam Roweis & Zoubin
Ghahramani. Neural Computation 11(2) (1999) pp.305-345
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