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Stochastic Computation in Biology
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The Biological Motivation

Evolution on different time scales

• Tracking stem cells in an individual

• Ancestral history of humans

• Divergence time of primates from fossil record
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Inference in the fossil record
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Primate Evolution
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Reconciling molecular and fossil records?

• Extant primates are strepsirrhines (lemurs and lorises)
and haplorhines (tarsiers and anthropoids)

• Molecular estimate of time of divergence is
approximately 90 mya

• Fossil record suggests 60-65 mya

• Fossil record is patchy
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Reconciling molecular and fossil records?

• Extant primates are strepsirrhines (lemurs and lorises)
and haplorhines (tarsiers and anthropoids)

• Molecular estimate of time of divergence is
approximately 90 mya

• Fossil record suggests 60-65 mya

• Fossil record is patchy

Problem: Use the fossil record to estimate the age of the
last common ancestor of extant primates

7



Inference from the fossil record
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Primate Data

Tables

Table 1. Data and relative sampling intensities for the primate fossil record, taking a total
of 235 modern species. References for the data can be found in the Supplementary

Information.

Observed Relative Relative
Epoch k Tk number of sampling sampling

species (Dk) intensity (pk) intensity (pk)
Scheme 1 Scheme 2

Late Pleistocene 1 0.15 19 1.0 1.0
Middle Pleistocene 2 0.9 28 1.0 1.0
Early Pleistocene 3 1.8 22 1.0 1.0
Late Pliocene 4 3.6 47 1.0 1.0
Early Pliocene 5 5.3 11 1.0 0.5
Late Miocene 6 11.2 38 1.0 0.5
Middle Miocene 7 16.4 46 1.0 1.0
Early Miocene 8 23.8 36 1.0 0.5
Late Oligocene 9 28.5 4 1.0 0.1
Early Oligocene 10 33.7 20 1.0 0.5
Late Eocene 11 37.0 32 1.0 1.0
Middle Eocene 12 49.0 103 1.0 1.0
Early Eocene 13 54.8 68 1.0 1.0
Pre-Eocene 14 0 0.1 0.1
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The evolutionary process
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Statistical Aspects

• Highly dependent data

• Dependence caused by tree or graph linking
observations (ancestral history)

• Explicit theory hard to come by . . .

• . . . computational inference methods essential
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Stochastic computation in evolutionary
genetics

• Many different approaches have been employed:

– Rejection

– Importance sampling

– Sequential importance sampling with resampling

– Markov chain Monte Carlo

– Population Monte Carlo

– Metropolis-coupled MCMC

– Perfect sampling: coupling from the past

– Variational Bayes methods
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Rejection methods
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Introduction to Bayesian computation

• Discrete data D, prior π(θ) for parameters θ

• Want to generate observations from posterior
distribution f(θ | D)

• Bayes Theorem gives

f(θ | D) = P(D | θ)π(θ)/P(D),

where the normalizing constant is

P(D) =
∫

P(D | τ)π(τ) dτ

Posterior proportional to likelihood × prior
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Rejection methods I

R1 Generate θ from π(·)

R2 Accept θ with probability h = P(D | θ); return to R1

• Accepted observations have distribution f(θ | D)

• Can do better: if

P(D | θ) ≤ c for all θ

then can replace h above with h/c
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The number of runs to get n observations from f(θ|D) is
negative binomial, with mean

nc

P(D)

This shows

– the effect of P(D)

– the effect of c

– the way to estimate P(D) (Bayes factors)
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Complex stochastic models

• A stochastic process often underlies the likelihood
computation

• This process may be complex, making explicit
probability calculations difficult or impossible

• Thus P(D | θ) may be uncomputable (either quickly
or theoretically)

When the stochastic process is easy to simulate . . .
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Rejection methods II

RS1 Generate θ from π(·)

RS2 Simulate D′ from stochastic model with parameter θ

RS3 Accept θ if D′ = D; return to RS1

• Just as before, accepted observations from this
algorithm have the density f(·|D)

• Despite its appearance, this algorithm is much more
general than first one — no need for explicit
calculation

• Do we ever hit the target?

20



Approximate Bayesian Computation I

A1 Generate θ from π(·)

A2 Simulate D′ from stochastic model with parameter θ

A3 Calculate distance ρ(D,D′) between D′ and D

A4 Accept θ if ρ ≤ ε; return to 1
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• If ε→∞, generates from prior

• If ε = 0, generates from f(θ | D)

• Choice of ε reflects tension between computability
and accuracy

– PCR — post-computational remorse

• Method is honest: you get observations from
f(θ | ρ(D,D′) ≤ ε)
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An illustrative example (R. Wilkinson)

• X1, . . . , Xn iid N(µ, σ2)

• σ2 known, improper prior π(µ) ∝ 1

• Posterior is N(X̄, σ2/n)

• Use ABC, accepting µ if X̄ ′ ≤ ε
Can calculate:

E(µ||X̄ ′| ≤ ε) = 0

Var(µ||X̄ ′| ≤ ε) =
σ2

n
+
ε2

3
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Plots of posterior for µ
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Estimating the error

Can calculate

dTV (πε(µ), π(µ|X̄ = 0) =
1
2

∫
|πε(µ)− π(µ|X̄ = 0)|dµ

Get

dTV =
cnε2

σ2
+ o(ε2),

where c =
√

2/π exp(−1/2) ≈ 1/2.
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Approximate Bayesian Computation II

• The limit ε = 0 reproduces the data precisely

• In many examples the data are too high-dimensional

• . . . so reduce dimension by using summary statistics
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Approximate sufficiency

Recall that S = S(D) is sufficient for θ if

P(D | S, θ) is independent of θ

• If S is sufficient for θ, then f(θ | D) = f(θ | S)

• Typically, S is of smaller dimension that D. Inference
method can be simplified (and sped up), e.g.
rejection method via

f(θ | S) ∝ P(S | θ)π(θ)
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Research problem

Puts a premium on finding decent summary statistics

• Definition of approximate sufficiency? (LeCam 1963)

• A systematic, implementable approach?

• Estimate distance between f(θ | D) and f(θ | S)
given a measure of how far from sufficient S is for θ
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Combine summaries and rejection

T et al (1997), Fu and Li (1997), Weiss and von Haeseler
(1998), Pritchard et al (1999), Wall (2000)

Choose statistics S = (S1, . . . , Sp) to summarize D

AS1 Generate θ from π(·)

AS2 Simulate D′, calculate s′

AS3 Accept θ if ρ(s′, s) ≤ ε; return to 1
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ABC III: Generalization of ABC II

Beaumont, Zhang and Balding (2002), Genetics

A method that makes use of observations in a better way:

• No sharp cut-off

• Weight all simulated observations using distance from
target
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Advantages and disadvantages of ABC

Pros:

• Usually easy to code

• Generates independent observations (can use
embarrassingly parallel computation)

• Can be used to estimate Bayes factors directly

• Usually easy to adapt
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Cons:

• May be hard to anticipate effects of summary
statistics

• For complex probability models, sampling from prior
does not make good use of accepted observations

• Choice of metric matters

• Homework: find a scheme that combines generation
of perfect observations with use of existing sample
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Markov chain Monte Carlo
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The Hastings Markov chain

M1 Now at θ

M2 Propose move to θ′ according to q(θ → θ′)

M3 Calculate the Hastings ratio

h = min
(

1,
P(D | θ′)π(θ′)q(θ′ → θ)
P(D | θ)π(θ)q(θ → θ′)

)
M4 Accept θ′ with probability h, else return θ
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Some special cases

• Independence sampler: q(θ, θ′) = g(θ′). h depends
on ratios of likelihoods, priors and proposals

• Metropolis sampler: q(θ, θ′) = q(θ′, θ). h depends on
likelihood and ratio of priors

• Reversible sampler:

π(θ)q(θ, θ′) = π(θ′)q(θ′, θ)

h depends on likelihood ratio
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Basic output analysis

There are more things to check:

• Is the chain ergodic?

• Does it mix well?

• Is the chain stationary?

• Burn in?

• Diagnostics of the run (no free lunches)
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MCMC in evolutionary genetics setting

• Small tweaks in the biology often translate into huge
changes in algorithm

• Long development time

• All the usual problems with convergence

• Almost all the effort goes into evaluation of likelihood
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(Yet) another MCMC approach

MS1 Now at θ

MS2 Propose a move to θ′ according to q(θ → θ′)

MS3 Generate D′ using θ′

MS4 If D′ = D, go to next step, else return θ

MS5 Calculate

h = h(θ, θ′) = min
(

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

)
MS6 Accept θ′ with probability h, else return θ
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Practical version: ABC

Data D, summary statistics S

[MS4′ ] If ρ(D′,D) ≤ ε, go to next step, otherwise return θ

[MS4′′ ] If ρ(S′, S) ≤ ε, go to next step, otherwise return θ

for some suitable metric ρ and approximation level ε

Observations now from f(θ | ρ(D′,D) ≤ ε) or
f(θ | ρ(S′, S) ≤ ε)
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Variations on ABC

• These methods can often be started at stationarity,
so no burn-in

• If the underlying probability model is complex,
simulating data will not often lead to acceptance.
Thus need update for parts of the probability model
(data augmentation)

• What if D is not discrete?

– Use previous method (binning)

– Use simulation approach to estimate the
likelihood terms in the Hastings ratio
(Diggle & Gratton, RSSB, 1980)
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. . . the lecture ended here, but there
is a bit more . . .
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ABC-PRC

Partial rejection control – Sisson et al., PNAS, 2007

• Start with ε1 > ε2 > · · · > εT = ε

• For iteration t = 1, 2, . . . , T the algorithm produces

samples (θ(t)1 , . . . , θ
(t)
N )

1. Set t = 1

2. Set i = 1

2A. If t = 1, sample θ∗∗ ∼ µ1

If t > 1, sample θ∗ from {(θ(j)t−1, w
(j)
t−1)}
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Generate θ∗∗ ∼ Kt(·|θ∗)

Generate data D∗∗ from model with parameter θ∗∗

If ρ(S(D∗∗), S(D)) ≥ εt, go to 2A

2B. Set

θ
(i)
t = θ∗∗, w

(i)
t =

π(θ(i)t )Lt−1(θ∗|θ(i)t )

π(θ∗)Kt(θ
(i)
t |θ∗)

(with w
(i)
1 = π(θ(i)1 )/µ1(θ(i))

If i < N , set i = i+ 1 and go to 2A
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3. Normalize weights so that
∑N
i=1 w

(t)
i = 1.

[resampling step to generate new sample

{(θ(j)t , w
(j)
t = 1/N)}]

4. If t < T , set t = t+ 1 and go to 2.

The suggestion is to take Lt−1(θ′|θ) = Kt(θ|θ′) and
µ1 = π, which removes all the weights!
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3. Normalize weights so that
∑N
i=1 w

(t)
i = 1.

[resampling step to generate new sample

{(θ(j)t , w
(j)
t = 1/N)}]

4. If t < T , set t = t+ 1 and go to 2.

The suggestion is to take Lt−1(θ′|θ) = Kt(θ|θ′) and
µ1 = π, which removes all the weights

. . . but turns out that this is biased!
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ABC-PMC

Population Monte Carlo – Beaumont et al., Biometrika,
2008

Note that the t-th sample is produced from the proposal
distribution

π̂t(θ(t)) ∝
N∑
j=1

w
(t−1)
j Kt(θ(t)|θ(t−1)

j )

This suggests using the weights

w
(t)
i ∝ π(θ(i)t )

/
π̂t(θ

(t)
i )
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• Furthermore, it is known that the kernel Kt MUST
be changed in each iteration to get better accuracy

• Beaumont et al. have an optimised Gaussian
updating scheme to do this
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AWF Edwards. Biometrics, 23, p176, 1967

“It will be maintained that the end of an era has now been
reached, as regards both statistical methods and
computational techniques, and an outline of the way in
which biometric techniques in genetical demography may
be expected to develop will be given. Particular emphasis
will be placed on the need to formulate sound methods of
‘estimation by simulation’ on complex models”.
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Tavaré et al (2002) Nature, 416, 726–729

50



Back to inference in the fossil record
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ABC Approach

Data can be thought of in two parts:

(a) the observed number of fossils Fobs found

(b) the proportions pj,obs found in jth bin

A suitable metric might be∣∣∣∣ FFobs
− 1
∣∣∣∣+

1
2

k+1∑
j=1

|pj − pj,obs|

Note: no data summaries here
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Sensitivity: Exploring Other Models

One advantage of ABC – it is easy to change the input . . .

- Choice of d

- Demography

- Sampling fractions

- K/T crash 65 mya

- the time of origin of primates is even further
back in the Cretaceous

- Poisson sampling scheme: length in bin matters

- Dating other split points
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Modeling

• Diversification model: non-homogeneous Markov
branching process

– parameters: λ, τ

• Sampling model: binomial sampling

– parameters: α

– α = αppp,ppp known
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Prior for Sampling Fractions

f(λ, τ,N ,α|D) ∝ P(D|α,λ, τ,N )P(N|τ,λ)f(τ)f(λ)f(α)

where

• λ = (λ, γ, ρ) growth parameters

• α = (α1, . . . , α14) sampling fractions

• N is the underlying tree structure

Give sampling fractions independent Beta(a, b) priors
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Gibbs-ABC Example

Rich Wilkinson (Sheffield)

Split the random variable into two parts:
α and (λ, τ,N )

Sample from the two conditional distributions

• f(α | D,λ, τ,N )

– independent beta components

– mean of αi = a+di

Ni+a+b
≈ di

Ni

• f(τ,λ,N | D,α)
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Conditional distribution of (τ,λ,N )

f(τ,λ,N|D,α) ∝ f(λ, τ,N ,α|D)
∝ P(D|λ,α,N , α)P(N|τ, λ)f(τ)f(λ)

Simulate from this using ABC: accept (λ, τ,N ) if
ρ(D,D′) < ε, where D′ represents the simulated data
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Metric and Priors

τ ∼ U [0, 100]
α ∼ U [0, 0.6]
ρ ∼ U [0, 0.8]
γ ∼ U [0.005, 0.015]

1/λ ∼ U [2, 3]
a = 0.1
b = 1
ε = 0.2

Same metric as before
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Not going so well . . .
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Tweak metric

• The observed N0 values are too small

– require N0 > 235

– change the metric

ρ(D,D′) =
k∑
i=1

∣∣∣∣ Di

D+
− D′i
D′+

∣∣∣∣+
∣∣∣∣D′+D+

− 1
∣∣∣∣+
∣∣∣∣N ′0N0

− 1
∣∣∣∣

• Penalises trees with N0 values far from 235
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Results: ε = 0.3

min LQ Median mean UQ Max

N0 184 212 224 226 238 279
τ 0.0 8.0 18.6 26.3 36.8 99.5
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