

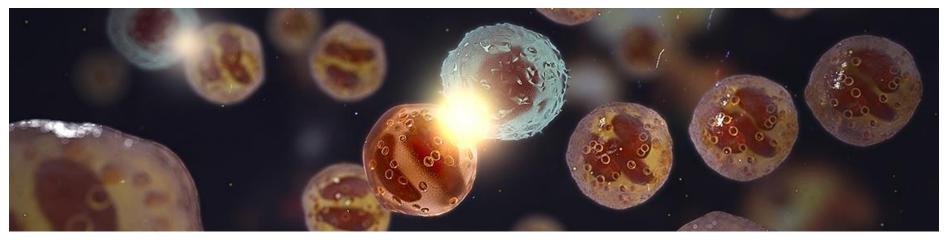
Statistical Methods in Pre- and Clinical Drug Development. Growth-Inhibition Model Example

Robert Kozarski (PhD)

r.kozarski@gmail.com

Cambridge Statistics Discussion Group

April 26, 2018



Introduction

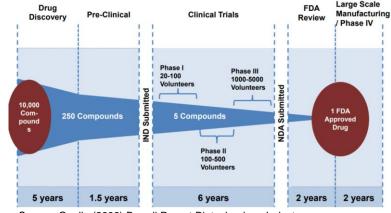
Pre-clinical and clinical trials: safety and <u>efficacy</u> testing

Clinical: more focus

- Less compounds
- Bigger studies
- · Emphasis of robust designs, established endpoints
- External evidence (meta-analysis)
- Structured statistical analysis guidelines and standards
- ...

• Pre-clinical: more diversity

- More compounds
- Smaller studies (in-vivo 10 animals per arm)
- · Different types of experiments (in-vitro, in-vivo), exploratory character
- · Large amount of experimental data collected in-house
- · Lack of standardized statistical guidelines (in-house standards)



Source: Quelle (2006) Burrell Report Biotechnology Industry

Flexibility in choice and application of statistical models should serve the right purpose

Motivation

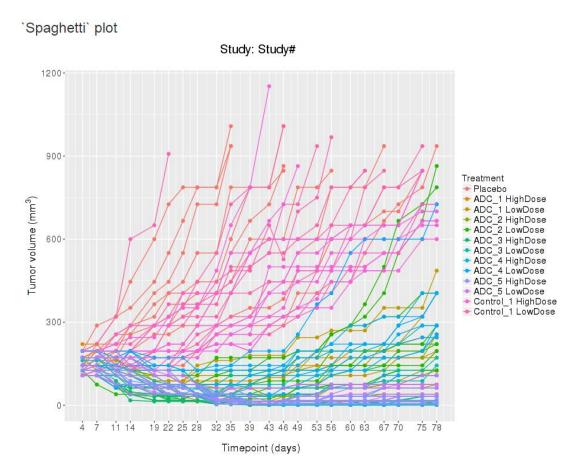
Statistical models in pre-clinical development: efficacy assessment

- Simplicity (non-statistical collaborators) and biological relevance
- Utilize richness of study data
- Applicable in study design: endpoint, effect size, simulations..
- Applicability for clinical data (translational purpose)

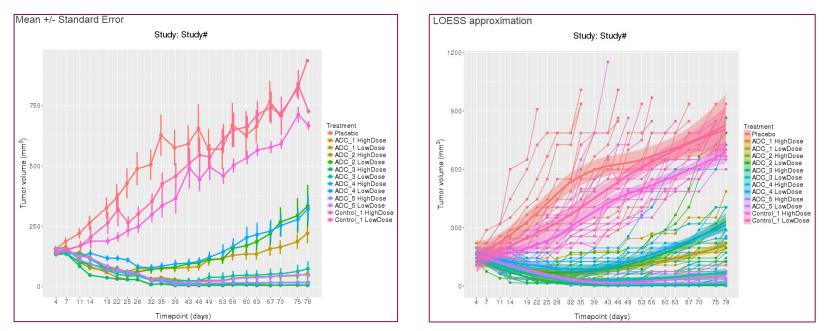
Novel methods or creative use of the existing ones

Oncology example

Example in-vivo efficacy study outcome



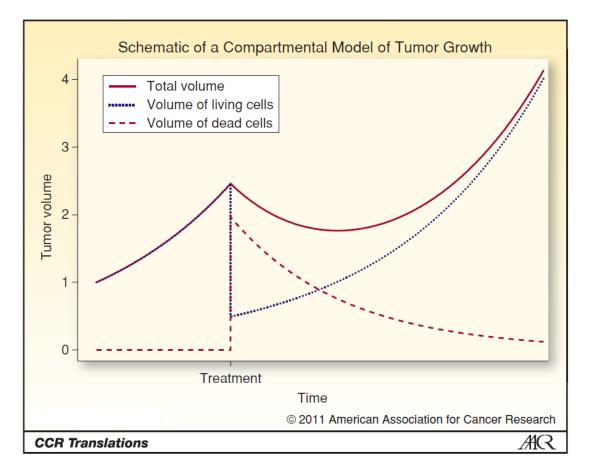
Example in-vivo efficacy analysis



Methods (pros and cons):

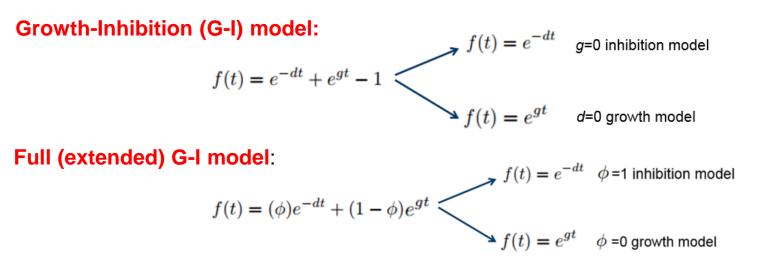
- 1) TV difference at pre-specified timepoint (ANOVA, t-test, non-parametric)
- 2) Time to TV doubled/tripled since baseline, time to nadir (Kaplan-Meier, log-rank)
- 3) Curve fitting (linear / non-linear trend analysis, splines), LOESS

Heitjan 2011



The Model (Stein et al. 2008, Looney et al. 1975)

 $f(t_i)$: Tumour Volume TV(t_i) normalized to its baseline TV(t_j), $i, j=0, 1, ..., T, i \ge j$.

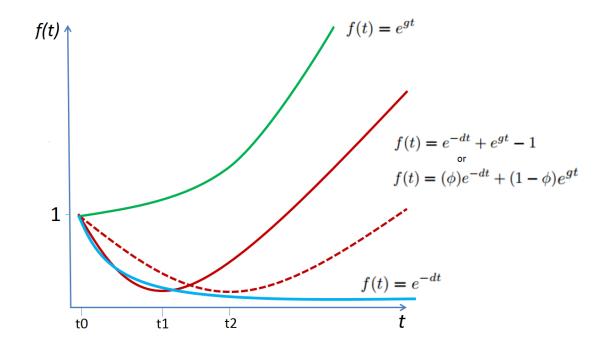


g: exponential growth rate d: exponential inhibition rate ϕ : proportion of tumour cells sensitive to therapy

g, d, ϕ in [0,1]

Not a statistical model

The Model



Efficacy measures:

- Growth / re-growth rates between arms
- Time to regrowth (t_1, t_2)
- Inhibition rate
- Treatment sensitive cell fraction

Clinical applications

Therapeutic efficacy analysis:

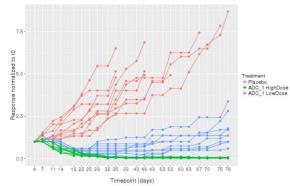
- TV or biomarker g, d rates as (secondary) endpoints
- *g*, *d* rates vs. Overall Survival (OS) correlation

Publication (selected)	Clin. Phase	TA*	Vars
Stein, Figg et al. 2008 (The Oncologist)	2	mCRPC	PSA, OS
Stein, Yang, et al. 2008 (The Oncologist)	2	RCC	TV, OS
Stein et al. 2010 (Clinical Caner Research)	2	mCRPC	PSA, OS
Blagolev et al. 2013 (Cell Reports)	3	mRCC	TV, OS
Burotto et al. 2015 (The Oncologist)	2	mCC	TV
Wilkerson et al. 2017 (Lancet Oncology)	2b, 3	mCRPC	PSA, OS

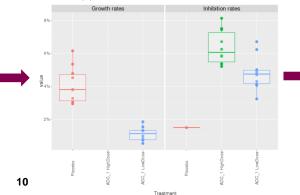
(*) metastatic(m), castration-resistant prostate cancer (CRPC), renal cell cancer (RCC), cervical cancer (CC)

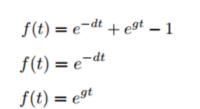
Implementation: R package *tumgr* (0.0.4, Wilkerson 2016)

- Four models get fitted to individual TV trajectories (Levenberg-Marquant) 1)
- Selected model: all significant params (p=0.05) and min AIC, or 'No model' 2)



Baseline Timepoint (t0): 4





$$f(t) = (\phi)e^{-dt} + (1 - \phi)e^{gt}$$

or 'No model'

No	Treatment	g	d	phi
1	Placebo	0.029	0.015	
2	Placebo	0.029		
3	Placebo	0.045		
4	Placebo	0.038		
5	Placebo	0.038		
6	Placebo	0.048		
7	Placebo	0.061		
8	Placebo	0.031		
9	Placebo	0.033		
10	Placebo	0.053		
11	ADC_1 LowDose	0.013	0.062	
12	ADC_1 LowDose	0.007	0.067	
13	ADC_1 LowDose	0.005	0.047	0.994
14	ADC_1 LowDose	0.01	0.041	0.951
15	ADC_1 LowDose	0.015	0.049	
16	ADC_1 LowDose	0.007	0.048	0.955
17	ADC_1 LowDose	0.008	0.032	0.963
18	ADC_1 LowDose	0.013	0.05	
19	ADC_1 LowDose	0.013	0.041	0.845
20	ADC_1 LowDose	0.018	0.043	
21	ADC_1 HighDose		0.081	
22	ADC_1 HighDose		0.075	
23	ADC_1 HighDose		0.053	
24	ADC_1 HighDose		0.059	
25	ADC_1 HighDose		0.052	
26	ADC_1 HighDose		0.058	
27	ADC_1 HighDose		0.062	
28	ADC_1 HighDose		0.074	
29	ADC_1 HighDose		0.054	
30	ADC_1 HighDose		0.067	

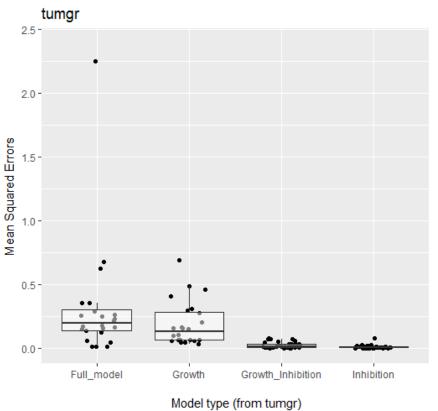
Model parameter value statistics

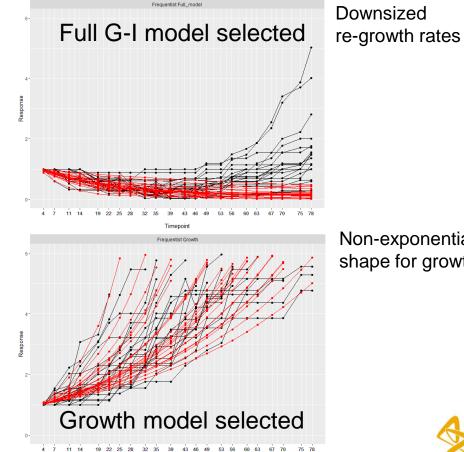
Treatment	Growth sample size	Median growth	p-value*	Inhibition sample size	Median inhibition	p-value*
Placebo	10	0.038	NA	1	0.015	NA
ADC_1 HighDose	0	NA	NA	10	0.061	0.182
ADC_1 LowDose	10	0.011	0.000	10	0.047	0.182

*p-value of Mann-Whitney test comparing investigated treatment growth / inhibition parameter outcomes with control group ones

In-sample model fit

Study #: *tumgr*





Non-exponential shape for growth

Timepoint

Comments (R solutions)

tumgr implementation

Pros:

- 1) Easy to implement: CRAN package with RShiny app
- 2) Short computational time

Cons:

- 1) 4 (+ 'No model') competing models for each trajectory no common modelling platform
- 2) Fits for individual tumor trajectories within treatment arm longitudinal data structure
- 3) Numerical problems for particular model representations

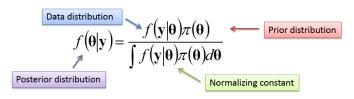
Alternatives:

- 1) Mixed-effect model framework
- 2) One model for all studies common modelling platform

Frequentist (nlme, gnls): convergence problems, good starting points required (tumgr ones failed) **Bayesian ?**

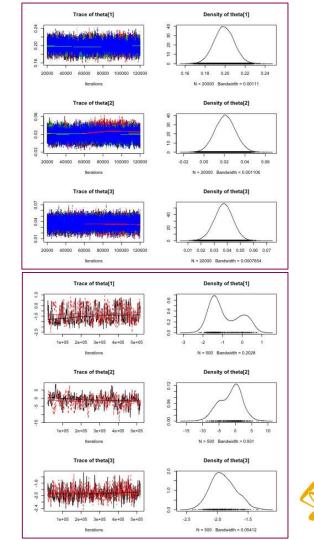
Bayesian approach (in a nutshell)

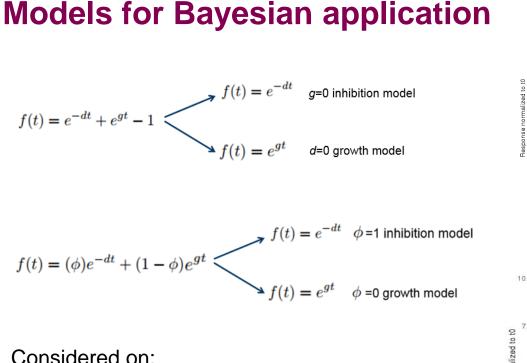
- 1) In Bayesian statistics model parameters are considered as random variables
- 2) Parameter inference based on their distributions conditioned on the data called **posterior distribution**
- 3) Posterior distribution is a combination of **data distribution** and **prior distribution**



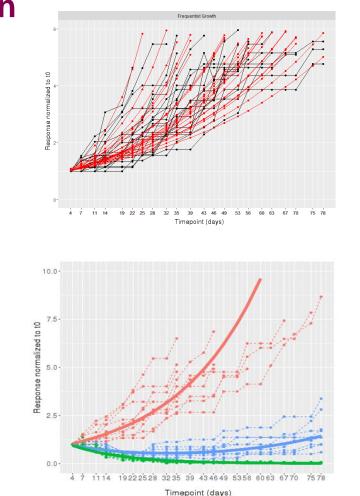
- 4) Posterior distributions are usually computed with Markov Chain Monte Carlo (MCMC) samplers
- 5) Subject to diagnostic criteria: convergence (good chain mixing), effective sample size, autocorrelation

Typical MCMC samplers (Gibbs, Metropolis-Hastings) are implemented in computer software: WinBUGS, JAGS, Stan, SAS

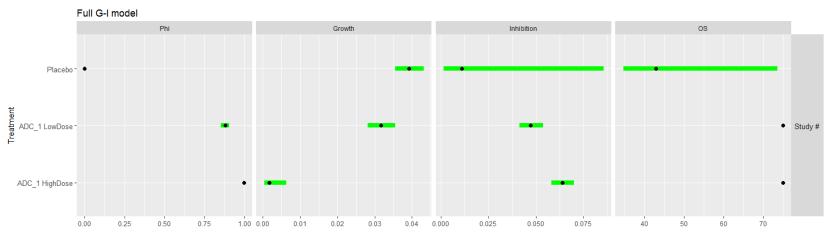




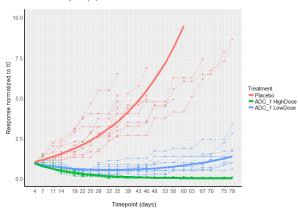
- Tumour level (alternative for *tumgr*) -
- Treatment level (mixed-effect model) -



Bayesian model fit: Study # selected treatments



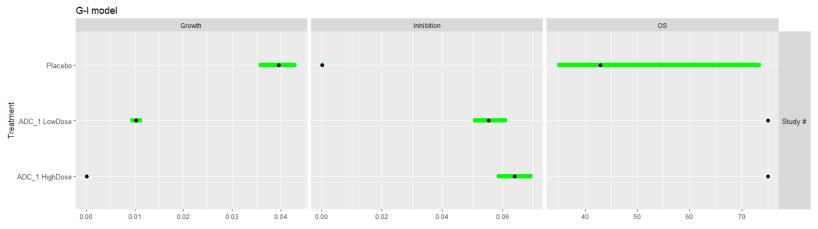
Baseline Timepoint (t0): 4



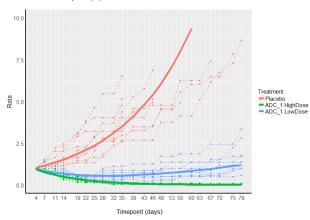
Full G-I model						
Treatment	g	d	ϕ	T2R		
Placebo	0.039	0.011	0.001	0		
ADC_1 LowDose	0.032	0.047	0.881	30		
ADC_1 HighDose	0.002	0.064	0.998	147		



Bayesian model fit: Study # selected treatments

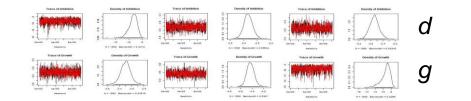


Baseline Timepoint (t0): 4



Median with 95% Credibility Interval (OS: IQR)

G-I model					
Treatment	g	d	ϕ	T2R	
Placebo	0.039	0.000	-	0	
ADC_1 LowDose	0.010	0.055	-	26	
ADC_1 HighDose	0.000	0.064	-	99	



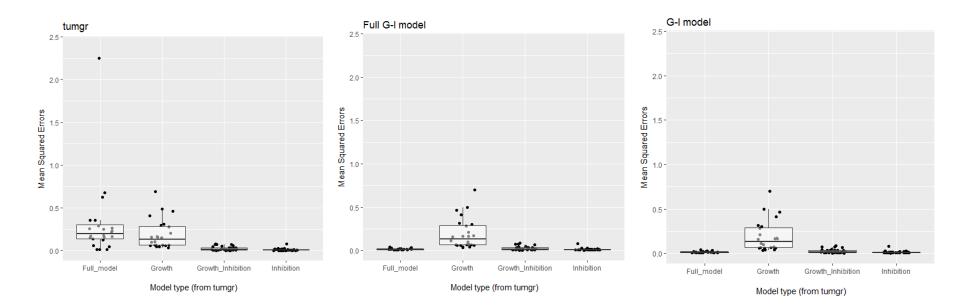
Bayesian model fit: Study # selected treatments

Full G-I model						
Treatment	g	d	ϕ	T2R		
Placebo	0.039	0.011	0.001	0		
ADC_1 LowDose	0.032	0.047	0.881	30		
ADC_1 HighDose	0.002	0.064	0.998	147		

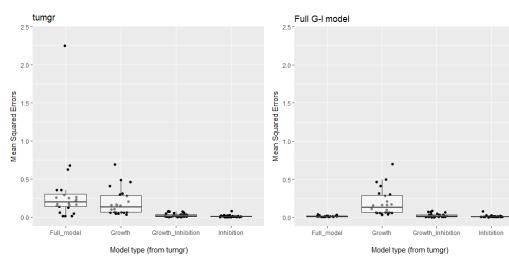
G-I model						
Treatment	g	d	ϕ	T2R		
Placebo	0.039	0.000	-	0		
ADC_1 LowDose	0.010	0.055	-	26		
ADC_1 HighDose	0.000	0.064	-	99		

tumgr						
Treatment	g	d	ϕ	T2R		
Placebo	0.038	0.015	-	-		
ADC_1 LowDose	0.011	0.047	-	-		
ADC_1 HighDose	0.000	0.061	-	-		

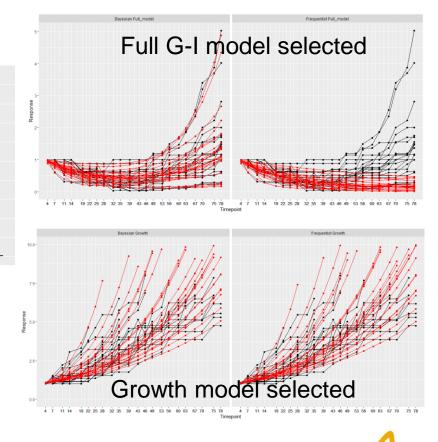
In-sample model fit Study #: Tumour level



In-sample model fit Study #: Tumour level

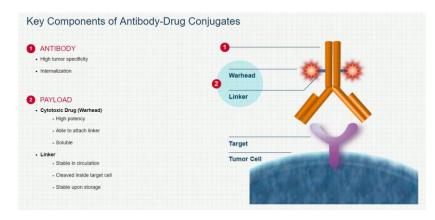


- Bayesian solution improved Full G-I model fit
- Similar performance for Growth model



Example database: Antibody Drug Conjugates (ADC)

Targeted cancer therapy: mAb - linker (conjugation side) - warhead



Source: www.spirogen.com

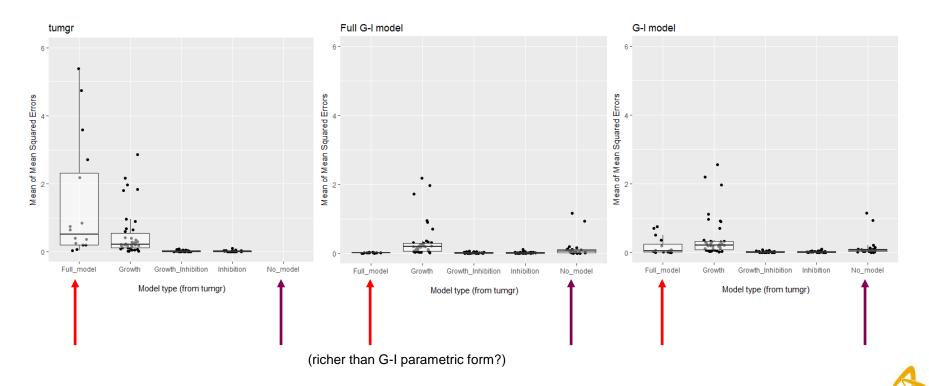
17 mAbs, 30 payloads, 8 conjugation sides: 4080 possible combinations (not all feasible)

Database: 38 in-vivo efficacy studies:

- 66 different ADCs administered at different dosing levels
- 147 different treatment lines (+38 controls)
- 2300+ individual efficacy (Tumor Volume) outcomes
- 28 cancer cell lines

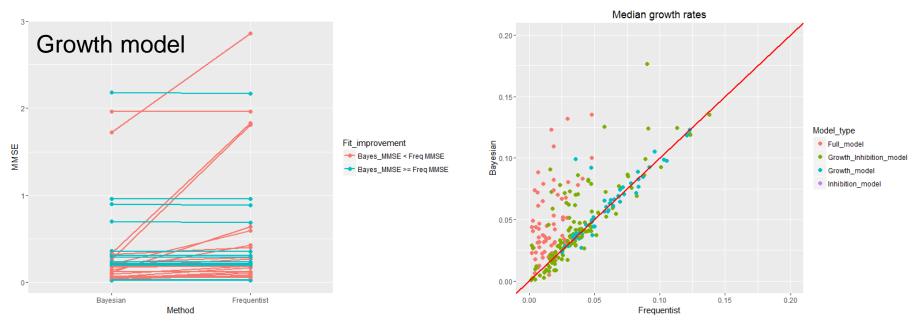
In-sample model fit

ADC database: Tumour level



In-sample model fit

ADC database: tumgr vs. Bayesian Full G-I model (Tumour level)

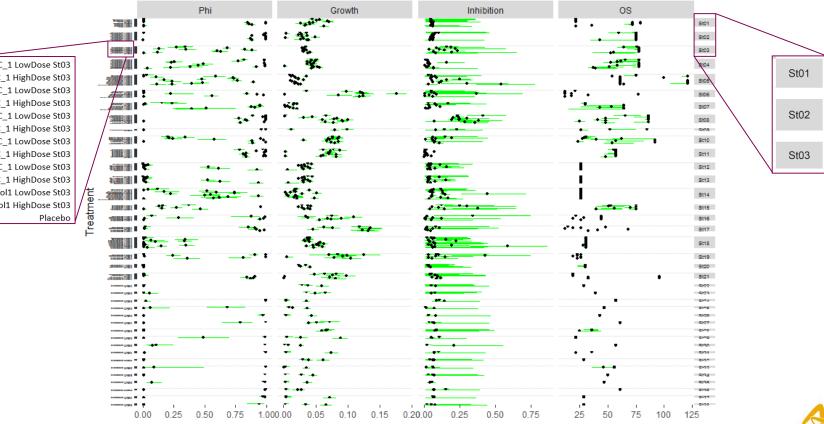


Bayesian model (usually) improves the Growth model fit. Frequentist growth rates in Full model are downsized.

Model parameters (Bayesian)

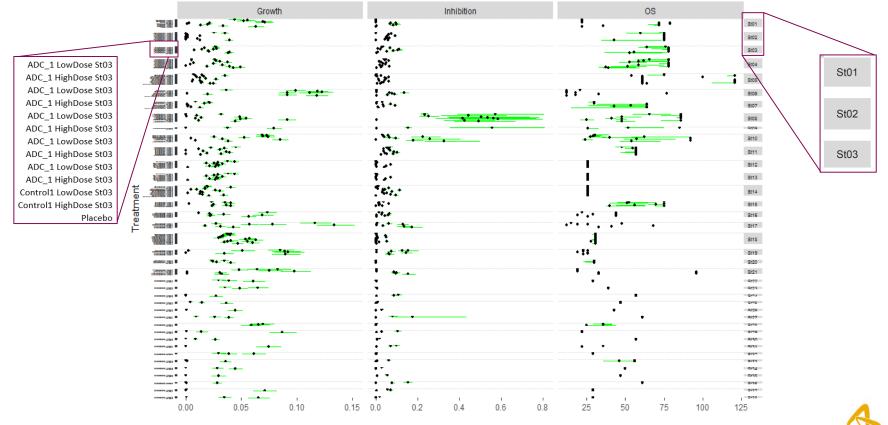
 $f(t) = (\phi)e^{-dt} + (1 - \phi)e^{gt}$

ADC 1 LowDose St03 ADC 1 HighDose St03 ADC_1 LowDose St03 ADC 1 HighDose St03 Control1 LowDose St03 Control1 HighDose St03



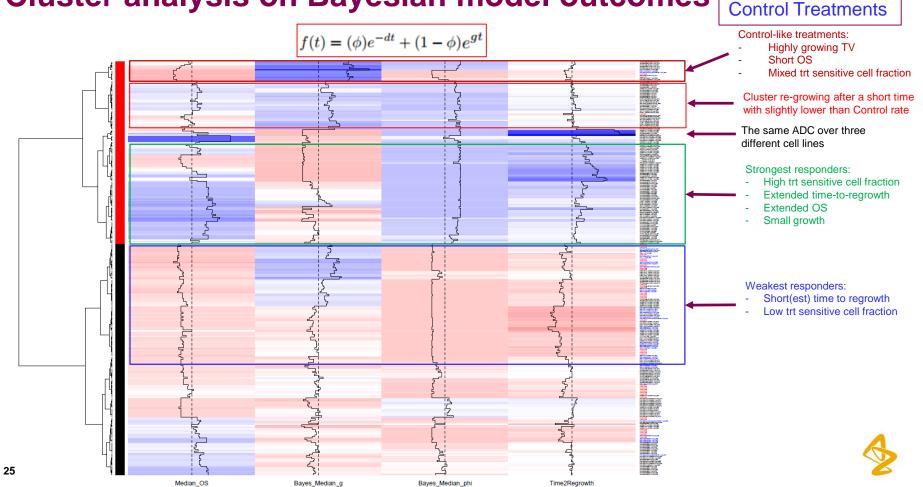
Model parameters (Bayesian)

 $f(t) = e^{-dt} + e^{gt} - 1$



Median with 95% Credibility Interval (OS: IQR)

Cluster analysis on Bayesian model outcomes



Cluster analysis on Bayesian model outcomes

 $f(t) = e^{-dt} + e^{gt} - 1$ Prolonged overall survival Highly responding: long time2regrowth, low growth 3 Highly responding: strong inhibition, small regrowth Time to regrowth strong indicator of the cluster border ?? short but weaker regrowth -Strong growth with short overall survival 26 Baves Median d Time2Regrowth Median OS Baves Median g

Controls,

Control Treatments

- 1) Growth-Inhibition model applied in pre-clinical in-vivo efficacy analysis
- 2) Existing (frequentist) approach was presented, and extended to Bayesian framework
- 3) Bayesian framework: pooled analysis, successful progression to hierarchical model setup
- Cluster analysis of the model outcomes for Antibody Drug Conjugates studies

Acknowledgements

MedI / AZ:

Athula Herath

Steven Novick

Harry Yang

Spirogen:

Conor Barry

Appendix

Full G-I model Bayesian application

 $y_{ii} = \varphi_i \exp(-d_i t_{ii}) + (1 - \varphi_i) \exp(q_i t_{ii}),$ where: *i* is for subject level, *j* is timepoint index $\varphi_i = \varphi_0 + u_{1i}$ $d_i = d_0 + u_{2i}$ $g_i = g_0 + u_{3i}$ $\begin{bmatrix} u_{1i} \\ u_{2i} \\ u_{2i} \end{bmatrix} \sim Norm \left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \tau_{11} & 0 & 0 \\ 0 & \tau_{22} & 0 \\ 0 & 0 & \tau_{23} \end{bmatrix} \right)$

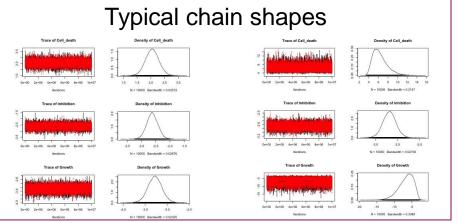
JAGS (4.2.0) Full G-I implementation (Treatment level)

modelJAGS.txt=" Data1 <- list(N=nrow(Data0), model{ nSubj=length(levels(Data0 \$ No)), ## Likelihood: for(i in 1:N){ no=Data0 \$ No. ## ID ## Constrain value to [0,1] t=Data0 \$ Timepoint, ## Original scale transformed baseline = 1st timepoint Phi[i] <- 1/(1+exp(-thetaNo[no[i],1])) d[i] <- 1/(1+exp(-thetaNo[no[i],2])) y=Data0 \$ Response, ## TV rate wrt baseline level g[i] <- 1/(1+exp(-thetaNo[no[i],3])) fixed=fixed ## starting points for fixed effects ##-mu[i] <- Phi[i] * exp(-d[i] * t[i]) + (1- Phi[i]) * exp(g[i] * t[i]) y[i] ~ dnorm(mu[i], tauErr) theta.jags <- run.jags(model=modelJAGS.txt, sigmaErr ~ dunif(0, 2) tauErr <- pow(sigmaErr, -2) monitor=c('Phi', 'Inhibition', 'Growth'), data=Data1. ## Priors on random effects for(j in 1:nSubj){ adapt=1e4, thetaNo[j, 1:3] ~ dmnorm(theta, Tau.B) burnin=1e4. ## theta comes as prior knowledge about parameters: sample=1e4. thin=1e3. module=c("alm", "lecuver"). ## Priors on fixed effects: for(k in 1:3){ method="parallel") # Exp[k] <- -log((1-fixed[k])/fixed[k]) ## staring values come from tumor Exp[k] <- -2.2 ## implies that solution will be 0.099 (~.1) for all the parameters theta[k] ~ dnorm(Exp[k], .1) ## less than 0.1 increases autocorrelation ## inhibition only: ## fixed comes from the tumgr fit, then it becomes transformed to the Full model prior ##----if(is.na(fixed \$ Median_phi) & !is.na(fixed \$ Median_d) & is.na(fixed \$ Median_g)){ Phi <- theta[1] ## only inhibition then phi gest elevated to 0.8 Inhibition <- theta[2] fixed \$ Median phi <- 0.8 ## large trt sensitive cell fraction Growth <- theta[3] fixed \$ Median q <- 0.01 ## small growth ##-----## inhibition and growth (no trt sensitive cells) Tau.B[1:3, 1:3] <- inverse(Omega[,]) Omega[1,1] <- pow(tau11,-1/2) if(is.na(fixed \$ Median phi) & !is.na(fixed \$ Median d) & !is.na(fixed \$ Median g)){ Omega[2,2] <- pow(tau22,-1/2) ## composite model then phi becomes 0.01 Omega[3,3] <- pow(tau33,-1/2) fixed \$ Median phi <- 0.01 ## medium trt sensitive cell fraction (next to observed inhibition) Omega[1,2] = Omega[1,3] = Omega[2,1] = Omega[2,3] = Omega[3,1] = Omega[3,2] <- 0 tau11 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation ## growth only tau22 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation tau33 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation if(is.na(fixed \$ Median phi) & is.na(fixed \$ Median d) & !is.na(fixed \$ Median q)){ fixed \$ Median phi <- 0.01 ## negligible trt sensitive cell fraction fixed \$ Median d <- 0.01 ## negligible inhibition

MCMC diagnostics

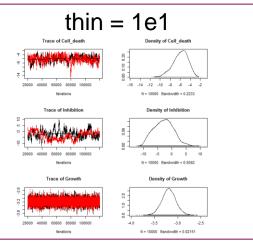
Chain convergence / mixing:

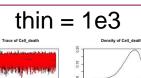
- Visual analysis
- Effective sample size -
- Geweke statistics



Autocorrelation was a problem:

- High thinning (1e3)
- Migrate to Stan (HMC, NUTS) -





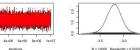
.10

N = 10000 Republicity = 0.001

Density of Inhibition

-3.0

Trace of Growth



Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

