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Introduction

• Pre-clinical and clinical trials: safety and efficacy testing

• Clinical: more focus
• Less compounds 

• Bigger studies

• Emphasis of robust designs, established endpoints

• External evidence (meta-analysis)

• Structured statistical analysis guidelines and standards

• …

• Pre-clinical: more diversity
• More compounds

• Smaller studies (in-vivo 10 animals per arm) 

• Different types of experiments (in-vitro, in-vivo), exploratory character

• Large amount of experimental data collected in-house

• Lack of standardized statistical guidelines (in-house standards)

Flexibility in choice and application of statistical models should serve the right purpose
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Source: Quelle (2006) Burrell Report Biotechnology Industry



Motivation

Statistical models in pre-clinical development: efficacy assessment

• Simplicity (non-statistical collaborators) and biological relevance

• Utilize richness of study data

• Applicable in study design: endpoint, effect size, simulations..

• Applicability for clinical data (translational purpose)

Novel methods or creative use of the existing ones

Oncology example 
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Example in-vivo efficacy study outcome
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Example in-vivo efficacy analysis

Methods (pros and cons):  

1) TV difference at pre-specified timepoint (ANOVA, t-test, non-parametric)

2) Time to TV doubled/tripled since baseline, time to nadir (Kaplan-Meier, log-rank) 

3) Curve fitting (linear / non-linear trend analysis, splines), LOESS
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Heitjan 2011
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The Model (Stein et al. 2008, Looney et al.1975)

f(ti): Tumour Volume TV( ti ) normalized to its baseline TV( tj ), i, j=0,1,…, T, i ≥ j. 

Not a statistical model
g, d, in [0,1]

Growth-Inhibition (G-I) model:

Full (extended) G-I model:

g: exponential growth rate 

d: exponential inhibition rate

: proportion of tumour cells sensitive to therapy
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The Model

Efficacy measures:

- Growth / re-growth rates between arms

- Time to regrowth (t1, t2)

- Inhibition rate

- Treatment sensitive cell fraction



Clinical applications

Therapeutic efficacy analysis:
• TV or biomarker g, d rates as (secondary) endpoints

• g, d rates vs. Overall Survival (OS) correlation
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Publication (selected) Clin. Phase TA* Vars

Stein, Figg et al. 2008 (The Oncologist) 2 mCRPC PSA, OS

Stein, Yang, et al. 2008 (The Oncologist) 2 RCC TV, OS

Stein et al. 2010 (Clinical Caner Research) 2 mCRPC PSA, OS

Blagolev et al. 2013 (Cell Reports) 3 mRCC TV, OS

Burotto et al. 2015 (The Oncologist) 2 mCC TV

Wilkerson et al. 2017 (Lancet Oncology) 2b, 3 mCRPC PSA, OS

(*) metastatic(m), castration-resistant prostate cancer (CRPC), renal cell cancer (RCC), cervical cancer (CC)
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Implementation: R package tumgr (0.0.4, Wilkerson 2016)

1) Four models get fitted to individual TV trajectories (Levenberg-Marquant)

2) Selected model: all significant params (p=0.05) and min AIC, or ‘No model’

No Treatment g d phi
1 Placebo 0.029 0.015

2 Placebo 0.029

3 Placebo 0.045

4 Placebo 0.038

5 Placebo 0.038

6 Placebo 0.048

7 Placebo 0.061

8 Placebo 0.031

9 Placebo 0.033

10 Placebo 0.053

11 ADC_1 LowDose 0.013 0.062

12 ADC_1 LowDose 0.007 0.067

13 ADC_1 LowDose 0.005 0.047 0.994

14 ADC_1 LowDose 0.01 0.041 0.951

15 ADC_1 LowDose 0.015 0.049

16 ADC_1 LowDose 0.007 0.048 0.955

17 ADC_1 LowDose 0.008 0.032 0.963

18 ADC_1 LowDose 0.013 0.05

19 ADC_1 LowDose 0.013 0.041 0.845

20 ADC_1 LowDose 0.018 0.043

21 ADC_1 HighDose 0.081

22 ADC_1 HighDose 0.075

23 ADC_1 HighDose 0.053

24 ADC_1 HighDose 0.059

25 ADC_1 HighDose 0.052

26 ADC_1 HighDose 0.058

27 ADC_1 HighDose 0.062

28 ADC_1 HighDose 0.074

29 ADC_1 HighDose 0.054

30 ADC_1 HighDose 0.067
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In-sample model fit
Study #: tumgr Downsized 

re-growth rates 

Non-exponential 

shape for growth

Full G-I model selected

Growth model selected
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Comments (R solutions)

tumgr implementation

Pros:

1) Easy to implement: CRAN package with RShiny app

2) Short computational time

Cons:

1) 4 (+ ‘No model’) competing models for each trajectory - no common modelling platform

2) Fits for individual tumor trajectories within treatment arm - longitudinal data structure

3) Numerical problems for particular model representations

Alternatives:

1) Mixed-effect model framework

2) One model for all studies - common modelling platform

Frequentist (nlme, gnls): convergence problems, good starting points required (tumgr ones failed)

Bayesian ?
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Bayesian approach (in a nutshell)

1) In Bayesian statistics model parameters are considered as 

random variables

2) Parameter inference based on their distributions conditioned on 

the data called posterior distribution

3) Posterior distribution is a combination of data distribution and 

prior distribution

4) Posterior distributions are usually computed with Markov Chain 

Monte Carlo (MCMC) samplers

5) Subject to diagnostic criteria: convergence (good chain mixing) , 

effective sample size, autocorrelation

Typical MCMC samplers (Gibbs, Metropolis-Hastings) are 

implemented in computer software: WinBUGS, JAGS, Stan, SAS
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Models for Bayesian application

Considered on:

- Tumour level (alternative for tumgr)

- Treatment level (mixed-effect model)
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Bayesian model fit: Study # selected treatments

d

g

Full G-I model

Treatment g d ɸ T2R

Placebo 0.039 0.011 0.001 0

ADC_1 LowDose 0.032 0.047 0.881 30

ADC_1 HighDose 0.002 0.064 0.998 147
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Bayesian model fit: Study # selected treatments

G-I model

Treatment g d ɸ T2R

Placebo 0.039 0.000 - 0

ADC_1 LowDose 0.010 0.055 - 26

ADC_1 HighDose 0.000 0.064 - 99

d

g
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Bayesian model fit: Study # selected treatments

G-I model

Treatment g d ɸ T2R

Placebo 0.039 0.000 - 0

ADC_1 LowDose 0.010 0.055 - 26

ADC_1 HighDose 0.000 0.064 - 99

Full G-I model

Treatment g d ɸ T2R

Placebo 0.039 0.011 0.001 0

ADC_1 LowDose 0.032 0.047 0.881 30

ADC_1 HighDose 0.002 0.064 0.998 147

tumgr

Treatment g d ɸ T2R

Placebo 0.038 0.015 - -

ADC_1 LowDose 0.011 0.047 - -

ADC_1 HighDose 0.000 0.061 - -
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In-sample model fit
Study #: Tumour level    
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In-sample model fit
Study #: Tumour level    

- Bayesian solution improved Full G-I model fit

- Similar performance for Growth model

Full G-I model selected

Growth model selected



Example database: Antibody Drug Conjugates (ADC)
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Targeted cancer therapy: mAb – linker (conjugation side) – warhead

Source: www.spirogen.com

17 mAbs, 30 payloads, 8 conjugation sides: 4080 possible combinations (not all feasible)

Database: 38 in-vivo efficacy studies:

• 66 different ADCs administered at different dosing levels

• 147 different treatment lines (+38 controls)

• 2300+ individual efficacy (Tumor Volume) outcomes

• 28 cancer cell lines
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In-sample model fit
ADC database: Tumour level

(richer than G-I parametric form?)
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In-sample model fit
ADC database: tumgr vs. Bayesian Full G-I model (Tumour level)

Bayesian model (usually) improves the Growth model fit.

Frequentist growth rates in Full model are downsized.

Growth model 
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Model parameters (Bayesian)
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Model parameters (Bayesian)
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Cluster analysis on Bayesian model outcomes

Strongest responders:

- High trt sensitive cell fraction

- Extended time-to-regrowth

- Extended OS

- Small growth

Weakest responders:

- Short(est) time to regrowth

- Low trt sensitive cell fraction

Control-like treatments:

- Highly growing TV

- Short OS

- Mixed trt sensitive cell fraction

The same ADC over three 

different cell lines

Cluster re-growing after a short time 

with slightly lower than Control rate

Controls, 

Control Treatments
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Cluster analysis on Bayesian model outcomes Controls, 

Control Treatments

Strong growth with short 

overall survival

?? short but weaker regrowth

Highly responding: long time2regrowth, 

low growth

Highly responding: strong inhibition, 

small regrowth

Prolonged overall survival

Time to regrowth strong 

indicator of the cluster 

border
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Summary

1) Growth-Inhibition model applied in pre-clinical in-vivo efficacy analysis

2) Existing (frequentist) approach was presented, and extended to 

Bayesian framework

3) Bayesian framework: pooled analysis, successful progression to 

hierarchical model setup

4) Cluster analysis of the model outcomes for Antibody Drug Conjugates 

studies
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Appendix
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Full G-I model Bayesian application
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JAGS (4.2.0) Full G-I implementation (Treatment level)
modelJAGS.txt="

model{

## Likelihood:

for(i in 1:N){

## Constrain value to [0,1]

Phi[i] <- 1/(1+exp(-thetaNo[no[i],1]))

d[i] <- 1/(1+exp(-thetaNo[no[i],2]))

g[i] <- 1/(1+exp(-thetaNo[no[i],3]))

##------------------------

mu[i] <- Phi[i] * exp(-d[i] * t[i]) + (1- Phi[i]) * exp(g[i] * t[i])

y[i] ~ dnorm(mu[i], tauErr)

}

sigmaErr ~ dunif(0, 2)

tauErr <- pow(sigmaErr, -2)

## Priors on random effects

for(j in 1:nSubj){

thetaNo[j, 1:3] ~ dmnorm(theta, Tau.B)

## theta comes as prior knowledge about parameters:

}

## Priors on fixed effects:

for(k in 1:3){

# Exp[k] <- -log((1-fixed[k])/fixed[k]) ## staring values come from tumgr

Exp[k] <- -2.2 ## implies that solution will be 0.099 (~.1) for all the parameters

theta[k] ~ dnorm(Exp[k], .1) ## less than 0.1 increases autocorrelation

}

##-------------------------

Phi <- theta[1]

Inhibition <- theta[2]

Growth <- theta[3]

##-------------------------

Tau.B[1:3, 1:3]  <- inverse(Omega[,])

Omega[1,1] <- pow(tau11,-1/2)

Omega[2,2] <- pow(tau22,-1/2)

Omega[3,3] <- pow(tau33,-1/2)

Omega[1,2]  = Omega[1,3]  = Omega[2,1]  = Omega[2,3]  = Omega[3,1] = Omega[3,2] <- 0

tau11 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation

tau22 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation

tau33 ~ dgamma(1, .1) ## less than 0.1 increases autocorrelation

}

" 

theta.jags <- run.jags(model=modelJAGS.txt, 

monitor=c(‘Phi', 'Inhibition', 'Growth'), 

data=Data1, 

adapt=1e4,                       

burnin=1e4,

sample=1e4, 

thin=1e3, module=c("glm", "lecuyer"),

method="parallel")

Data1 <- list(N=nrow(Data0), 

nSubj=length(levels(Data0 $ No)), 

no=Data0 $ No, ## ID

t=Data0 $ Timepoint,  ## Original scale transformed baseline = 1st timepoint

y=Data0 $ Response, ## TV rate wrt baseline level

fixed=fixed ## starting points for fixed effects

)

## inhibition only:

## fixed comes from the tumgr fit, then it becomes transformed to the Full model prior
if(is.na(fixed $ Median_phi) & !is.na(fixed $ Median_d) & is.na(fixed $ Median_g)){

## only inhibition then phi gest elevated to 0.8

fixed $ Median_phi <- 0.8 ## large trt sensitive cell fraction

fixed $ Median_g <- 0.01 ## small growth

}

## inhibition and growth (no trt sensitive cells)

if(is.na(fixed $ Median_phi) & !is.na(fixed $ Median_d) & !is.na(fixed $ Median_g)){

## composite model then phi becomes 0.01

fixed $ Median_phi <- 0.01 ## medium trt sensitive cell fraction (next to observed inhibition)

}

## growth only

if(is.na(fixed $ Median_phi) & is.na(fixed $ Median_d) & !is.na(fixed $ Median_g)){

fixed $ Median_phi <- 0.01 ## negligible trt sensitive cell fraction

fixed $ Median_d <- 0.01 ## negligible inhibition

}
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MCMC diagnostics
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Typical chain shapes

thin = 1e1 thin = 1e3

Chain convergence / mixing:

- Visual analysis

- Effective sample size

- Geweke statistics

Autocorrelation was a problem:

- High thinning (1e3)

- Migrate to Stan (HMC, NUTS)



Confidentiality Notice 

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove 

it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the 

contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, 

Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com
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