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Recent psychophysical experiments indicate that humans perform near-optimal Bayesian inference in a wide variety of tashs,
ranging from cue integration to :Ieclslnn mahngtn mulnr control. This |mp||es that neurons both represent probability

distributions and combine those di g to a close ion to Bayes' rule. At first sight, it would seem that
the high variability in the responses of cortical neurons vmuld make it difficult to implement such nphmal slallstl:al |||le|enne in
cortical circuits. We argue that, in fact, this variability |mpl|es thal ions of neurons

distributions over the stimulus, a type of code we call p i ion codes. that the Poisson-

like variahility observed in cortex reduces a broad class of Bayesian inference to simple linear cnmbmahnns of populations of
neural activity. These results hold for arbitrary probability distributions over the stimulus, for tuning curves of arbitrary shape and
for realistic newronal variability.
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» Bayesian fusion of sensory information produces a posterior
density

p(x|v, ) o< p(v]x) - p(tlx) - p(x)
» Brain is a Bayesian decoder
p(s|r1, r2) o< p(rils) - p(rals) - p(s)

» Neurons have tuning curves

p(rls) = N(u, 0?)
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PPC - Tuning curves
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» How do neurons represent probability distributions?
» How do neurons compute the posterior?

» Simple posterior over the stimulus
p(s|r) o< p(rls) - p(s)
» Independent Poisson neural variability

ffrl

p(sr)



PPC - Perception as Bayesian inference

®/®\@

» Bayesian fusion of sensory information produces a posterior
density

p(x|v, ) o< p(v]x) - p(tlx) - p(x)
» Brain is a Bayesian decoder
p(s|r1, r2) o< p(rils) - p(rals) - p(s)

» Neurons have tuning curves

p(rls) = N(u, 0?)



Vision and touch

For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

A A
m = 5tmy + mq

A=Ad+ Xo



Vision and touch

For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

A A
m = 5tmy + mq

A= Ag+ Xo

0 The two solid curves show the

o7 probability densities for the prior

§ mo =20, Ao = 1 and the likelihood

- my = 25 and Ay = 3. The dotted curve
02 shows the posterior distribution with

m = 23.75 and A = 4. The posterior is
closer to the likelihood because the
likelihood has higher precision.

23.75 = 225+ 118
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For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

A A
m = 5tmy + mq

A=A+ N

- > Precisions add

ZZ » The resulting mean is the sum of
o4 the means, each weighted by their

relative precision
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Avt = Ay + At
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Vision and touch
myt = 5my, + 25 m;
Avt = AV + At

myt = w,my + wymy
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» The summation is Bayes-optimal, if all distributions are

Poisson-like

> Besides linear summation works also with integrate-and-fire

neurons

Table I. Comparing characteristics of the two main modeling approaches to probabilistic neural repre

PPCs

Neurons correspond to

Representable distributions

multimodal distributions
Implementation ofl earning

Network dynamics required (beyond the first layer)

Critical factor in accuracy of encoding a distribution
Instantaneous representation of uncertainty

Number of neurons needed for representing

Parameters

Deterministic

Must correspond to a particular
parametric form

Number of neurons

Complete, the whole distribution is
represented at any time

Scales exponentially with the
number of dimensions

Unknown




Summary

Table I. Comparing characteristics of the two main modeling approaches to probabilistic neural representations

PPCs Sampling-based
Neurons correspond to Parameters Variables
Network dynamics required (beyond the first layer) Deterministic Stochastic (self-consistent)
Representable distributions Must correspond to a particular Can be arbitrary
parametric form
Critical factor in accuracy of encoding a distribution Number of neurons Time allowed for sampling
Instantaneous representation of uncertainty Complete, the whole distribution is Partial, a sequence of samples
represented at any time is required
Number of neurons needed for representing Scales exponentially with the Scales linearly with the number of
multimodal distributions number of dimensions dimensions
ofl earning Unknown Well-suited
(a) (b)
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p(v|x) = N(p, 0?) /QQ\
p(t[x) = N (p, 0?) @ @

Ernst and Banks use precision instead of variance. Precision is
inverse variance
=L

o2

For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

m:ﬁmd—i—%mo
A=Ag+ No
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