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How Much Does the Model Explain?

OVERVIEW OF THE CHAPTER
This chapter starts by noting that, counter to what might intuitively be expected, estimated
variance parameters may go up when explanatory variables are added to the model. This
leads to issues in the definition of the concept of explained variance, commonly referred to
as R2. A definition of R2, defined at level one, is given which does not have this problem in
its population values, although it still may sometimes have the problem in values calculated
from data.

Next an exposition is given of how different components of the hierarchical linear
model contribute to the total observed variance of the dependent variable. This is a rather

theoretical section that may be skipped by the reader.

7.1 Explained variance

The concept of ‘explained variance’ is well known in multiple regression analysis: it
gives an answer to the question how much of the variability of the dependent variable is
accounted for by the linear regression on the explanatory variables. The usual measure for
the explained proportion of variance is the squared multiple correlation coefficient, R?. For
the hierarchical linear model, however, the concept of ‘explained proportion of variance’
is somewhat problematic. In this section, we follow the approach of Snijders and Bosker
(1994) to explain the difficulties and give a suitable multilevel version of R?.

One way to approach this concept is to transfer its customary treatment, well-known
from multiple linear regression, straightforwardly to the hierarchical random effects model:
treat proportional reductions in the estimated variance components, o2 and 2 in the
random-intercept model for two levels, as analogs of R%-values. Since there are several
variance components in the hierarchical linear model, this approach leads to several R%-
values, one for each variance component. However, this definition of R* now and then leads
to unpleasant surprises: it sometimes happens that adding explanatory variables increases
rather than decreases some of the variance components. Even negative values of R? are
possible. Negative values of R? are clearly undesirable and are not in accordance with its

intuitive interpretation,
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Table 7.1: Estimated residual variance
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1. Balanced design

A Yy =Po+ Uy +Ey 8.694 2271
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C. Yy = o+ Bo( Xy — X,)+Uy+ Ey 6.973 2.443
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'~ remains the same. It is argued below that defining R? as the proportional reduction in resid-
' ual variance parameters 6% and 77, respectively, is not the best way to define a measure
analogous to R? in the linear regression model; and that the problems mentioned can be
solved by using other definitions, leading to the measure denoted below by R3.

» propartion of

mndavet inncdale
two-teves INoGes:

In multiple linear regression, the customary R? parameter can be introduced in several ways:
for example, as the maximal squared correlation coefficient between the dependent variable
and some linear combination of the predictor variables, or as the proportional reduction in
the residual variance parameter due to the joint predictor variables. A very appealing prin-
ciple to define measures of modeled (or explained) variation is the principle of proportional
reduction of prediction error. This is one of the definitions of R? in multiple linear regres-
sion, and can be described as follows. A population of values is given for the explanatory
and the dependent variables (Xi, . . ., Xgi, Y;), with a known joint probability distribution; §
is the value for which the expected squared error

£(t = S pi) @0
h=0

is minimal. (This is the definition of the ordinary least squares (OLS) estimation criterion.
In this equation, By is defined as the intercept and Xy; = 1 for all i.) If, for a certain case i,
the values of Xy, . . . , Xy are unknown, then the best predictor for Y; is its expectation £(Y),
with mean squared prediction error var(¥;); if the values Xij, ..., Xy are given, then the
linear predictor of ¥; with minimum squared error is the regression value ), B5Xy;. The
difference between the observed value ¥; and the predicted value 3", BrXii is the prediction
error. Accordingly, the mean squared prediction error is defined as the value of (7.1) for the
optimal (i.e., estimated) value of 8. _

The proportional reduction of the mean squared error of prediction is the same as
the proportional reduction in the unexplained variance, due to the use of the variables
Xi, .. .. X, Mathematically, it can be expressed as

R — var( ¥;) ‘Var(yi - Ek JBhXhi) 1 - Var(Yi - Zh ﬁhX:kf)
B var(1) - var(Y)

This formula expresses one of the equivalent ways to define R?,

The same principle can be used to define ‘explained proportion of variance’ in the
hierarchical linear model. For this model, however, there are several options with respect
to what one wishes to predict. Let us consider a two-level model with dependent variable
Y. Tn such a model, one can choose between predicting an individual value Yy at the lowest
level, or a group mean Y ;- On the basis of this distinction, two concepts of explained
proportion of variance in a two-level model can be defined. The first, and most important,
is the proportional reduction of error for predicting an individual outcome. The second is
the proportional reduction of error for predicting a group mean. We treat the first concept
here; the second is of less practical importance and is discussed in Snijders and Bosker
(1994).
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dictor for Yy is its expectation; the associated mean squared prediction error is var(¥y). If
the value of the predictor vector X for the given unit is known, then the best linear predic-
tor for Yy is the regression value ZLO VX hij (where Xpo; is defined as 1 for all A, Jj) The
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(7.2), and compute 1 minus the ratio of these values. In other
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words, R? is just the proportional reduction in the value of 62 4 72 due to including the
X-variables in the model. For a sequence of nested models, the contributions to the esti-
mated value of (7.3) due to adding new predictors can be considered to be the contribution

of these predictors to the explained variance at level one.
To illustrate this, we once again use the data from the first (balanced) example, and

estimate the proportional reduction of prediction error for a model where within-group and
between-groups regression coefficients may be different. ¥
see that 62 + 12 for model A amounts to 10.965, and for model D 0
mated to be 1—(7.964/10.965) = 0.274. 3

From Table 7.2 we
7.964. R? is thus esti

Populaiinn values o R} are nonnegative
What happens to R} when predictor variables are added to the multilevel model? It
possible that adding predictor variables leads to smaller values of R}? Can we even be sul

at all that these quantities are positive?




Table 7.2: Estimating the level-one explained variance (balanced data).

52 2

A Yy=Po+ Uy+Ey_ _ 8.694 2271
D.Y; = fo+ Bi(Xy—X)+h X+ Uy +E; 6973 0991

It turns out that a distinction must be made between the population parameter R? and
its estimates from data. Population values of R? in correctly specified models, with a con-
stant group size 7, become smaller when predictor variables are deleted, provided that the
variables Up; and E; on the one hand are uncorrelated with all the Xj variables on the other
hand (the usual model assumption).

For estimates of R%, however, the situation is different; these estimates sometimes do
increase when predictor variables are deleted. When it is observed that an estimated value
for R? becomes smaller by the addition of a predictor variable, or larger by the deletion of
a predictor variable, there are two possibilities: either this is a chance fluctuation, or the
larger model is misspecified. Whether the first or the second possibility is more likely will
depend on the size of the change in R2, and on the subject-matter insight of the researcher.
In this sense changes in R? in the ‘wrong’ direction serve as a diagnostic for possible
misspecification. This possibility of misspecification refers to the fixed part of the model,
that is, the specification of the explanatory variables having fixed regression coefficients,
and not to the random part of the model. We return to this in Section 10.2.3.
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In three-level random intercept models (Section 4.9), the residual variance, or mean squared
prediction variance, is the sum of the variance components at the three levels, 0% + 73 + ¢.
Accordingly, the level-one explained proportion of variance can be defined here as the
proportional reduction in the sum of these three variance parameters.

Example 7.1  Variance in maths performance explained by IQ.

In Example 4.8, Table 4.5 exhibits the results of the empty model (Model 1) and a model in which
IQ has a fixed effect (Model 2). The total variance in the empty model is 7.816 + 1.746 + 2.124 =
11.686 while the total unexplained variance in Model 2 is 6.910 + 0.701 + 1.109 = 8.720. Hence the
level-one explained proportion of variance is 1—(8.720/11.686) = 0.25.

Z.1 4 Explaipac vapanie in modials

The idea of using the proportional reduction in the prediction error for ¥ and Y, respec-
tively, as the definitions of explained variance at either level, can be extended to two-level
models with one or more random regression coefficients. The formulas to calculate R}
can be found in Snijders and Bosker (1994). However, the estimated values for R? usually
change only very little when random regression coefficients are included in the model. The
reason is that this definition of explained variance is based on prediction of the dependent
variable from observed variables, and the knowledge of the precise specification of the
random part only gives minor changes to the quality of this prediction.
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The formulas for estimating R? in models with random intercepts only are very easy.
Estimating R% in models with random slopes is more tedious. The simplest possibility for
estimating R% in random slope models is to re-estimate the models as random intercept
models with the same fixed parts (omitting the random slopes), and use the resulting para-
meter estimates to calculate R} in the usual (simple) way for random intercept models. This
will normally yield values that are very close to the values for the random slopes model.

Example 7.2 Explained variance Jor language scores.

In Table 5.4, a model was presented for the data set on language scores in elementary schools used
throughout Chapters 4 and 5. When a random intercept model is fitted with the same fixed part, the
estimated variance parameters are fg — 8.10 for level two and 6% = 38.01 for level one. For the

empty model, Table 4.1 shows that the estimates are fg = 18.12 and 62 = 62.85. This implies that
explained variance at level one is 1-(38.01 + 8.10) /(62.85 + 18.12) = 0.43. This is a quite high
explained variance. It can be deduced from the variances in Table 4.4.2 that the main part of this is

due to IQ.

7.2 Components of variance'

The preceding section focused on the total amount of variance that can be explained by
the explanatory variables. In these measures of explained variance, only the fixed effects
contribute. It can also be theoretically illuminating to decompose the observed variance of
Y into parts that correspond to the various constituents of the model. This is discussed in
this section for a two-level model.

For the dependent variable ¥, the level-one and level-two variances in the empty model
(4.6) are denoted by of and 12, respectively. The total variance of Y is therefore o + 8
and the components of variance are the parts into which this quantity is split. The first
split, obviously, is the split of o + 77 into o and z2, and was extensively discussed in out
treatment of the intraclass correlation coefficient.

To obtain formulas for a further decomposition, it is necessary to be more specific
about the distribution of the explanatory variables. It is usual in single-level as well as in
multilevel regression analysis to condition on the values of the explanatory variables, that
is, to consider those as given values. In this section, however, all explanatory variables are
regarded as random variables with a given distribution. '

For the random intercept model, we divide the explanatory variables into level-one variables
X and level-two variables Z. Deviating from the notation in other parts of this book, mat X
notation is used, and X and Z denote vectors.

The explanatory variables Xi,...,Xp at level one are collected in the vector X W
value Xj; for unit i in group j. Itis assumed more specifically that Xj; can be decompO§¢
into independent level-one and level-two parts,

Xy =X7 + X

1This is 2 more advanced section which may be skipped by the reader.
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(ie.a kind of multivariate hierarchical linear model without a fixed part). The expectation

is denoted by EXy = Jbx, the level-one covariance matrix is
cov(X)) = =¥,

and the level-two covariance matrix is
cov(X?) = =x.

This implies that the overall covariance matrix of X is the sum of these,
cov(Xy) = =¥ + T = Ex.

Further, the covariance matrix of the group average for a group of size nis

V(%)) = -

— 5+ 25
n
It may be noted that this notation deviates slightly from the common split of Xj; into

Xy = Xy —X;) + X, (7.6)

The split (7.5) is a population-based split, whereas the more usual split (7.6) is sample-
based. In the notation used here, the covariance matrix of the within-group deviation
variable is

cov(Xy — X)) = n;l 7,

while the covariance matrix of the group means is

1
cov(X,) = ;2§+z§.

For the discussion in this section, the present notation is more convenient.

The split (7.5) is not a completely innocuous assumption. The independence between
X/ and X* implies that the covariance matrix of the group means is at least as large? as
1/(n — 1) times the within-group covariance matrix of X.

The vector of explanatory variables Z = (Zy,.. . Z,) at level two has value Z; for group
j. The vector of expectations of Z is denoted

g‘zj = Kz,
and the covariance matrix is
cov(Z)) = Zz.

In the random intercept model (4.8), denote the vector of regression coefficients of the
Xs by

ve =(W10s- > ¥p0) 5

e
2The word ‘large’ is meant here in the sense of the ordering of positive definite symmetric matrices.
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and the vector of regression coefficients of the Zs by

Yz :(YOI:---aqu)I'

Taking into account the stochastic nature of the explanatory variables then leads to the

following expression for the variance of ¥
var(¥y) = vy Zxvx t yiSzyz + T + o
I RS S b R A w7 + o’

if 7 and X are uncorrelated. For the
lated, this expression is equal to

0

This equation only holds special case where all
explanatory variables are uncorre

P q
var( Yy) = Z i var(Xy) + Z vo, var(Zn) + % + o’
and only one level-two explanatory
the contribution of each explanatory

(This holds, for example, if there is only one level-one
by the product of the regression

variable.) This formula shows that, in this special case,
variable to the variance of the dependent variable is given

coefficient and the variance of the explanatory variable.
The decomposition of X into independent level-one and level-two parts allows us to
indicate precisely which parts 0 he unconditional level-one variance

£ (7.7) correspond to t
o2 of ¥, and which parts to the unconditiona

 level-two variance T3:

o} = vy BF v + 05

2=y Sy +vzEzvz .
This shows how the within-group variation of the level-one variables eats up Some part of
the unconditional level-one variance; parts of the level-two variance are eaten up by the
variation of the level-two variables, and also by the between-group (composition) variation
of the level-one variables. Recall, however, the definition of Eﬂ, which implies that the
between-group variation of X is taken net of the ‘random’ variation of the group mean,

which may be expected given the within-group variation of Xj;.

g "~ [= 0 5 i : . .‘E_
4.2.2 Random siope MGUELS

Thitbh b I St

model in its general specification given by (5.12), a decom-
d because of the presence of the cross-level
£ the variance is discussed for random slope

For the hierarchical linear
position of the variance is very complicate
interactions. Therefore the decomposition 0
models in the formulation (5.15), repeated here as

q 14
vy = yo + 3 wwng + Uy + 2 Un¥u + R (7.8
h=1 h=1 ,

are level-one or level-two variables, of =

_ without bothering about whether some of the xp;
products of 2 level-one and a level-two variable.

Recall that in this section the explanatory variabl

(X oy 8g) OF all explanatory variables has mean [x(g) an

es X are stochastic. The vector X =
d covariance matrix Zx(): The
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- gubvector (Xi,..-,Xp) of variables that have random slopes has mean jix(z) and covariance
matrix Zx()- These covariance matrices could be split into within-group and between-
- group parts, but that is left to the reader.
‘ The covariance matrix of the random slopes (Uyjserer Up) 18 denoted by 77 and the
« 1 vegtor of the intercept-slope covariances is denoted by T1o.
With these specifications, the variance of the dependent variable can be shown to be
given by ;
var(Yy) = 7' Sx ¥ + % + 2t Tho + Kixig Tit Br@
+ trace (Tu EX{p)) + o2 (7.9)
(A similar expression, but without taking the fixed effects into account, is given by Snijders
and Bosker (1993) as formula (21).) A brief discussion of all terms in this expression is as
follows.

1. The first term, ¥’ Zx(q) ¥ gives the contribution of the fixed effects and may be regarded
as the ‘explained part’ of the variance. This term could be split into a level-one and a
level-two part as in the preceding subsection.

2. The next few terms,

@ + Wy To + Mg T Kxey (7.10)

should be seen as one piece. One could rescale all variables with random slopes to have a
zero mean (cf. the discussion in Section 5.1.2); this would lead to jx(, = 0 and leave of
this piece only the intercept variance 1:3. In other words, (7.10) is just the intercept variance
after subtracting the mean from all variables with random slopes.

3. The penultimate term, trace (Tn EX@) , is the contribution of the random slopes to the
variance of Y. In the extreme case where all variables Xi, ... , X, would be uncorrelated and
have unit variances, this expression reduces to the sum of squared random slope variances.
This term also could be split into a level-one and a level-two part.

4, Finally, o is the residual level-one variability that can neither be explained on the basis
of the fixed effects, nor on the basis of the latent group characteristics that are represented
by the random intercept and slopes.

7.3 Glommary

Estimated variance parameters. These may go up when variables are added to the hierar-
chical linear model. This seems strange but it is a known property of the hierarchical
linear model, indicating that one should be careful with the interpretation of the fine
details of how the variance in the dependent variable is partitioned across the levels
of the nesting structure.

Explained variance. Denoted by R?, this was defined as the proportional reduction in
mean squared error for predicting the dependent variable, due to the knowledge of the

HOW MUCH DOES THE MODEL EXPLAIN

VS s s o i S SR GO




values of the explanatory variables, This was elaborated for two-level and three-level
random intercept models.

Explained variance in random slope models. In this approach, this is so little different
from R? in random intercept models that it is better for this definition of explained
variance to pay no attention to the distinction between random slope and random
intercept models.

ks ' Components of the variance of the dependent variable. These show how not only the
fixed effects of explanatory variables, reflected in R2, but also the random effects
: contribute to the variance of the dependent variable.
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