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The Book of Life 

• A copy of all the DNA instructions used to make 
an organism. 

 

• We have 2 copies of our genome packaged in   
23 pairs of chromosomes, in the nucleus of each 
cell. 

 

• DNA is made of combinations of four letters or 
nucleotide bases, which comprise the genetic 
“alphabet”. 

 

• The order or sequence in which the A, C, T and G 
bases lie determines the meaning of the 
information encoded in DNA. 

 

• Approximately, 3 billion letters of DNA make up 
the human genome. 



Changes in our DNA 

• There are always two copies of each gene, one from each parent.  
• A gene locus can have different versions called alleles.  
• The combination of alleles inherited from the parents is what gives rise to genotypes. 
• Genotypes GG, Gg, gg at a locus in a population can be represented by 0,1,2 depending on 

the number of copies of allele g. 
• The difference in a single nucleotide within and between populations is called Single 

Nucleotide Polymorphism (SNP). 
• The lowest allele frequency at a locus in a population is called Minor Allele Frequency (MAF). 
• Some combinations of alleles in a population are seen more often than expected by chance. 

Linkage Disequilibrium (LD) is the non-random association of alleles at two or more loci. 
 



Association between a genetic variant and disease 

DD: variant homozygote 

Dd: heterozygote 

dd: common homozygote 

 



What is a GWAS? 

Genome-Wide Association Study – study scanning markers across genome 
(≈0.5M-2.5M) of many people (>2K) to find genetic variations associated with a 
particular disease or phenotype 

 
 Tools 
• Population-based studies (not family-based) 

– thousands of human subjects 

• Detailed, annotated genome maps 

– Human genome project 

• Encyclopedia of human genetic variation 

– HapMap, 1000 Genomes Project 

• High-throughout genotyping platforms 

 



GWAS Principles 

Case-control pairs or population cohorts 

Type for 500K-2.5M SNPs 

Obtain information about strength of association genome-wide  
(within limits of sample size, allele frequency, LD etc.) 

 

 

Prioritise signals and seek replication 

Data Quality Control 

Establish association at the genome-wide significance level  

(p-value < 5x10-8) 

After imputation 

up to 40M SNPs 



Marchini and Howie, Nat. Genet. Rev., 2010 

Genotype uncertainty 

Genotype imputation  

The process of predicting genotypes that are not directly genotyped in a dataset 
• Allows you to directly test association at variants not genotyped or failed QC 
• Facilitates the combination of results (meta-analysis) across cohorts that have used different chips 



Atlas of complex disease 

Manolio et al., Nature, 2009 



Sample size matters 

  N cases and controls (1:1) 

MAF OR=2 OR=1.4 OR=1.2 

0.40 680 2,000 10,000 

0.05 2,500 13,000 46,000 

0.01 11,000 50,000 220,000 

80% power to detect an effect at p=5x10-8 



Principles of meta-analysis 

• Synthesis of different datasets to obtain a summary based on evidence 

from the combined data 

 
 Increases power by increasing sample size  
 

Facilitated by imputation, which enables the combination of data across 
different genotyping platforms 
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Sample size vs inverse variance based meta-analysis 

 

 Fixed versus random effects meta-analysis  

 Must have independent set of effect sizes                 

 Larger studies should carry more weight                

 Weight each effect size by the inverse variance             



NHGRI GWA Catalog 

www.genome.gov/GWAStudies 

www.ebi.ac.uk/fgpt/gwas/  

Published Genome-Wide Associations through 12/2013 

Published GWA at p≤5X10-8 for 17 trait categories 



Missing heritability in complex traits 

• Interactions 

• Structural variation 

• Epigenetics and environment 

• Thousands of very small effects 

• Large phenotype-genotype heterogeneity 

• Low frequency (0.01<MAF<0.05) and rare 
variants (MAF<0.01) 

Evidence already exists that rare variants associate with disease 

Role of rare variants in complex disease is poorly characterized 

Chip-based GWAS do not access low frequencies well 

Rare variants do not impute well 



 
Next generation Whole Genome Sequencing (WGS)  

 Generates millions of short reads inexpensively, but with relatively high 

error rates 

 

 Relies on redundant sequencing of each base to distinguish sequencing 

errors from true genetic variants 

 

 To achieve high accuracy at rarer sites requires high average depth 
 

 WGS a large number of samples with low depth more powerful than a 

small number of samples with high depth 



UK10K: 10,000 UK Genomes 

10.4M GBP strategic award grant by the Wellcome Trust in 2010 
164 researchers from 51 institutions 
10 times deeper information than 1000 Genomes Project 
Find almost all variants with MAF > 0.1% 
4,000 cohort samples WGS at ~6x depth 

2,000 ALSPAC (The Avon Longitudinal  
Study of Parents and Children, Bristol 
University) 
 Children/adolescents (18 yrs.) 
 Males and females 
 Geographically restricted (Avon health 

district, around Bristol) 

 

2,000 TwinsUK (Identical and non-
identical Twins, Department of 
Twin Research, Kings College 
London) 
 Adults (median age 46 yrs.) 
 All females 
 UK-wide origin 
 One twin per pair 

 

• Deep genetic and phenotype coverage 
(clinical, questionnaire, molecular) 

• 50 core phenotypes 



Production pipeline 



The UK10K imputation panel 

Huang, J. et al. Nat Commun 2015 

 The UK10K panel was combined with the 

1000GP panel to produce the 

UK10K+1000GP panel. 

 

 Imputation accuracy improvement at rare 

and low-frequency variants.  

 

 UK10K+1000GP yielded a larger number  

of high confidence imputed variants. 

 



BMI 
Weight 
Height 

WHR BMI-adjusted 
Waist BMI-adjusted 
Hip BMI-adjusted 

WHR 
Waist 

Hip  

Total Fat Mass 
Total Lean Mass 
Trunk Fat Mass  

Focus on body shape and composition 



ALPSAC and 
TwinsUK WGS 

(n≤3,559) 

20 GWAS 
imputed on 

UK10K+1000G 
(n≤52,339) 

Finrisk WGS 
(n≤1,254) 

Meta-analysis WGS+GWAS 
(n≤57,129) 

 
11.7M variants MAF≥0.05  

15.5M variants MAF [0.001-0.05) 

Signals de novo genotyped in 
Fenland (n≤9,106) & Copenhagen (n≤28,745) 

 
And in silico replicated in   

GenerationR (n≤2,015), GoT2D (n≤32,022),  
Sardinia  (n≤6,483) & UKBiobank (n≤134,798) 

Discovery 

Replication 

Study design for single marker tests 





Enrichment in discovery meta-analysis 

And after excluding previously  

known loci (±500 kb) 
Using independent variants 

(r2<0.2) with MAF ≥ 0.1% 



 rs61734601 (stage 1 and 2 EAF 8.2%, beta=-0.113, P=1.38x10-101) falls in a gene dense region. 

 

 It is located in the intron of PPP1CA and a non-coding exon of CARNS1, but is reported as significantly 

associated with expression of RAD9A, a DNA repair gene 20kb downstream, in several different tissues. 

 

 DNA repair genes have previously been linked to growth disorders.  

 

 rs61734601 is in high LD (r2=0.82) with rs553917782, a 6-nucleotide insertion 10bp upstream of RAD9A. 

 

 The 8 following nucleotides are conserved and occur near the centre of a DNase hypersensitivity peak 

that coincides with nucleosome depletion in multiple tissues, indicating likely transcription factor binding. 

Novel height locus on chr11 



Rare variant methodology 

Single-point analysis of rare variants is under-powered. 

An alternative is to use methods that combine information across multiple 

variant sites within a region. 



Collapsing approach 

Morris & Zeggini, Genet Epidemiol. 2010 



Sequence Kernel Association Test (SKAT) 

Wu et al, AJHG 2011 



Choice of weights 



Optimal unified approach (SKAT-O) 

Lee et al, AJHG 2012 

 The unified test reduces to SKAT when ρ = 0 and to the burden test when ρ = 1. 

 Use an adaptive procedure SKAT-O to find an optimal ρ to maximize power. 

 

 

 

 For large samples and for given ρ, each test statistic can be decomposed 

into a mixture of two random variables, one asymptotically follows a chi-square 

distribution with one DF, and the other can be asymptotically approximated to a 

mixture of chi-square distributions. 



Rare Variant Meta-Analysis tests (metaSKAT-O) 
Lee et al, AJHG 2013 

 Uses summary statistics. 

 Same power as joint analysis. 

 Corresponds to a fixed and random effects meta-analysis model. 



ALPSAC and 
TwinsUK WGS 

(n≤3,559) 
SKAT , SKAT-O 

Naïve 
Coding, splice site and UTR 

26,226 genes (50,717 windows) 
median 38 variants per window 

Genome-wide tests 
1.96M sliding windows 

MAF<1% 
metaSKAT, metaSKAT-O 

 
Exome-wide tests 

MAF<1% 
metaSKAT, metaSKAT-O 

 

Functional 
Loss of function and missense 

14,909 genes 
median 13 variants per gene 

Loss of Function 
Stop gained, splice-disrupting 

and frameshift 
3,208 genes  

median 2 variants per gene 

Study design for rare variants tests 



Genome-wide significance thresholds 

Estimate the effective number of independent tests 

 Based on correlations between all tests (Li et al. Hum Genet  2012) 

 

 

 Using simulation to describe the behaviour of the minimal p-value across 

Regions under the null 

Xu et al. Genetic Epidemiology 2014 

Problem 

 The AF spectrum of low frequency variants is very different from common ones 

 Rare variation is usually jointly analysed in a series of genomic windows or 

regions 

Significance thresholds 

Between 2.5×10−8 and 8×10−8 for window-based testing. 

Between 0.6×10−8 and 1.5×10−8 for a combined strategy of single-SNP tests and 

rare variant testing using a sliding-window test strategy. 



Power to detect association in discovery 



UK10K anthropometry effort 

 Largest-scale association testing of low frequency variants with anthropometric traits to 

date. 

 

 Newly identified  associations at variants at the lower end of the frequency spectrum, not 

captured by the HapMap reference panel.  

 Demonstrates the power of imputation based on WGS haplotype sets.  

 

 Discovery of 2 novel coding variants robustly associated with height in genes implicated in 

syndromic disorders (SERPIN1A and ADAMTS10), demonstrate genetic overlap between 

monogenic and polygenic anthropometric traits.  

 

 Even though well-powered to detect them, we find no evidence of low frequency variants 

with strong effect sizes for anthropometric traits.  

 

 Increasing sample size and sequencing depth, and building large reference panels to 

facilitate accurate imputation of SNVs is likely to identify further potentially functional low 

frequency and rare variants underpinning the genetic architecture of medically-relevant 

human complex traits. 



Population isolates 

 

• Some rare variation is lost due to bottleneck effects , but others may 
have increased in frequency  

 

 

• Linkage disequilibrium tends to be extended 

 

 

• Homogeneous environment  

 

 

• Deep information on genealogy 

 

 

 

bottleneck 
event 

Time  

The study of rare variants can be empowered by focusing on 
isolated populations. 
 



HELIC: Hellenic isolated cohorts 
 

 
• HELIC-MANOLIS (Minoan Isolates) 
• Mylopotamos villages, Crete, Greece 
• Geographically isolated 
• N~4,500 of which 1,600 collected 
 

• Deeply phenotyped 
• High fat content diet 
• High rates of longevity 
• Low rates of metabolic disease complications 
• Ability to recontact individuals 

www.helic.org  



HELIC: Hellenic isolated cohorts 
 

 
• HELIC-Pomak 
• Pomak villages, Xanthi, Greece 
• Geographically isolated 
• Religiously isolated 
• N~11,000 of which 2,000 collected 
 

• Deeply phenotyped 
• High levels of metabolic disease 
• Ability to recontact individuals 

www.helic.org  



HELIC overview 

• ~3,500 samples with genome-wide association scan and exome chip data 

• ~250 MANOLIS samples with whole genome sequencing at 4x 

• ~2,500 samples with whole genome sequencing at 1x 

 

Panoutsopoulou et al., Nature communications 2014 

	



• Mylopotamos villages (n=1256, MAF 2%, p=10-11) 
 

• Meta-analysis across Mylopotamos villages and the Amish: p=10-31, total n=2700 
 

• Detection of this effect would have required 67,000 Europeans (MAF 0.05%) 
 

• Exemplifies the value of population isolates and generalizability of findings 

R19X APOC3 cardio-protective variant 
association with lipid levels - 

exome chip data 

 

Tachmazidou et al, Nature Communications, 2013; Pollin et al, Science, 2008 



R19X variant in APOC3 - imputed genome-wide data 
Gilly et al Human Molecular Genetics 2016 



R19X variant in APOC3 - 1x WGS data 
Gilly et al Human Molecular Genetics 2016 



Exonic plus splice variants 
Not found using a hybrid GWAS + imputation 

approach 

 

P=4.3x10-18,, p-value excluding R19X is 

4.3x10-10  

 

R19X variant in APOC3 - 1x WGS data 
Gilly et al Human Molecular Genetics 2016 



 

 

 

 

Network of isolated population cohorts 

 
 
 
Greece (Pomak and Mylopotamos villages),  
 
Finland (general Finnish population cohorts 
and Northern Finland sub-isolates),  
 
Italy (Carlantino, Val Borbera and Friuli 
Venezia Giulia villages, Sardinia),  
 
UK (Orkney islands),  
 
USA (Amish, Ashkenazi Jewish),  
 
Greenland 
 

Emerging international WGS 
isolates consortium 
currently amassing in excess 
of 30,000 samples 
 

Over 15 well-phenotyped cohorts, including founder 
populations in:  
 



The African Genome Variation Project 

• A framework to help build genomic expertise and resources in Africa, and to 
drive forward genomic research 
 

• 1,481 individuals across 18 ethnolinguistic groups with 2.5M genotype data 
 

• 320 individuals (Ethiopia, South Africa, Uganda) with 4x WGS 
 

Gurdasani D  et al. Nature 2015 

West: 
The Gambia: Jola, Fula, Mandinka, Wolof 
West-Central: 
Nigeria: Yoruba, Igbo 
Ghana: Ga-Adangbe 
South: 
South Africa: Zulu, Sotho 
East: 
Kenya:  Luhya, Kalenjin, Kikuyu 
Uganda: Baganda, Barundi, Banyarwanda  
Ethiopia: Amhara, Oromo, Somali 



Challenge 
Pronounced genetic diversity across ethnic groups 



Tishkoff & Williams 

Ancestral African 
populations have 
maintained a large and 
subdivided population 
structure. 
Disadvantage: need 
denser arrays 
Advantage: fine mapping 

Challenge 
Low levels of correlation between genetic variants 



How genetically diverse are African populations? 

PC1 (21%) 

PC2 

(7.6%) 



Utility of existing reference panels for imputation in SSA 



Implications for genetic association studies 
Not so good news: 

 Large numbers of monomorphic and rare/low frequency variants on the 
genotyping array  

 For GWAS, 1.1-1.36M sites instead of 2.5M 

 High levels of redundancy  

 16-35% of variants have perfect proxies  

 Low proportion of common variation captured 

 ~60-70% of common variation captured with r2=0.8 

 

Good news: 

 Array serves as a good scaffold for imputing common variants in African 
populations using existing  imputation panels 

 
 

Admixture, population substructure, pronounced allelic diversity, low levels of 
LD, greater haplotype diversity have implications for the design of large-scale 
genomic studies within and among SSA populations  



African Genome Variation Project 

 Provides basic framework for genetic studies in Africa 
 

 Underpins the design of next-generation experiments 
 

Helps identify analytical challenges and develop statistical 
genetics methods to address them 
 

Generates a valuable resource for the scientific community 
 

Promotes collaboration and synergies among contributing 
parties 
 

Committed to building partnerships and research 
programmes that enable researchers in developing countries 
to share in the benefits of genomic research 



Large-scale GWAS in an Ugandan cohort (2015-today) 

• ~7000 individuals from the General Population Cohort  

• (Asiki et al, IJE, 2013) 

– 2000 with whole genome sequence 4x 

– 4778 with Omni 2.5M genotypes 

– 50 phenotypic traits: hematological, anthropometric, blood 
pressure, metabolic, liver function and infectious disease traits 



Schematic of Uganda GWAS discovery and replication 



Trans-ethnic meta-analysis 
MANTRA, Andrew Morris Genetic Epidemiology 2011 

 Allows populations from the same ethnic group to be more homogeneous 
than those that are more distantly related. 
 

 Bayesian partition model that clusters populations according to their 
similarity in terms of relatedness (shared ancestry). 
 

 Bayes factor in evidence of association, posterior probability of allelic effect, 
posterior probability of heterogeneity via MCMC. 
 

 Hybrid meta-analysis, incorporating both fixed (within cluster) and random 
(between clusters) effects. Bayesian implementation of fixed-effects and 
random-effects meta-analysis. 
 

 Improves power and resolution of fine-mapping, when heterogeneity in 
allelic effects is well represented by the prior Bayesian partition model. 



GWAS is a powerful tool 
• Successful study design for identifying robust genetic associations with 

common disease 

• Careful collection and quality-checking is essential to avoid errors 
– Phenotype misclassification  

– Population stratification 

– Traditional confounders 

 

• Genetic effects of common variants are mostly moderate/small and require 
very large sample sizes to identify with certainty 

– Meta-analysis of GWAS improves the power of detecting and validating such associations 
 

• GWAS only identifies regions of association 
– Causal variants identified by fine-mapping and targeted resequencing experiments 

 

• Discovery of a genetic locus has important implications on its own 
– May highlight biological pathways and thus give insights into developing new therapeutics 

 

• Population isolates can empower locus discovery 

 

• Both discovery and fine mapping can be empowered by studying 
heterogeneous populations 
 



Future perspective 

• Imputation based on the Haplotype Reference Consortium 
– A European haplotype map of over 50,000 haplotypes by combining together many 

low-coverage sequencing studies (1x-12x) 

– Next-generation resource for rare variant imputation into GWAS 

– Provides substantial increase over 1000 Genomes Phase 3 imputation 

 
• Whole-genome sequencing-based meta-analysis consortia 

– Burden tests and meta-analysis of burden tests 
– How to best define regions 

 
• The 100,000 Genomes Project 

– Genomics England, established in 2013, a company owned by the UK Department of 
Health 

– Linking to e-health records, sample size + interesting statistics 
– Marks the beginnings of a UK genomics industry and the start of a personalised 

medical service 
 

• GWAS of non-European descent 
– The African Genome Variation Project 
– Large-scale GWAS in a Ugandan cohort 
– Trans-ethnic fine mapping 
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