
Chapter 15

Mixed Models
A flexible approach to correlated data.

15.1 Overview

Correlated data arise frequently in statistical analyses. This may be due to group-
ing of subjects, e.g., students within classrooms, or to repeated measurements on
each subject over time or space, or to multiple related outcome measures at one
point in time. Mixed model analysis provides a general, flexible approach in these
situations, because it allows a wide variety of correlation patterns (or variance-
covariance structures) to be explicitly modeled.

As mentioned in chapter 14, multiple measurements per subject generally result
in the correlated errors that are explicitly forbidden by the assumptions of standard
(between-subjects) AN(C)OVA and regression models. While repeated measures
analysis of the type found in SPSS, which I will call “classical repeated measures
analysis”, can model general (multivariate approach) or spherical (univariate ap-
proach) variance-covariance structures, they are not suited for other explicit struc-
tures. Even more importantly, these repeated measures approaches discard all
results on any subject with even a single missing measurement, while mixed mod-
els allow other data on such subjects to be used as long as the missing data meets
the so-called missing-at-random definition. Another advantage of mixed models is
that they naturally handle uneven spacing of repeated measurements, whether in-
tentional or unintentional. Also important is the fact that mixed model analysis is
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often more interpretable than classical repeated measures. Finally, mixed models
can also be extended (as generalized mixed models) to non-Normal outcomes.

The term mixed model refers to the use of both fixed and random effects in
the same analysis. As explained in section 14.1, fixed effects have levels that are
of primary interest and would be used again if the experiment were repeated.
Random effects have levels that are not of primary interest, but rather are thought
of as a random selection from a much larger set of levels. Subject effects are almost
always random effects, while treatment levels are almost always fixed effects. Other
examples of random effects include cities in a multi-site trial, batches in a chemical
or industrial experiment, and classrooms in an educational setting.

As explained in more detail below, the use of both fixed and random effects
in the same model can be thought of hierarchically, and there is a very close
relationship between mixed models and the class of models called hierarchical linear
models. The hierarchy arises because we can think of one level for subjects and
another level for measurements within subjects. In more complicated situations,
there can be more than two levels of the hierarchy. The hierarchy also plays out in
the different roles of the fixed and random effects parameters. Again, this will be
discussed more fully below, but the basic idea is that the fixed effects parameters
tell how population means differ between any set of treatments, while the random
effect parameters represent the general variability among subjects or other units.

Mixed models use both fixed and random effects. These correspond
to a hierarchy of levels with the repeated, correlated measurement
occurring among all of the lower level units for each particular upper
level unit.

15.2 A video game example

Consider a study of the learning effects of repeated plays of a video game where
age is expected to have an effect. The data are in MMvideo.txt. The quantitative
outcome is the score on the video game (in thousands of points). The explanatory
variables are age group of the subject and “trial” which represents which time the
subject played the game (1 to 5). The “id” variable identifies the subjects. Note

http://www.stat.cmu.edu/~hseltman/309/Book/data/MMvideo.txt
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the the data are in the tall format with one observation per row, and multiple rows
per subject,

Figure 15.1: EDA for video game example with smoothed lines for each age group.

Some EDA is shown in figure 15.1. The plot shows all of the data points, with
game score plotted against trial number. Smoothed lines are shown for each of
the three age groups. The plot shows evidence of learning, with players improving
their score for each game over the previous game. The improvement looks fairly
linear. The y-intercept (off the graph to the left) appears to be higher for older
players. The slope (rate of learning) appears steeper for younger players.

At this point you are most likely thinking that this problem looks like an AN-
COVA problem where each age group has a different intercept and slope for the
relationship between the quantitative variables trial and score. But ANCOVA
assumes that all of the measurements for a given age group category have uncor-
related errors. In the current problem each subject has several measurements and
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the errors for those measurements will almost surely be correlated. This shows
up as many subjects with most or all of their outcomes on the same side of their
group’s fitted line.

15.3 Mixed model approach

The solution to the problem of correlated within-subject errors in the video game
example is to let each subject have his or her own “personal” intercept (and possibly
slope) randomly deviating from the mean intercept for each age group. This results
in a group of parallel “personal” regression lines (or non-parallel if the slope is
also random). Then, it is reasonable (but not certain) that the errors around
the personal regression lines will be uncorrelated. One way to do this is to use
subject identification as a categorical variable, but this is treating the inherently
random subject-to-subject effects as fixed effects, and “wastes” one parameter for
each subject in order to estimate his or her personal intercept. A better approach
is to just estimate a single variance parameter which represents how spread out
the random intercepts are around the common intercept of each group (usually
following a Normal distribution). This is the mixed models approach.

From another point of view, in a mixed model we have a hierarchy of levels. At
the top level the units are often subjects or classrooms. At the lower level we could
have repeated measurements within subjects or students within classrooms. The
lower level measurements that are within the same upper level unit are correlated,
when all of their measurements are compared to the mean of all measurements for
a given treatment, but often uncorrelated when compared to a personal (or class
level) mean or regression line. We also expect that there are various measured
and unmeasured aspects of the upper level units that affect all of the lower level
measurements similarly for a given unit. For example various subject skills and
traits may affect all measurements for each subject, and various classroom traits
such as teacher characteristics and classroom environment affect all of the students
in a classroom similarly. Treatments are usually applied randomly to whole upper-
level units. For example, some subjects receive a drug and some receive a placebo,
Or some classrooms get an aide and others do not.

In addition to all of these aspects of hierarchical data analysis, there is a vari-
ety of possible variance-covariance structures for the relationships among the lower
level units. One common structure is called compound symmetry, which indicates
the same correlation between all pairs of measurements, as in the sphericity char-
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acteristic of chapter 14. This is a natural way to represent the relationship between
students within a classroom. If the true correlation structure is compound sym-
metry, then using a random intercept for each upper level unit will remove the
correlation among lower level units. Another commonly used structure is autore-
gressive, in which measurements are ordered, and adjacent measurements are more
highly correlated than distant measurements.

To summarize, in each problem the hierarchy is usually fairly obvious, but
the user must think about and specify which fixed effects (explanatory variables,
including transformations and interactions) affect the average responses for all sub-
jects. Then the user must specify which of the fixed effect coefficients are sufficient
without a corresponding random effect as opposed to those fixed coefficients which
only represent an average around which individual units vary randomly. In ad-
dition, correlations among measurements that are not fully accounted for by the
random intercepts and slopes may be specified. And finally, if there are multiple
random effects the correlation of these various effects may need to be specified.

To run a mixed model, the user must make many choices including
the nature of the hierarchy, the fixed effects and the random effects.

In almost all situations several related models are considered and some form of
model selection must be used to choose among related models.

The interpretation of the statistical output of a mixed model requires an under-
standing of how to explain the relationships among the fixed and random effects
in terms of the levels of the hierarchy.

15.4 Analyzing the video game example

Based on figure 15.1 we should model separate linear relationships between trial
number and game score for each age group. Figure 15.2, shows smoothed lines for
each subject. From this figure, it looks like we need a separate slope and intercept
for each age group. It is also fairly clear that in each group there is random subject-
to-subject variation in the intercepts. We should also consider the possibilities that
the “learning trajectory” is curved rather than linear, perhaps using the square of
the trial number as an additional covariate to create a quadratic curve. We should
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Figure 15.2: EDA for video game example with smoothed lines for each subject.
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also check if a random slope is needed. It is also prudent to check if the random
intercept is really needed. In addition, we should check if an autoregressive model
is needed.

15.5 Setting up a model in SPSS

The mixed models section of SPSS, accessible from the menu item “Analyze /
Mixed Models / Linear”, has an initial dialog box (“Specify Subjects and Re-
peated”), a main dialog box, and the usual subsidiary dialog boxes activated by
clicking buttons in the main dialog box. In the initial dialog box (figure 15.3) you
will always specify the upper level of the hierarchy by moving the identifier for
that level into the “subjects” box. For our video game example this is the subject
“id” column. For a classroom example in which we study many students in each
classroom, this would be the classroom identifier.

Figure 15.3: Specify Subjects and Repeated Dialog Box.
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If we want to model the correlation of the repeated measurements for each
subject (other than the correlation induced by random intercepts), then we need to
specify the order of the measurements within a subject in the bottom (“repeated”)
box. For the video game example, the trial number could be appropriate.

Figure 15.4: Main Linear Mixed Effects Dialog Box.

The main “Linear Mixed Models” dialog box is shown in figure 15.4. (Note
that just like in regression analysis use of transformation of the outcome or a
quantitative explanatory variable, i.e., a covariate, will allow fitting of curves.) As
usual, you must put a quantitative outcome variable in the “Dependent Variable”
box. In the “Factor(s)” box you put any categorical explanatory variables (but not
the subject variable itself). In the “Covariate(s)” box you put any quantitative
explanatory variables. Important note: For mixed models, specifying factors
and covariates on the main screen does not indicate that they will be used in the
model, only that they are available for use in a model.

The next step is to specify the fixed effects components of the model, using
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the Fixed button which brings up the “Fixed Effects” dialog box, as shown in
figure 15.5. Here you will specify the structural model for the “typical” subject,
which is just like what we did in ANCOVA models. Each explanatory variable or
interaction that you specify will have a corresponding parameter estimated, and
that estimate will represent the relationship between that explanatory variable and
the outcome if there is no corresponding random effect, and it will represent the
mean relationship if there is a corresponding random effect.

Figure 15.5: Fixed Effects Dialog Box.

For the video example, I specified main effects for age group and trial plus their
interaction. (You will always want to include the main effects for any interaction
you specify.) Just like in ANCOVA, this model allows a different intercept and
slope for each age group. The fixed intercept (included unless the “Include in-
tercept” check box is unchecked) represents the (mean) intercept for the baseline
age group, and the k − 1 coefficients for the age group factor (with k = 3 levels)
represent differences in (mean) intercept for the other age groups. The trial co-
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efficient represents the (mean) slope for the baseline group, while the interaction
coefficients represent the differences in (mean) slope for the other groups relative to
the baseline group. (As in other “model” dialog boxes, the actual model depends
only on what is in the “Model box”, not how you got it there.)

In the “Random Effects” dialog box (figure 15.6), you will specify which param-
eters of the fixed effects model are only means around which individual subjects
vary randomly, which we think of as having their own personal values. Mathemat-
ically these personal values, e.g., a personal intercept for a given subject, are equal
to the fixed effect plus a random deviation from that fixed effect, which is zero on
average, but which has a magnitude that is controlled by the size of the random
effect, which is a variance.

Figure 15.6: Random Effects Dialog Box.
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In the random effects dialog box, you will usually want to check “Include In-
tercept”, to allow a separate intercept (or subject mean if no covariate is used)
for each subject (or each level of some other upper level variable). If you specify
any random effects, then you must indicate that there is a separate “personal”
value of, say, the intercept, for each subject by placing the subject identifier in the
“Combinations” box. (This step is very easy to forget, so get in the habit of doing
this every time.)

To model a random slope, move the covariate that defines that slope into the
“Model” box. In this example, moving trial into the Model box could be used to
model a random slope for the score by trial relationship. It does not make sense
to include a random effect for any variable unless there is also a fixed effect for
that variable, because the fixed effect represents the average value around which
the random effect varies. If you have more than one random effect, e.g., a random
intercept and a random slope, then you need to specify any correlation between
these using the “Covariance Type” drop-down box. For a single random effect,
use “identity”. Otherwise, “unstructured” is usually most appropriate because it
allows correlation among the random effects (see next paragraph). Another choice
is “diagonal” which assumes no correlation between the random effects.

What does it mean for two random effects to be correlated? I will illustrate
this with the example of a random intercept and a random slope for the trial
vs. game score relationship. In this example, there are different intercepts and
slopes for each age group, so we need to focus on any one age group for this
discussion. The fixed effects define a mean intercept and mean slope for that age
group, and of course this defines a mean fitted regression line for the group. The
idea of a random intercept and a random slope indicate that any given subject
will “wiggle” a bit around this mean regression line both up or down (random
intercept) and clockwise or counterclockwise (random slope). The variances (and
therefore standard deviations) of the random effects determine the sizes of typical
deviations from the mean intercept and slope. But in many situations like this
video game example subjects with a higher than average intercept tend to have a
lower than average slope, so there is a negative correlation between the random
intercept effect and the random slope effect. We can look at it like this: the
next subject is represented by a random draw of an intercept deviation and a
slope deviation from a distribution with mean zero for both, but with a negative
correlation between these two random deviations. Then the personal intercept
and slope are constructed by adding these random deviations to the fixed effect
coefficients.
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Some other buttons in the main mixed models dialog box are useful. I rec-
ommend that you always click the Statistics button, then check both “Parameter
estimates” and “Tests for covariance parameters”. The parameter estimates are
needed for interpretation of the results, similar to what we did for ANCOVA (see
chapter 10). The tests for covariance parameters aid in determining which random
effects are needed in a given situation. The “EM Means” button allows generation
of “expected marginal means” which average over all subjects and other treatment
variables. In the current video game example, marginal means for the three video
groups is not very useful because this averages over the trials and the score varies
dramatically over the trials. Also, in the face of an interaction between age group
and trial number, averages for each level of age group are really meaningless.

As you can see there are many choices to be made when creating a mixed model.
In fact there are many more choices possible than described here. This flexibility
makes mixed models an important general purpose tool for statistical analysis, but
suggests that it should be used with caution by inexperienced analysts.

Specifying a mixed model requires many steps, each of which requires
an informed choice. This is both a weakness and a strength of mixed
model analysis.

15.6 Interpreting the results for the video game

example

Here is some of the SPSS output for the video game example. We start with the
model for a linear relationship between trial and score with separate intercepts and
slopes for each age group, and including a random per-subject intercept. Table
15.1 is called “Model Dimension”. Focus on the “number of parameters” column.
The total is a measure of overall complexity of the model and plays a role in model
selection (see next section). For quantitative explanatory variables, there is only
one parameter. For categorical variables, this column tells how many parameters
are being estimated in the model. The “number of levels” column tells how many
lines are devoted to an explanatory variable in the Fixed Effects table (see below),
but lines beyond the number of estimated parameters are essentially blank (with
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Number Covariance Number of Subject
of Levels Structure Parameters Variables

Fixed Intercept 1 1
Effects agegrp 3 2

trial 1 1
agegrp * trial 3 2

Random Effects Intercept 1 Identity 1 id
Residual 1
Total 9 8

Table 15.1: Model dimension for the video game example.

parameters labeled as redundant and a period in the rest of the columns). We
can see that we have a single random effect, which is an intercept for each level
of id (each subject). The Model Dimension table is a good quick check that the
computer is fitting the model that you intended to fit.

The next table in the output is labeled “Information Criteria” and contains
many different measures of how well the model fits the data. I recommend that
you only pay attention to the last one, “Schwartz’s Bayesian Criterion (BIC)”, also
called Bayesian Information Criterion. In this model, the value is 718.4. See the
section on model comparison for more about information criteria.

Next comes the Fixed Effects tables (tables 15.2 and 15.3). The tests of fixed
effects has an ANOVA-style test for each fixed effect in the model. This is nice
because it gives a single overall test of the usefulness of a given explanatory vari-
able, without focusing on individual levels. Generally, you will want to remove
explanatory variables that do not have a significant fixed effect in this table, and
then rerun the mixed effect analysis with the simpler model. In this example, all
effects are significant (less than the standard alpha of 0.05). Note that I converted
the SPSS p-values from 0.000 to the correct form.

The Estimates of Fixed Effects table does not appear by default; it is produced
by choosing “parameter estimates” under Statistics. We can see that age group 40-
50 is the “baseline” (because SPSS chooses the last category). Therefore the (fixed)
intercept value of 14.02 represents the mean game score (in thousands of points)
for 40 to 50 year olds for trial zero. Because trials start at one, the intercepts
are not meaningful in themselves for this problem, although they are needed for
calculating and drawing the best fit lines for each age group.



370 CHAPTER 15. MIXED MODELS

Denominator
Source Numerator df df F Sig.
Intercept 1 57.8 266.0 <0.0005
agegrp 2 80.1 10.8 <0.0005
trial 1 118.9 1767.0 <0.0005
agegrp * trial 2 118.9 70.8 <0.0005

Table 15.2: Tests of Fixed Effects for the video game example.

95% Conf. Int.
Std. Lower Upper

Parameter Estimate Error df t Sig. Bound Bound
Intercept 14.02 1.11 55.4 12.64 <0.0005 11.80 16.24
agegrp=(20,30) -7.26 1.57 73.0 -4.62 <0.0005 -10.39 -4.13
agegrp=(30,40) -3.49 1.45 64.2 -2.40 0.019 -6.39 -0.59
agegrp=(40,50) 0 0 . . . . .
trial 3.32 0.22 118.9 15.40 <0.0005 2.89 3.74
(20,30)*trial 3.80 0.32 118.9 11.77 <0.0005 3.16 4.44
(30,40)*trial 2.14 0.29 118.9 7.35 <0.0005 1.57 2.72
(40,50)*trial 0 0 . . . . .

Table 15.3: Estimates of Fixed Effects for the video game example.
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As in ANCOVA, writing out the full regression model then simplifying tells us
that the intercept for 20 to 30 year olds is 14.02-7.26=6.76 and this is significantly
lower than for 40 to 50 year olds (t=-4.62, p<0.0005, 95% CI for the difference is
4.13 to 10.39 thousand points lower). Similarly we know that the 30 to 40 years
olds have a lower intercept than the 40 to 50 year olds. Again these intercepts
themselves are not directly interpretable because they represent trial zero. (It
would be worthwhile to recode the trial numbers as zero to four, then rerun the
analysis, because then the intercepts would represent game scores the first time
someone plays the game.)

The trial coefficient of 3.32 represents that average gain in game score (in
thousands of points) for each subsequent trial for the baseline 40 to 50 year old
age group. The interaction estimates tell the difference in slope for other age groups
compared to the 40 to 50 year olds. Here both the 20 to 30 year olds and the 30 to
40 year olds learn quicker than the 40 to 50 year olds, as shown by the significant
interaction p-values and the positive sign on the estimates. For example, we are
95% confident that the trial to trial “learning” gain is 3.16 to 4.44 thousand points
higher for the youngest age group compared to the oldest age group.

Interpret the fixed effects for a mixed model in the same way as an
ANOVA, regression, or ANCOVA depending on the nature of the ex-
planatory variables(s), but realize that any of the coefficients that have
a corresponding random effect represent the mean over all subjects,
and each individual subject has their own “personal” value for that
coefficient.

The next table is called “Estimates of Covariance Parameters” (table 15.4). It
is very important to realize that while the parameter estimates given in the Fixed
Effects table are estimates of mean parameters, the parameter estimates in this
table are estimates of variance parameters. The intercept variance is estimated as
6.46, so the estimate of the standard deviation is 2.54. This tells us that for any
given age group, e.g., the oldest group with mean intercept of 14.02, the individual
subjects will have “personal” intercepts that are up to 2.54 higher or lower than
the group average about 68% of the time, and up to 4.08 higher or lower about 95%
of the time. The null hypothesis for this parameter is a variance of zero, which
would indicate that a random effect is not needed. The test statistic is called
a Wald Z statistic. Here we reject the null hypothesis (Wald Z=3.15, p=0.002)
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95% Conf. Int.
Std. Wald Lower Upper

Parameter Estimate Error Z Sig. Bound Bound
Residual 4.63 0.60 7.71 <0.0005 3.59 5.97
Intercept(Subject=id) Variance 6.46 2.05 3.15 0.002 3.47 12.02

Table 15.4: Estimates of Covariance Parameters for the video game example.

and conclude that we do need a random intercept. This suggests that there are
important unmeasured explanatory variables for each subject that raise or lower
their performance in a way that appears random because we do not know the
value(s) of the missing explanatory variable(s).

The estimate of the residual variance, with standard deviation equal to 2.15
(square root of 4.63), represents the variability of individual trial’s game scores
around the individual regression lines for each subjects. We are assuming that
once a personal best-fit line is drawn for each subject, their actual measurements
will randomly vary around this line with about 95% of the values falling within
4.30 of the line. (This is an estimate of the same σ2 as in a regression or ANCOVA
problem.) The p-value for the residual is not very meaningful.

Random effects estimates are variances. Interpret a random effect
parameter estimate as the magnitude of the variability of “personal”
coefficients from the mean fixed effects coefficient.

All of these interpretations are contingent on choosing the right model. The
next section discusses model selection.

15.7 Model selection for the video game example

Because there are many choices among models to fit to a given data set in the mixed
model setting, we need an approach to choosing among the models. Even then,
we must always remember that all models are wrong (because they are idealized
simplifications of Nature), but some are useful. Sometimes a single best model
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is chosen. Sometimes subject matter knowledge is used to choose the most useful
models (for prediction or for interpretation). And sometimes several models, which
differ but appear roughly equivalent in terms of fit to the data, are presented as
the final summary for a data analysis problem.

Two of the most commonly used methods for model selection are penal-
ized likelihood and testing of individual coefficient or variance estimate p-values.
Other more sophisticated methods include model averaging and cross-validation,
but they will not be covered in this text.

15.7.1 Penalized likelihood methods for model selection

Penalized likelihood methods calculate the likelihood of the observed data using
a particular model (see chapter 3). But because it is a fact that the likelihood
always goes up when a model gets more complicated, whether or not the addi-
tional complication is “justified”, a model complexity penalty is used. Several
different penalized likelihoods are available in SPSS, but I recommend using the
BIC (Bayesian information criterion). AIC (Akaike information criterion) is
another commonly used measure of model adequacy. The BIC number penalizes
the likelihood based on both the total number of parameters in a model and the
number of subjects studied. The formula varies between different programs based
on whether or not a factor of two is used and whether or not the sign is changed.
In SPSS, just remember that “smaller is better”.

The absolute value of the BIC has no interpretation. Instead the BIC values
can be computed for two (or more) models, and the values compared. A smaller
BIC indicates a better model. A difference of under 2 is “small” so you might use
other considerations to choose between models that differ in their BIC values by
less than 2. If one model has a BIC more than 2 lower than another, that is good
evidence that the model with the lower BIC is a better balance between complexity
and good fit (and hopefully is closer to the true model of Nature).

In our video game problem, several different models were fit and their BIC
values are shown in table 15.5. Based on the “smaller is better” interpretation, the
(fixed) interaction between trial and age group is clearly needed in the model, as is
the random intercept. The additional complexity of a random slope is clearly not
justified. The use of quadratic curves (from inclusion of a trial2 term) is essentially
no better than excluding it, so I would not include it on grounds of parsimony.
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Interaction random intercept random slope quadratic curve BIC
yes yes no no 718.4
yes no no no 783.8
yes yes no yes 718.3
yes yes yes no 727.1
no yes no no 811.8

Table 15.5: BIC for model selection for the video game example.

The BIC approach to model selection is a good one, although there are some
technical difficulties. Briefly, there is some controversy about the appropriate
penalty for mixed models, and it is probably better to change the estimation
method from the default “restricted maximum likelihood” to “maximum likeli-
hood” when comparing models that differ only in fixed effects. Of course you
never know if the best model is one you have not checked because you didn’t think
of it. Ideally the penalized likelihood approach is best done by running all rea-
sonable models and listing them in BIC order. If one model is clearly better than
the rest, use that model, otherwise consider whether there are important differing
implications among any group of similar low BIC models.

15.7.2 Comparing models with individual p-values

Another approach to model selection is to move incrementally to one-step more or
less complex models, and use the corresponding p-values to choose between them.
This method has some deficiencies, chief of which is that different “best” models
can result just from using different starting places. Nevertheless, this method,
usually called stepwise model selection , is commonly used.

Variants of step-wise selection include forward and backward forms. Forward
selection starts at a simple model, then considers all of the reasonable one-step-
more-complicated models and chooses the one with the smallest p-value for the
new parameter. This continues until no addition parameters have a significant
p-value. Backward selection starts at a complicated model and removes the term
with the largest p-value, as long as that p-value is larger than 0.05. There is no
guarantee that any kind of “best model” will be reached by stepwise methods, but
in many cases a good model is reached.
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15.8 Classroom example

The (fake) data in schools.txt represent a randomized experiment of two different
reading methods which were randomly assigned to third or fifth grade classrooms,
one per school, for 20 different schools. The experiment lasted 4 months. The
outcome is the after minus before difference for a test of reading given to each
student. The average sixth grade reading score for each school on a different
statewide standardized test (stdTest) is used as an explanatory variable for each
school (classroom).

It seems likely that students within a classroom will be more similar to each
other than to students in other classrooms due to whatever school level characteris-
tics are measured by the standardized test. Additional unmeasured characteristics
including teacher characteristics, will likely also raise or lower the outcome for a
given classroom.

Cross-tabulation shows that each classroom has either grade 3 or 5 and either
placebo or control. The classroom sizes are 20 to 30 students. EDA, in the form
of a scatterplot of standardized test scores vs. experimental test score difference
are shown in figure 15.7. Grade differences are represented in color and treatment
differences by symbol type. There is a clear positive correlation of standardized test
score and the outcome (reading score difference), indicating that the standardized
test score was a good choice of a control variable. The clustering of students within
schools is clear once it is realized that each different standardized test score value
represents a different school. It appears that fifth graders tend to have a larger
rise than third graders. The plot does not show any obvious effect of treatment.

A mixed model was fit with classroom as the upper level (“subjects” in SPSS
mixed models) and with students at the lower level. There are main effects for
stdTest, grade level, and treatment group. There is a random effect (intercept) to
account for school to school differences that induces correlation among scores for
students within a school. Model selection included checking for interactions among
the fixed effects, and checking the necessity of including the random intercept. The
only change suggested is to drop the treatment effect. It was elected to keep the
non-significant treatment in the model to allow calculation of a confidence interval
for its effect.

Here are some results:

We note that non-graphical EDA (ignoring the explanatory variables) showed
that individual students test score differences varied between a drop of 14 and a

http://www.stat.cmu.edu/~hseltman/309/Book/data/schools.txt
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Figure 15.7: EDA for school example

Denominator
Source Numerator df df F Sig.
Intercept 1 15.9 14.3 0.002
grade 1 16.1 12.9 0.002
treatment 1 16.1 1.2 0.289
stdTest 1 15.9 25.6 <0.0005

Table 15.6: Tests of Fixed Effects for the school example.
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95% Conf. Int.
Std. Lower Upper

Parameter Estimate Error df t Sig. Bound Bound
Intercept -23.09 6.80 15.9 -3.40 0.004 -37.52 -8.67
grade=3 -5.94 1.65 16.1 -3.59 0.002 -9.45 -2.43
grade=5 0 0 . . . . .
treatment=0 1.79 1.63 16.1 1.10 0.289 -1.67 5.26
treatment=1 0 0 . . . . .
stdTest 0.44 0.09 15.9 5.05 <0.0005 0.26 0.63

Table 15.7: Estimates of Fixed Effects for the school example.

95% Conf. Int.
Std. Wald Lower Upper

Parameter Estimate Error Z Sig. Bound Bound
Residual 25.87 1.69 15.33 <0.0005 22.76 29.40
Intercept(Subject=sc.) Variance 10.05 3.94 2.55 0.011 4.67 21.65

Table 15.8: Estimates of Covariance Parameters for the school example.
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rise of 35 points.

The “Tests of Fixed Effects” table, Table 15.6, shows that grade (F=12.9,
p=0.002) and stdTest (F=25.6, p<0.0005) each have a significant effect on a stu-
dent’s reading score difference, but treatment (F=1.2, p=0.289) does not.

The “Estimates of Fixed Effects” table, Table 15.7, gives the same p-values
plus estimates of the effect sizes and 95% confidence intervals for those estimates.
For example, we are 95% confident that the improvement seen by fifth graders is
2.43 to 9.45 more than for third graders. We are particularly interested in the
conclusion that we are 95% confident that treatment method 0 (control) has an
effect on the outcome that is between 5.26 points more and 1.67 points less than
treatment 1 (new, active treatment).

We assume that students within a classroom perform similarly due to school
and/or classroom characteristics. Some of the effects of the student and school
characteristics are represented by the standardized test which has a standard devi-
ation of 8.8 (not shown), and Table 15.7 shows that each one unit rise in standard-
ized test score is associated with a 0.44 unit rise in outcome on average. Consider
the comparison of schools at the mean vs. one s.d. above the mean of standardized
test score. These values correspond to µstdTest and µstdTest + 8.8. This corresponds
to a 0.44*8.8=3.9 point change in average reading scores for a classroom. In addi-
tion, other unmeasured characteristics must be in play because Table 15.8 shows
that the random classroom-to-classroom variance is 10.05 (s.d.= 3.2 points). In-
dividual student-to-student, differences with a variance 23.1 (s.d. = 4.8 points),
have a somewhat large effect that either school differences (as measured by the
standardized test) or the random classroom-to-classroom differences.

In summary, we find that students typically have a rise in test score over the
four month period. (It would be good to center the stdTest values by subtracting
their mean, then rerun the mixed model analysis; this would allow the Intercept to
represent the average gain for a fifth grader with active treatment, i.e., the baseline
group). Sixth graders improve on average by 5.9 more than third graders. Being in
a school with a higher standardized test score tends to raise the reading score gain.
Finally there is no evidence that the treatment worked better than the placebo.

In a nutshell: Mixed effects models flexibly give correct estimates of
treatment and other fixed effects in the presence of the correlated
errors that arise from a data hierarchy.


