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The Book of Life

A copy of all the DNA instructions used to make
an organism.

We have 2 copies of our genome packaged in
23 pairs of chromosomes, in the nucleus of each
cell.

DNA is made of combinations of four letters or
nucleotide bases, which comprise the genetic
“alphabet”.

The order or sequence in which the A, C, Tand G
bases lie determines the meaning of the
information encoded in DNA.
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Approximately, 3 billion letters of DNA make up
the human genome.




Changes in our DNA

There are always two copies of each gene, one from each parent.

A gene locus can have different versions called alleles.

The combination of alleles inherited from the parents is what gives rise to genotypes.
Genotypes GG, Gg, gg at a locus in a population can be represented by 0,1,2 depending on
the number of copies of allele g.

The difference in a single nucleotide within and between populations is called Single
Nucleotide Polymorphism (SNP).

The lowest allele frequency at a locus in a population is called Minor Allele Frequency (MAF).
Some combinations of alleles in a population are seen more often than expected by chance.
Linkage Disequilibrium (LD) is the non-random association of alleles at two or more loci.
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Association between a genetic variant and disease

Cases DD: variant homozygote
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The odds ratio is the ratio of the odds of an event occurring in one group to the odds of it
occurring in another group. Therefore the odds ratio for genotype DD relative to dd is:

odds of an individual with genotype DD carrying the disease
odds of an individual with genotype dd carrying the disease

OR(DD : dd) =

or else:

n n n n, n n Noa/N
OR(DD : dd) = ¢ppyeg — 2AL A+ Nev) 0a/(Moa + Nou) _ N2a/Neu
Mou/(N2a + N2u)’ Nou/(Noa + Nou) — Noa/Nou

Affected individual is ¢pp)qq¢ times more likely to have marker genotype DD than dd.

Under the null hypothesis of no disease-marker association, the rows and
columns of the contingency table are independent:
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What is a GWAS?

Genome-Wide Association Study — study scanning markers across genome
(=0.5M-2.5M) of many people (>2K) to find genetic variations associated with a

particular disease or phenotype

» Tools
* Population-based studies (not family-based)
— thousands of human subjects
* Detailed, annotated genome maps
— Human genome project
* Encyclopedia of human genetic variation Platforms

— HapMap, 1000 Genomes Project Affymetrix 500k
Affymetrix 6.0

* High-throughout genotyping platforms llumina 370k
lllumina 550k
lllumina 610k
lllumina 1M
lllumina 2.5M




GWAS Principles

Case-control pairs or population cohorts

-

Type for 500K-2.5M SNPs After imputation
up to 40M SNPs

-

Data Quality Control

-

Obtain information about strength of association genome-wide
(within limits of sample size, allele frequency, LD etc.)

-

Prioritise signals and seek replication

-

Establish association at the genome-wide significance level
(p-value < 5x10-8)



Genotype imputation

The process of predicting genotypes that are not directly genotyped in a dataset
* Allows you to directly test association at variants not genotyped or failed QC
* Facilitates the combination of results (meta-analysis) across cohorts that have used different chips

»
Box 1| How genotype imputation works

b Testing association at typed SNPs may not

lead to a clear signal

log,, p-value

d Reference set of haplotypes, for example, HapMap

(11111110010031110

1111101001 000101

0010111001111110

tms( &ww-nw-mm»wb@rown-l
(1111101001000101)

o Fon e e B 2 BT + W BT W ) T e BT T T e Rees

oy 40 iy s Vol e A s N ey s b Yo i Wik e g

a Genotype data with missing data at
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haplotype reference panel
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f Testing association at imputed SNPs may
beoost the signal

Genotype uncertainty
e The reference haplotypes are used to

impute alleles into the samples to create

imputed genotypes (orange) Genotype 0 1 2

Probability | 0.01 | 0.18 | 0.81
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Marchini and Howie, Nat. Genet. Rev., 2010




Atlas of complex disease

Effect size [\
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Rare variants of
small effect
very hard to identify
by genetic means

Allele frequency

Manolio et al., Nature, 2009



Sample size matters

N cases and controls (1:1)

MAF| OR=2 OR=1.4 | OR=1.2

0.40 680 2,000 10,000

0.05| 2,500 13,000 | 46,000

0.01| 11,000 50,000 | 220,000

80% power to detect an effect at p=5x10-8



Principles of meta-analysis

Synthesis of different datasets to obtain a summary based on evidence
from the combined data

Increases power by increasing sample size

Facilitated by imputation, which enables the combination of data across
different genotyping platforms

ENGAGE

European Network of Genomic and Genetic Epidemiology

. ”mcj n. DlAbetes Genetics U K RAG
Replication And Meta-analysis

. UKRhemtdAtht Genetics Con
DIAGRAM consortium



Sample size vs inverse variance based meta-analysis

Sample size based

Inverse variance based

Inputs

Intermediate
Statistics

Overall Z-Score

Overall P-value

N; - sample size for study ¢

P; — P-value for study ¢
- direction of effect for

Bi- effect size estimate
for study ¢
se;j - standard error for

study study i
Zi= I(P /2) * sign(A;) Wi = |/'SEI.3
J
Wi =,V/}V,- se= .'I,/ZW;'
V
B=Y Biwi/ X wi
S i i
Z — ‘_‘—"J[’_h: Z e ﬁ/"'SE
\zav‘;
P=20(]-Z|)

= Fixed versus random effects meta-analysis

= Must have independent set of effect sizes

= Larger studies should carry more weight

= Weight each effect size by the inverse variance



Published Genome-Wide Associations through 12/2013
Published GWA at p<5X10-8 for 17 trait categories
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. Digestive system disease
@ Cardiovascular disease
() Metabolic disease
() Immune system disease
O Nervous system disease
@ Liver enzyme measurement
Y () Lipid or lipoprotein measurement
() Inflammatory marker measurement
() Hematological measurement
() Body measurement
() Cardiovascular measurement
@ Other measurement

(O) Response to drug

@ FHE IEIE | DO |

NHGRI GWA Catalog

() Biological process
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Missing heritability in complex traits

Interactions

Structural variation

Epigenetics and environment

Thousands of very small effects

Large phenotype-genotype heterogeneity
Low frequency (0.01<MAF<0.05) and rare
variants (MAF<0.01)

Evidence already exists that rare variants associate with disease
Role of rare variants in complex disease is poorly characterized
Chip-based GWAS do not access low frequencies well

Rare variants do not impute well



Next generation Whole Genome Sequencing (WGS)

(N

"GeneChip

= Generates millions of short reads inexpensively, but with relatively high
error rates

= Relies on redundant sequencing of each base to distinguish sequencing
errors from true genetic variants

= To achieve high accuracy at rarer sites requires high average depth

= WGS a large number of samples with low depth more powerful than a
small number of samples with high depth



UK10K: 10,000 UK Genomes

10.4M GBP strategic award grant by the Wellcome Trust in 2010 o 10 K
164 researchers from 51 institutions

10 times deeper information than 1000 Genomes Project

Find almost all variants with MAF > 0.1%

4,000 cohort samples WGS at ~6x depth

/ \

2,000 ALSPAC (The Avon Longitudinal 2,000 TwinsUK (ldentical and non-
Study of Parents and Children, Bristol identical Twins, Department of
University) Twin Research, Kings College
» Children/adolescents (18 yrs.) London)
» Males and females » Adults (median age 46 yrs.)
> Geographically restricted (Avon health > All females

district, around Bristol) » UK-wide origin

» One twin per pair

 Deep genetic and phenotype coverage
(clinical, questionnaire, molecular)
* 50 core phenotypes



Production pipeline

1. WGS Production 2. QC and Refinement 3. Imputation Panel
WGS INDEL pre-filtering Rephasing
Illumina Hi-Seq (~6X) > Filtering out effect of SHAPEIT v2.
(WGSI N=?, BGI N=?) spikes (‘bubbles’) 3MB chunk, 250kb buffer
—"'1--~
{ N=3910 )
\~~_ —"I
v \ 4 v
Alignment Site filterin Creating UK10K Ref Panel
aligned to GRCh37 INDEL pre-filtering, Join chunks
done at WTSI and BGlI Compare to GWAS data Convert to VCF format
(’ N=3,798 \) (, N=3,781 :)
v b i ey h 4
BAM Improvement Genotype Refinement Merging with 1000GP
Realignment, base quality refined by BEAGLE v4 Removing inconsistent
score recalibration sites; impute to each other
A 4 \ 4
Variant Calling Sample QC

SNP and INDEL by
Samtools; VCF created

remove samples due to
high NRD, sex check




Mean r*

0.8

0.6

0.4

0.2

The UK10K imputation panel

Table 1 | Descriptives for the UK10K and 1000GP reference panels used for imputation.

UK1I0K 1000GP(Phase 1v3) Combined Overlap

N samples (% European) 3,781 (100%) 1,092 (34.7%) 4873 —

N total sites in final release 45,492,035 39,527,072 —

N total sites after filtering' 26,032,603 32449428 42,359,694 16,122,337
Autosome SNPs 23,411,635 29,797,220 38,238,102 14970,753
Autosome INDELs 1,698,262 1,370,819 2,407,858 661,223
Chr X SNPs 858,380 1,223,328 1,612,230 469478
Chr X INDELs 64,326 58,061 101,504 20,883

“For UKOK, the following sites were excluded: 18 380 633 singlstons that do not ex st in WOOGPE, 1,064,168 multi-allelic sites and 234 631 me-matched alleles sites. For WOOGP, the folkwing sites were
excluded. 7,053,246 singletons that do not exist in UKIOK, 23932 sites with a SNP and an INDEL at the same position and 443 within large structural deletions. The bold indicates that these four

categories of variants are subsets of the N total sites after filtering.

—— UK10K+1000GP
—— UK10K rephased
- =« UK10K original

— 1000GP

Study population: UK

T T T T T T T T
0.1 02 0.5 1 2 5 10 20

Minor allele frequency (%)

T
50

» The UK10K panel was combined with the

1000GP panel to produce the
UK10K+1000GP panel.

> Imputation accuracy improvement at rare

and low-frequency variants.

» UK10K+1000GP yielded a larger number

of high confidence imputed variants.

Huang, J. et al. Nat Commun 2015



Focus on body shape and composition

/WHR BMI—adjusted\

BMI Total Eat M Waist BMI-adjusted
' o ot s Hip BMI-adjusted
Weight Total Lean Mass

Trunk Fat M WHR
runk ra ass Waist

\ Hip /




Study design for single marker tests

4 Y ( 20e6was ) [
ALPSAC and ) ..
TwinsUK WGS imputed on Finrisk WGS
UK10K+1000G (n<1,254)
(n<3,559) (n<52,339)

\_ _J \_ - J \_
é———= Discovery
\ 4

4 )

Meta-analysis WGS+GWAS
(n<57,129)

11.7M variants MAF=0.05
15.5M variants MAF [0.001-0.05
\ [ )/

——— Replication
\ 4

4 Signals de novo genotyped in N\
Fenland (n<9,106) & Copenhagen (n<28,745)

And in silico replicated in
GenerationR (n<2,015), GoT2D (n<32,022),
\_ Sardinia (n<6,483) & UKBiobank (n<134,798) /
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Number of variants

600

BMI
Weight

Enrichment in discovery meta-analysis

Using independent variants
(r2<0.2) with MAF = 0.1%

Height

TFM

TLM
TRFM

—
2
©
=

Hip
WHR

WaistBMladj

B Observed
0 Expected

— 100

T
®
o

- 60

— 40

— 20

HipBMIadj
WHRBM adj

-log10(binomial P value)

200

—_

w

(=]
|

100 —

Number of variants

w
[=]
|

0_

And after excluding previously

known loci (500 kb)

BMI
Weight

u

Height

TFM

TLM
TRFM

Waist

Hip

B Observed
O Expected

[l

WaistBMladj
HipBMladj
WHRBMIadj

— 80

— 60

— 40

— 20

I
=

-log10(binomial P value)



Novel height locus on chrll
rs61734601 (stage 1 and 2 EAF 8.2%, beta=-0.113, P=1.38x10-19) falls in a gene dense region.

It is located in the intron of PPP1CA and a non-coding exon of CARNSL, but is reported as significantly
associated with expression of RAD9A, a DNA repair gene 20kb downstream, in several different tissues.

DNA repair genes have previously been linked to growth disorders.
rs61734601 is in high LD (r?=0.82) with rs553917782, a 6-nucleotide insertion 10bp upstream of RAD9A.

The 8 following nucleotides are conserved and occur near the centre of a DNase hypersensitivity peak
that coincides with nucleosome depletion in multiple tissues, indicating likely transcription factor binding.

120

100

80

60

—logqo(p-value)

40

20

rs61734601
Discovery + replication

chr11:67184725
ce ®e

0.8
0.6
0.4
0.2

T T
Height Serum_metabolite_levels
<-PC SYT12—> KDM2A— SSH3— <PPP1ICA <CABP2 < NUDT8 < FAM86C2P
f— H—HEHH - | oo | ] 1 .
RNU7-23P— < AP001885.1 < POLD4 CABP4— GSTP1—> RP11-655M14.14—>
{ 1 H - 1 ] I
<TMIR3163 ADR&KT* RAD.QA—> Alﬁ—l- <—Cllron‘72 RP11-1 ):9D9.4—>
Cc1 1o.rf869 ANKHP. 13D— CA HﬁS)‘ - NDUII-' Vi— HNU6—46{»
RHOD— <~ CLCF1 < PITPNM1 < DOC2GP
HH - - | ]
TBC1QTOC—> <—TEX10
I 1 1 l T
66.8 67 67.2 67.4 67.6

Paosition on chr11 (Mb)



Rare variant methodology

Single-point analysis of rare variants is under-powered.
An alternative is to use methods that combine information across multiple

variant sites within a region.

Reference

Method

Morgenthaler and Thilly, Mut Res 2007
Li and Leal, AJHG 2008

Madsen and Browning, PLoS Gen 2009

Morris and Zeggini, Gen Epi 2009
Mukhopadhyay et al, Gen Epi 2010
Han and Pan, Human Heredity 2010
Hoffman et al, PLoS ONE 2010
Lawrence et al, BMC Bioinform 2010
Price et al, AJHG 2010

Zawistowski et al, AJHG 2010
Bhatia et al, PLoS Comput Biol 2010
King et al, PLoS Gen 2010

Liu et al, PLoS Gen 2010

Li et al, AJHG 2010

Garner, Gen Epi 2010

Zhou et al, Pac Symp Biocomput 2011
Neale et al, PLoS Gen 2011

Wu et al, AJHG 2011

lonita-Laza et al, PLoS Gen 2011

Lin and Tang, AJHG 2011

Asimit et al, Human Heredity 2012
Asimit et al, Human Heredity 2012

Cohort allelic sums test

Unweighted collapsing: presence/ab{sence of rare ve
Weighted sum test

Unweighted collapsing: proportion of rare variants
Unweighted kernel-based association test

Data adaptive sum test

Step-up collapsing

Unweighted collapsing: presence/absence of rare vz
Variable threshold collapsing

Collapsing: cumulative minor allele counts

Subset Selection

Linear mixed model for pooled association testing
Kernel-based adaptive cluster

Weighted Haplotype and Imputation-Based Tests
Hidden Markov model

Ridge regression

C-alpha

Sequencing kernel association test

Weighted collapsing test

Weighted collapsing counts in a regressioq framewo
Weighted collapsing: proportion cANG
Weighted kernel-based test Sanger

institute




Collapsing approach

Morris & Zeggini, Genet Epidemiol. 2010
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Sequence Kernel Association Test (SKAT)

Wu et al, AJHG 2011

@ A multiple regression model allows for each variant to have its own
direction and magnitude of effect or no effect

Vi = a0+ aXj+ BG; + €.

where X; = (Xi1. ..., Xim) and G; = (G, .... Gjp) denote covariates and
genotypes respectively for subject / across p SNPs and m covariates, and
a = (a1,...,am) and 8 = (51, ..., Bp) denote their regression coefficients

@ Assume [3; ~ Distribution(0, w;)
@ Hy: B=0= Hp: 7= 0= Variance-component score statistic Q

@ Q only requires fitting the null model

@ Qis basedon the weighted linear kernel function K-, -), where
K(G;, Gi/) = j ; wi Gjj G,, measures the genetic similarity
between subjects fand /’

e Fastas Q = Z 4w S7, where S; is the score statistic tar
testing the marglnal effect of markerj



Choice of weights

@ To allow rare variants to have larger effects than common
variants use \/Ej = Beta(MAF;; aq,a2) With 0 < a4 < 1 and
ao > 1

@ Use a1 = 1 and a» = 25 to increase the weight of rare variants
and put decent nonzero weights for variants with MAF 1%-5%

@ All variants are weighted equally (wj =1) if a1 = ap =1

@ To put almost zero weight for MAF> 1% use

@ When all w; = 1, case/control outcome and no covariates,
SKAT is equivalent to C-alpha (Neale et al, PLoS Genet 2011)

@ Weights estimated from PolyPhen scores or other
bioinformatics tools possible a s'amg er



Optimal unified approach (SKAT-O)

Lee et al, AJHG 2012

. N . iy X 2 my 2
(2}\ p) = | 1 p“)(lkbk.\'l P (\},k.Burdcn o Qrskar = Z “";:;‘5;1‘- Qx Burden = (Z WUSU') ‘
j=1 j=1

» The unified test reduces to SKAT when p = 0 and to the burden test when p = 1.
» Use an adaptive procedure SKAT-O to find an optimal p to maximize power.

Qoptimal = W Pp,  0=p; <py<...<pp=1,

&N p <~

» For large samples and for given p, each test statistic can be decomposed
into a mixture of two random variables, one asymptotically follows a chi-square
distribution with one DF, and the other can be asymptotically approximated to a
mixture of chi-square distributions.



Rare Variant Meta-Analysis tests (metaSKAT-0O)

Lee et al, AJHG 2013

» Uses summary statistics.
» Same power as joint analysis.
» Corresponds to a fixed and random effects meta-analysis model.

th,vm-mcu ( p) = (] == I'-) )thm-m:;‘.SK:\'l' + mecu Burden *
where
m [ K \2

/ m K
4 ——— —Z ZQ | O on Biien = ZZ‘O&;S&; l
1 k=] )

j=1 \ k=1 \j




Study design for rare variants tests

\_

ALPSAC and A

TwinsUK WGS
(n<3,559)
SKAT , SKAT-O

J

l

l

l

\_

Genome-wide tests
1.96M sliding windows
MAF<1%
metaSKAT, metaSKAT-O

N\

'\

Exome-wide tests
MAF<1%
metaSKAT, metaSKAT-O

l

l

a ) )
Naive
Coding, splice site and UTR
26,226 genes (50,717 windows)

median 38 variants per window

l

Functional

Loss of function and missense
14,909 genes

median 13 variants per gene

l

Loss of Function )
Stop gained, splice-disrupting
and frameshift
3,208 genes

\_ median 2 variants per gene /




Genome-wide significance thresholds
Xu et al. Genetic Epidemiology 2014

Problem

» The AF spectrum of low frequency variants is very different from common ones

» Rare variation is usually jointly analysed in a series of genomic windows or
regions

Estimate the effective number of independent tests
» Based on correlations between all tests (Li et al. Hum Genet 2012)

M, = m—Ztnl (I(x; > 1)(x; = 1)).

» Using simulation to describe the behaviour of the minimal p-value across
Regions under the null

Significance thresholds

Between 2.5x1078 and 8x1078 for window-based testing.

Between 0.6x1078 and 1.5x1078 for a combined strategy of single-SNP tests and
rare variant testing using a sliding-window test strategy.



Power to detect association in discovery

—— N=57,129 {Height) Height New
N=15.201 (TFM) Height Known
n —— N=37,159 (WHR) BMI New

BMI Known
& WaistBMIadj New
# WaistBMlad] Known
& Weight Known
® TFM Known
# Waist Known
Hip Known
# WHR Known
# HipBEMlad] Known
WHREBMIlad] Known

Beta
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UK10K anthropometry effort

Largest-scale association testing of low frequency variants with anthropometric traits to
date.

Newly identified associations at variants at the lower end of the frequency spectrum, not
captured by the HapMap reference panel.
» Demonstrates the power of imputation based on WGS haplotype sets.

Discovery of 2 novel coding variants robustly associated with height in genes implicated in
syndromic disorders (SERPIN1A and ADAMTS10), demonstrate genetic overlap between
monogenic and polygenic anthropometric traits.

Even though well-powered to detect them, we find no evidence of low frequency variants
with strong effect sizes for anthropometric traits.

Increasing sample size and sequencing depth, and building large reference panels to
facilitate accurate imputation of SNVs is likely to identify further potentially functional low
frequency and rare variants underpinning the genetic architecture of medically-relevant
human complex traits.



Population isolates

The study of rare variants can be empowered by focusing on
isolated populations.

Some rare variation is lost due to bottleneck effects , but others may

have increased in frequency - -
e® @ e () @30
e.@ * ®® 02%%%’s’s g%o@%
o Qe

bottleneck
event

Linkage disequilibrium tends to be extended

Savor the simple pleasures of
: AMISH COOKING
Homogeneous environment s

Deep information on genealogy

Sjifn Frigriksddtir

n
skili Jon Sigursarson

W Fribrik Skillason 7. okidber 1963



HELIC: Hellenic isolated cohorts

* HELIC-MANOLIS (Minoan Isolates)
* Mylopotamos villages, Crete, Greece

* Geographically isolated
* N~4,500 of which 1,600 collected

 Deeply phenotyped
* High fat content diet o e
* High rates of longevity

* Low rates of metabolic disease complications
e Ability to recontact individuals

Diet & Nutrition

Clinical Biochemical

Haematological

www.helic.org



HELIC: Hellenic isolated cohorts

* HELIC-Pomak

* Pomak villages, Xanthi, Greece

* Geographically isolated

* Religiously isolated

« N~11,000 of which 2,000 collected

Anthropometric

* Deeply phenotyped
* High levels of metabolic disease
e Ability to recontact individuals Physical Activity

& Lifestyle

Diet & Nutrition

Clinical Biochemical

Haematological

www.helic.org



HELIC overview

&
&euellic Isolated Cov°©

~3,500 samples with genome-wide association scan and exome chip data
~250 MANOLIS samples with whole genome sequencing at 4x
~2,500 samples with whole genome sequencing at 1x

15q25

100
|

—— MANOLIS
— Pomak
— TEENAGE

60
1

Percentage with a surrogate parent
40

20
1

0 200 400 600

Number of individuals genotyped

Panoutsopoulou et al., Nature communications 2014
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Mountain village may hold secret to immmunity from heart discase

R19X APOC3 cardio-protective variant
association with lipid levels -
exome chip data
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* Mylopotamos villages (n=1256, MAF 2%, p=10-1%)
* Meta-analysis across Mylopotamos villages and the Amish: p=10-3%, total n=2700
* Detection of this effect would have required 67,000 Europeans (MAF 0.05%)

* Exemplifies the value of population isolates and generalizability of findings

Tachmazidou et al, Nature Communications, 2013; Pollin et al, Science, 2008



R19X variant in APOC3 - imputed genome-wide data

Gilly et al Human Molecular Genetics 2016
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—log1o(p—value)

R19X variant in APOCS3 - 1x WGS data

Gilly et al Human Molecular Genetics 2016
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—log1o(p—value)

R19X variant in APOCS3 - 1x WGS data

Gilly et al Human Molecular Genetics 2016
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by

Over 15 well-phenotyped cohorts, including founder
populations in:

li

- T

R &
/LN

| CEa™ Network of isolated population cohorts

Greece (Pomak and Mylopotamos villages),

Finland (general Finnish population cohorts
and Northern Finland sub-isolates),

Italy (Carlantino, Val Borbera and Friuli
Venezia Giulia villages, Sardinia),

UK (Orkney islands), " ‘(:,. ——

USA (Amish, Ashkenazi Jewish), Emerging international WGS
isolates consortium

Greenland currently amassing in excess

of 30,000 samples



The African Genome Variation Project

Gurdasani D et al. Nature 2015

* A framework to help build genomic expertise and resources in Africa, and to
drive forward genomic research

* 1,481 individuals across 18 ethnolinguistic groups with 2.5M genotype data

* 320 individuals (Ethiopia, South Africa, Uganda) with 4x WGS

West:

The Gambia: Jola, Fula, Mandinka, Wolof
West-Central:

Nigeria: Yoruba, Igbo

Ghana: Ga-Adangbe

South:

South Africa: Zulu, Sotho

East:

Kenya: Luhya, Kalenjin, Kikuyu

Uganda: Baganda, Barundi, Banyarwanda
Ethiopia: Amhara, Oromo, Somali

| = ,
\‘ |
ALl ®
A
Wolof A Ethiopia*
® Mandinka @ galenjin
" Jola * Kikuyu
+ Fula $ Luhya

4 Ga-Adangbe4 Baganda
® Yoruba ® Banyarwanda
® Igho A Barundi

A Sotho

B Zulu

APCDR

Malaria

GENOMIC EPIDEMIOLOGY NETWORK



Challenge
Pronounced genetic diversity across ethnic groups




Challenge
Low levels of correlation between genetic variants

Yr BP
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structure.
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15-30 Advantage: fine mapping

3040
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Divergent pattern of LD

Tishkoff & Williams

Nature Reviews | Genetics
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How genetically diverse are African populations?
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Implications for genetic association studies

Not so good news:

» Large numbers of monomorphic and rare/low frequency variants on the
genotyping array
s For GWAS, 1.1-1.36M sites instead of 2.5M
» High levels of redundancy

/7

s 16-35% of variants have perfect proxies
» Low proportion of common variation captured

\/

s  ~60-70% of common variation captured with r’=0.8

Good news:

» Array serves as a good scaffold for imputing common variants in African
populations using existing imputation panels

Admixture, population substructure, pronounced allelic diversity, low levels of
LD, greater haplotype diversity have implications for the design of large-scale
genomic studies within and among SSA populations



African Genome Variation Project

» Provides basic framework for genetic studies in Africa
» Underpins the design of next-generation experiments

» Helps identify analytical challenges and develop statistical
genetics methods to address them

» Generates a valuable resource for the scientific community

» Promotes collaboration and synergies among contributing
parties

» Committed to building partnerships and research
programmes that enable researchers in developing countries
to share in the benefits of genomic research



Large-scale GWAS in an Ugandan cohort (2015-today)

e ~7000 individuals from the General Population Cohort
e (Asikietal, IJE, 2013)

— 2000 with whole genome sequence 4x

— 4778 with Omni 2.5M genotypes

— 50 phenotypic traits: hematological, anthropometric, blood
pressure, metabolic, liver function and infectious disease traits
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Schematic of Uganda GWAS discovery and replication

Discovery cohort- GPC: 4778 individuals, 34
phenotypes, Omni 2.5M genotypes (UGWAS)
<

Replication [ Variants with p<le-05 for all traits

Internal replication rJ\} {/L External replication

Discovery

Replication in 1622 individuals | Replication in available external
~ with WGS data from GPC- pooled datasets- meta-analysis with
analysis of 6400 individuals summary statistics

(UGWAS+UG2G pooled) @
]
N |

Variants with p<5e-09 Variants with log,,BF26 in
association with phenotype MANTRA analysis

I U

Replicated variants




Trans-ethnic meta-analysis

MANTRA, Andrew Morris Genetic Epidemiology 2011

Allows populations from the same ethnic group to be more homogeneous
than those that are more distantly related.

Bayesian partition model that clusters populations according to their
similarity in terms of relatedness (shared ancestry).

Bayes factor in evidence of association, posterior probability of allelic effect,
posterior probability of heterogeneity via MCMC.

Hybrid meta-analysis, incorporating both fixed (within cluster) and random
(between clusters) effects. Bayesian implementation of fixed-effects and
random-effects meta-analysis.

Improves power and resolution of fine-mapping, when heterogeneity in
allelic effects is well represented by the prior Bayesian partition model.



GWAS is a powerful tool

Successful study design for identifying robust genetic associations with
common disease

Careful collection and quality-checking is essential to avoid errors
— Phenotype misclassification
— Population stratification
— Traditional confounders

Genetic effects of common variants are mostly moderate/small and require
very large sample sizes to identify with certainty
— Meta-analysis of GWAS improves the power of detecting and validating such associations

GWAS only identifies regions of association
— Causal variants identified by fine-mapping and targeted resequencing experiments

Discovery of a genetic locus has important implications on its own
— May highlight biological pathways and thus give insights into developing new therapeutics

Population isolates can empower locus discovery

Both discovery and fine mapping can be empowered by studying
heterogeneous populations



Future perspective

Imputation based on the Haplotype Reference Consortium

— A European haplotype map of over 50,000 haplotypes by combining together many
low-coverage sequencing studies (1x-12x)

— Next-generation resource for rare variant imputation into GWAS
— Provides substantial increase over 1000 Genomes Phase 3 imputation

Whole-genome sequencing-based meta-analysis consortia
— Burden tests and meta-analysis of burden tests
— How to best define regions

The 100,000 Genomes Project

— Genlohmics England, established in 2013, a company owned by the UK Department of
Healt

— Linking to e-health records, sample size + interesting statistics

— Marks the beginnings of a UK genomics industry and the start of a personalised
medical service

GWAS of non-European descent
— The African Genome Variation Project
— Large-scale GWAS in a Ugandan cohort
— Trans-ethnic fine mapping
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