

Multilevel Modeling in R (2.2)
 A Brief Introduction to R, the multilevel package and the nlme package

Paul Bliese (paul.bliese@us.army.mil)

October 28, 2006

Multilevel Models in R 2

Copyright © 2006, Paul Bliese. Permission is granted to make and distribute verbatim copies of
this document provided the copyright notice and this permission notice are preserved on all
copies. For other permissions, please contact Paul Bliese at paul.bliese@us.army.mil.

Chapters 1 and 2 of this document of this document borrow heavily from An Introduction to R
(see the copyright notice below)

An Introduction to R
Notes on R: A Programming Environment for Data Analysis and Graphics
Version 1.1.1 (2000 August 15)
R Development Core Team.
Copyright c 1990, 1992 W. Venables
Copyright c 1997, R. Gentleman & R. Ihaka
Copyright c 1997, 1998 M. M.Achler
Copyright c 1999, 2000 R Development Core Team
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the R Development Core Team

Multilevel Models in R 3

Table of Contents

1 Introduction .. 5
2 An Introduction to R .. 6

2.1 Overview ... 6
2.1.1 Related software and documentation .. 6
2.1.2 R and statistics .. 6
2.1.3 Starting R in a Windows environment.. 7
2.1.4 Data permanency and removing objects ... 7
2.1.5 Running R for Different Projects.. 8
2.1.6 Recall and correction of previous commands... 8
2.1.7 Getting help with functions and features .. 8
2.1.8 R commands, case sensitivity, etc... 9

2.2 Simple manipulations; numbers and vectors ... 9
2.2.1 Vectors and assignment .. 9
2.2.2 Missing values .. 10

2.3 Dataframes... 11
2.3.1 Introduction to dataframes .. 11
2.3.2 Making dataframes.. 11
2.3.3 Using attach() and detach() .. 11
2.3.4 Managing the search path ... 12

2.4 Reading data from files.. 13
2.4.1 Reading Spreadsheet (EXCEL) data... 13
2.4.2 The extremely useful "clipboard" option ... 15
2.4.3 The foreign package and SPSS files ... 15
2.4.4 Using choose.files to bring up a GUI to read data .. 17
2.4.5 Checking your dataframes with str , summary, and head 18
2.4.6 Loading data from packages ... 18
2.4.7 Exporting data to spreadsheets using write() and write.table() 19

2.5 More on using matrix brackets on dataframes... 20
2.6 Identifying Statistical models in R .. 21

2.6.1 Examples... 21
2.6.2 Linear models.. 21
2.6.3 Generic functions for extracting model information .. 22

2.7 Graphical procedures... 23
2.7.1 The plot() function... 23
2.7.2 Displaying multivariate data ... 23
2.7.3 Advanced Graphics and the lattice package .. 24

3 Multilevel Analyses.. 25
3.1 Attaching the multilevel and nlme packages ... 25
3.2 Helpful multilevel data manipulation functions .. 25

3.2.1 The merge Function .. 25
3.2.2 The aggregate function ... 27

3.3 Within-Group Agreement and Reliability ... 28
3.3.1 Agreement: rwg, rwg(j), and r*wg(j) ... 29
3.3.2 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim 32

Multilevel Models in R 4

3.3.3 Average Deviation (AD) Agreement using ad.m.. 35
3.3.4 Significance testing of AD using ad.m.sim .. 37
3.3.5 Agreement: Random Group Resampling... 38
3.3.6 Reliability: ICC(1) and ICC(2) .. 41
3.3.7 Visualizing an ICC(1) with graph.ran.mean .. 42

3.4 Regression and Contextual OLS Models... 44
3.4.1 Contextual Effect Example ... 45

3.5 Correlation Decomposition and the Covariance Theorem .. 46
3.5.1 The waba and cordif functions.. 47
3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba)........................ 48

3.6 Multilevel Random Coefficient modeling... 49
3.6.1 Steps in multilevel modeling .. 50
3.6.2 Some Notes on Centering ... 63

4 Growth Modeling ... 65
4.1 Methodological challenges .. 65
4.2 Data Structure and the make.univ Function ... 66
4.3 Growth Modeling Illustration.. 68

4.3.1 Step 1: Examine the DV .. 70
4.3.2 Step 2: Model Time .. 70
4.3.3 Step 3: Model Slope Variability .. 71
4.3.4 Step 4: Modeling Error Structures ... 71
4.3.5 Step 5: Predicting Intercept Variation.. 73
4.3.6 Step 6: Predicting Slope Variation... 74

5 Miscellaneous Functions .. 76
5.1 Scale reliability: cronbach and item.total ... 76
5.2 Random Group Resampling for OLS Regression Models .. 76
5.3 Estimate multiple ICC values: mult.icc.. 76
5.4 Estimating bias in nested regression models: simbias ... 77
5.5 Detecting mediation effects: sobel and sobel.lme... 77

6 Conclusion.. 77
7 References .. 77

Multilevel Models in R 5

1 Introduction

This is an introduction to how R can be used to perform a wide variety of multilevel analyses.
“Multilevel analysis” has lately become a term to describe random coefficient modeling (see
Bryk & Raudenbush, 1992; Kreft & De leeuw, 1998; Snijders & Bosker, 1999). Without a
doubt, random coefficient models (RCM) are well-suited to multilevel analyses; nonetheless, a
number of multilevel analytic techniques existed before random coefficient modeling emerged as
the tool of choice. In addition, RCM analyses are often augmented by work in related areas such
as work in within-group agreement and group-mean reliability. Consequently, the definition of
multilevel analyses that I use in this document reflects a wide range of inter-related multilevel
topics (see also Klein & Kozlowski, 2000). Specifically, I will cover:

• Within-group agreement and reliability

• Contextual OLS models

• Covariance theorem decomposition

• Random Coefficient Modeling

• Random Group Resampling

Because of the wide variety of topics covered in this definition of multilevel analyses, it is
necessary to use several “packages” written for R. The first of these packages is the “base”
package that comes with R. This package is automatically loaded and provides the basic
structure of R along with routines to estimate ANOVA and regression models important in
contextual OLS models.

In addition to the base package, I will rely heavily on a package that I have developed while
conducting multilevel analyses – the “multilevel” package. This package provides tools to
estimate within-group agreement and reliability; it has routines to conduct Random Group
Resampling (Bliese & Halverson, 2002; Bliese, Halverson & Rothberg, 2000); and it has
routines to conduct covariance theorem decomposition (Robinson, 1950; Dansereau, Alutto &
Yammarino, 1984).

Finally, I will make use of the non-linear and linear mixed-effects (nlme) model package,
(Pinheiro & Bates, 2000). This package is a powerful set of programs that can be used to
estimate a variety of random coefficient models. The programs in the nlme package have
remarkable flexibility, allowing excellent control over statistical models.

The layout of this document is as follows. First I briefly introduce R. The material that I
discuss in this introduction is in many cases lifted word-for-word from the document entitled
“An Introduction to R” (see the copyright notice on page 2). This brief introduction is intended
to give readers a feel for R. Following the introduction to R, I illustrate the use of R in
multilevel analyses.

Multilevel Models in R 6

2 An Introduction to R

2.1 Overview

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. R is a vehicle for developing methods of interactive data analysis. Among other things
it has

• an effective data handling and storage facility,

• a suite of operators for calculations on arrays, in particular matrices,

• a large, integrated collection of tools for data analysis,

• graphical facilities for data analysis and display either directly at the computer or on
hardcopy, and

• a well-developed and effective programming language.

The term "environment" is intended to characterize R as a fully planned and coherent system,
rather than an incremental growth of specific and inflexible tools, as is frequently the case with
other data analysis software.

2.1.1 Related software and documentation

R can be regarded as a re-implementation of the S language developed at AT&T by Rick
Becker, John Chambers and Allan Wilks. A number of the books and manuals about S bear some
relevance to R.

The basic reference is The New S Language: A Programming Environment for Data Analysis
and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The features of the
1991 release of S (S version 3) are covered in Statistical Models in S edited by John M.
Chambers and Trevor J. Hastie. Both of these texts would be highly useful to users of R.

2.1.2 R and statistics

The developers of R think of it as an environment within which many classical and modern
statistical techniques have been implemented. Some of these are built into the base R
environment, but many are supplied as packages. There are a number of packages supplied with
R (called "standard" packages) and many more are available through the CRAN family of
Internet sites (via http://cran.r-project.org).

There is an important difference in philosophy between R and the other main statistical
systems. In R a statistical analysis is normally done as a series of steps with intermediate results
stored in objects. Thus, whereas SAS and SPSS will give copious output from an analysis, R will
give minimal output and store the results in a fit object for subsequent interrogation by functions
such as summary.

For multilevel analyses, we will be interested primarily in two packages. The first is the
multilevel package. This package provides routines to estimate within-group agreement and
reliability indices; it performs Random Group Resampling (RGR), and also has routines to

Multilevel Models in R 7

conduct covariance theorem decomposition of multilevel correlations. As with all other R
packages, the multilevel package is open-source and can be obtained from http://cran.r-
project.org or installed directly using the "packages" GUI option in R.

The second package that will be used for multilevel random coefficient modeling (i.e.,
Hierarchical Linear Modeling) is the mixed-effects package nlme (Pinheiro & Bates, 2000).
This package provides a complete set of resources for estimating random coefficient models.
The nlme package is a standard package available once R is installed.

Finally, we will make use of both the foreign package and the lattice package. The
former provides functions for importing data files from SAS, SPSS, etc. The latter is an
advanced graphical package that allows one to produce production quality graphics.

2.1.3 Starting R in a Windows environment

The CRAN websites and mirrors (http: //cran.r-project.org) provide binary files for installing
R in Windows computing environments. The base program and a number of default packages
can be downloaded and installed using a single executable file (*.exe).

2.1.4 Data permanency and removing objects

In R, one works in an area called the “workspace.” The workspace is a working environment
where objects are created and manipulated. Objects that are commonly kept in the workspace
are (a) entire data sets (i.e. dataframes) and (b) the output of statistical analyses. It is also
relatively common to keep programs (i.e., functions) that do special project-related tasks within
the workspace.

The R commands
> objects()

or

> ls()

display the names of the objects in the workspace. As given above, the objects() command
lists the objects in search position 1 corresponding to the workspace (or technically the
“.GlobalEnv”). The open and closed parentheses containing no content are a shortcut for (1).
It will later become apparent that it is often useful to list objects in other search positions.

Within the workspace, one removes objects using the rm function:
> rm(x, y, ink, temp, foo)

It is important to keep in mind that there are two types of objects listed in the workspace. The
first type of object is permanently stored in the “.Rdata” file in the working directory. The
second type of object is created during the current session. These latter objects reside entirely in
memory unless explicitly written to the “.Rdata” file. In other words, if you fail to save objects
that you create in the current session, they will NOT be there next time you start R.

Multilevel Models in R 8

There are two ways to save current objects, both of which use the save.image function.
First, one can use the “Save Workspace” option from the File menu to specify where to save the
workspace. This option is GUI based, and allows the user to use a mouse to specify a location.
The other option is to call the save.image function directly from the command line, as in:

> save.image("F:/Temp/Project 1.RData")

In this case, the save.image function writes the objects in memory to the “Project 1.Rdata”
file in the TEMP subdirectory on the F: Drive. If calling save.image directly, it is advisable
to end the file name with ".RData" so that R recognizes the file as an R workspace.

2.1.5 Running R for Different Projects

As one develops proficiency with R, the program will inevitably end up being used for
multiple projects. It will become necessary, therefore, to keep separate workspaces. Each
workspace will likely contain one or more related datasets, model results and programs written
for specific projects.

For instance, I often use R to analyze data files for manuscripts that are being written, revised
and (theoretically) eventually published. Often because of the length of the review process I
may go several months between analyses on specific projects. Consequently, I store the R
Workspace in the same location as the manuscript. Therefore, when I return to a revision of a
manuscript, the data and statistical models supporting the manuscript are immediately at hand.
To save workspaces, follow these steps:

1. Keep your initial workspace empty – no objects
2. Import the raw data (more no this later) and perform the analyses.
3. From the File menu, select “Save Workspace” and save the workspace in a project folder.

By working keeping separate workspaces, all data objects and analysis objects will be

available for subsequent analyses and there will be no need to import the data again.

2.1.6 Recall and correction of previous commands

Under Windows, R provides a mechanism for recalling and re-executing previous commands.
The vertical arrow keys on the keyboard can be used to scroll forward and backward through a
command history. Once a command is located in this way, the cursor can be moved within the
command using the horizontal arrow keys, and characters can be removed with the DEL key or
added with the other keys.

2.1.7 Getting help with functions and features

R has a built in help facility. To get more information on any specific named function, for
example solve, the command is

> help(solve)

An alternative is
> ?solve

Multilevel Models in R 9

For a feature specified by special characters, the argument must be enclosed in double or
single quotes, making it a "character string":

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It's important".
Our convention is to use double quote marks for preference.

On most versions of R help is available in html format by running
> help.start()

to launch a Web browser that allows the help pages to be browsed with hyperlinks.

Searches of help files can by conducted using the help.search function. For instance to
find functions related to regression one would type:

> help.search("regression")

2.1.8 R commands, case sensitivity, etc.

Technically R is an expression language with a very simple syntax. It is case sensitive, so “A”
and “a” are different symbols and would refer to different variables.

Elementary commands consist of either expressions or assignments. If an expression is given
as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an
expression and passes the value to a variable but the result is not automatically printed.

Commands are separated either by a semi-colon (‘;’), or by a new line. Elementary commands
can be grouped together into one compound expression by braces (‘{’ .. ‘}’). Comments can be
put almost anywhere, starting with a hashmark (‘#’), everything to the end of the line is a
comment.

If a command is not complete at the end of a line, R will give a different prompt, by default

+

on second and subsequent lines and continue to read input until the command is syntactically
complete. In providing examples, this document will generally omit the continuation prompt and
indicate continuation by simple indenting.

2.2 Simple manipulations; numbers and vectors

2.2.1 Vectors and assignment

R operates on named data structures. The simplest such structure is the numeric vector, which
is a single entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7)

Multilevel Models in R 10

This is an assignment statement using the function c() which in this context can take n
arbitrary number of vector arguments and whose value is a vector gotten by concatenating its
arguments end to end.

A number occurring by itself in an expression is taken as a vector of length one. Notice that
the assignment operator (‘<-‘) consists of the two characters ‘<’ (“less than”) and ‘-’(“minus”)
occurring strictly side-by-side and it ‘points’ to the object receiving the value of the expression.
In current versions of R, assignments can also be made using the = sign.

> x=c(10.4, 5.6, 3.1, 6.4, 21.7)

Assignments can also be made in the other direction, using the obvious change in the
assignment operator. So the same assignment could be made using

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x

If an expression is used as a complete command, the value is printed and lost. So now if we
were to issue the command

> 1/x

the reciprocals of the five values would be printed at the terminal (and the value of x, of course,
unchanged).

The further assignment
> y <- c(x, 0, x)

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle
place.

2.2.2 Missing values

In some cases the components of a vector may not be completely known. When an element or
value is “not available” or a “missing value” in the statistical sense, a place within a vector may
be reserved for it by assigning it the special value NA. In general, any operation on an NA
becomes an NA. The motivation for this rule is simply that if the specification of an operation is
incomplete, the result cannot be known and hence is not available.

Most of the functions in the multilevel package (that we will discuss in detail later) require
data that have no missing values. To create such data, one may make use of the na.exclude
function. The object returned from na.exclude is a new dataframe that has listwise deletion
of missing values. So

> TDATA<-na.exclude(DATA)

will produce a dataframe TDATA that contains no missing values. The TDATA dataframe can
then be used subsequent analyses. We discuss dataframes in more detail in the next section.

Multilevel Models in R 11

2.3 Dataframes

2.3.1 Introduction to dataframes

A dataframe is an object that stores data. Dataframes have multiple columns representing
different variables and multiple rows representing different observations. The columns can be
numeric vectors or non-numeric vectors, however each column must have the same number of
observations. Thus, for all practical purposes one can consider dataframes to be spreadsheets
with the limitation that each column must have the same number of observations.

Dataframes may be displayed in matrix form, and its rows and columns extracted using matrix
indexing conventions. This means, for example, that one can access specific rows and columns
of a dataframe using brackets [rows, columns]. For example to access rows 1-3 and all columns
of a dataframe object named TDAT

> TDAT[1:3,]

To access rows 1:3 and columns 1,5 and 8
> TDAT[1:3,c(1,5,8)]

We will consider matrix bracket manipulations in more detail with a specific example in section
2.5.

2.3.2 Making dataframes

Data frames can be made using the data.frame function. The following example makes a
dataframe object called accountants.

> accountants<-data.frame(home=c("MD","CA","TX"),income=c(45000,
+ 55000,60000),car=c("honda","acura","toyota"))
> accountants
 home income car
1 MD 45000 honda
2 CA 55000 acura
3 TX 60000 toyota

In practice, however, one will generally make dataframes from existing files using data
importing functions such as read.table, read.csv or read.spss. These functions
read data sets from external files and create dataframes. We discuss these types of functions in
section 2.4.

2.3.3 Using attach() and detach()

To access specific components of dataframes, we can use the $ notation. For instance,
accountants$car returns the car vector within the dataframe accountants. Sometimes
it is useful to make the components of a list or dataframe temporarily visible as variables under
their component name, without the need to quote the list name explicitly each time.

The attach() function, as well as having a directory name as its argument, may also have a
dataframe. Thus

Multilevel Models in R 12

> attach(accountants)

places the dataframe in the search path at position 2. In this case if there are no variables home,
income or car in position 1, then the dataframe accountants is searched and home,
income or car are available as variables in their own right. In general, I do not recommend
attaching specific dataframes just so that one can use short names such as "car" instead of the
longer names "accountants$car". While it is theoretically a time saving option, my
experience shows that it can lead to unanticipated consequences when one has fairly complex
workspaces with several objects having similar names. Though a little more time consuming, it
is better to be explicit about where specific objects are located using the $ notation.

To detach a dataframe, use
> detach()

More precisely, this statement detaches from the search path the entity currently at position 2.
Entities at positions greater than 2 on the search path can be detached by giving their number to
detach, but it is much safer to always use a name, for example by detach(accountants).

To make a permanent change to the dataframe itself, the simplest way is to resort once
again to the $ notation:

> accountants$income2<-accountants$income+100
> accountants
 home income car income2
1 MD 45000 honda 45100
2 CA 55000 acura 55100
3 TX 60000 toyota 60100

2.3.4 Managing the search path

The function search shows the current search path and so is a useful way to keep track of
what has been attached. Initially, it gives the global environment in search position 1 followed
by various packages that are automatically loaded (actual results may vary depending upon the
specific version of R).

> search()
[1] ".GlobalEnv" "package:methods" "package:stats"
[4] "package:graphics" "package:utils" "Autoloads"
[7] "package:base"

where .GlobalEnv is the workspace. Basically, the search path means that if you type in an
object such as car the program will look for something named car first in the workspace, then
in the package methods, then in the package stats, etc. Because car does not exist in any
of these places, the following error message will be returned:

> car
Error: Object "car" not found

Multilevel Models in R 13

If one attaches the dataframe accountants; however, the search path changes as follows:

> attach(accountants)
> search()
[1] ".GlobalEnv" "accountants" "package:methods"
[4] "package:stats" "package:graphics" "package:utils"
[7] "Autoloads" "package:base"

In this case, typing car at the command prompt returns:
> car
[1] honda acura toyota
Levels: acura honda toyota

It is often useful to see what objects exist within various components of the search path. The
function objects() with the search position of interest in the parentheses can be used to
examine the contents of any object in the search path. For instance to see the contexts of search
position 2 one types:

> objects(2)

[1] "car" "home" "income" "income2"

Finally, we detach the dataframe and confirm it has been removed from the search path.
> detach("accountants")

> search()

[1] ".GlobalEnv" "package:methods" "package:stats"

[4] "package:graphics" "package:utils" "Autoloads"

[7] "package:base"

2.4 Reading data from files

In R sessions, large data objects will almost always be read from external files and stored as
dataframes. There are several options available to read external files.

If variables are stored in spreadsheets such as EXCEL, entire dataframes can be read directly
using the function read.table() and variants such as read.csv() and read.delim().
The help file for read.table() discusses the variants of read.table() in detail.

If variables are stored in other statistical packages such as SPSS or SAS, then the foreign
package provides some useful programs for importing the data. This document will illustrate
importing spreadsheet data and SPSS data.

2.4.1 Reading Spreadsheet (EXCEL) data

External spreadsheets normally have this form.

• The first line of the file has a name for each variable.

• Each additional line of the file has values for each variable.

So the first few lines of a spreadsheet data might look as follows.

Multilevel Models in R 14

UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1044B 1ST 4 5 5 5 5
1044B 1ST 3 NA 5 5 5
1044B 1ST 2 3 3 3 3
1044B 2ND 3 4 3 4 4
1044B 2ND 4 4 3 4 4
1044B 2ND 3 3 2 2 1
1044C 1ST 3 3 3 3 3
1044C 1ST 3 1 4 3 4
1044C 2ND 3 3 3 3 3
1044C 2ND 2 2 2 3 2
1044C 2ND 1 1 1 3 3

One of the most reliable ways to import any type of data into R is to use EXCEL to process
the data file into a comma delimited (*.csv) format. Note that most statistical packages (SAS,
SPSS) can save data as an EXCEL file. Users who use SPSS and export data to EXCEL may
encounter the error type value marker "#NULL!" for missing values. This value must be
changed to NA as under the second entry under COH02 in the example above to avoid problems
in R. In addition, all blank spaces and any other missing value markers should be replaced with
NA to facilitate dataframe creation.

Once the comma delimited file is created using the “Save As” feature in EXCEL one can
import it into R using either the read.table() or the read.csv() function. For instance,
if the file above is saved as “cohesion.csv” in the root directory of C: (C:\) the function
read.table() can be used to read the dataframe directly

>cohesion<-read.table("c:\\cohesion.csv", "header=T", sep=",")

Alternatively, one can use read.csv()
>cohesion<-read.csv("c:\\cohesion.csv","header=T")

Note that subdirectories are designated using the double slash instead of a single slash, also
recall that R is case sensitive.

Typing in the name of the cohesion object displays all of the data:

> cohesion
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
5 1044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
9 1044C 2ND 3 3 3 3 3

Multilevel Models in R 15

10 1044C 2ND 2 2 2 3 2
11 1044C 2ND 1 1 1 3 3

2.4.2 The extremely useful "clipboard" option
In R, users can directly read and write data to a Windows clipboard. This can be a

tremendous time saving feature for it allows users to export and import data into EXCEL and
other programs without saving intermediate files.

For instance, to read cohesion into R directly from EXCEL, one would:
1. Open the cohesion.xls file in EXCEL
2. Select and copy the relevant cells in Windows
3. Issue the R command:

> cohesion<-read.table(file="clipboard",sep="\t",header=T)

The file "clipboard" instructs read.table to read the file from the Windows

clipboard, and the separator option of "\t" notifies read.table that elements are separated
by tabs.

Because the "clipboard" option also works with write.table, (see section 2.4.7) it can
be a useful way to export the results of data analyses to EXCEL or other programs. For instance,
if we create a correlation matrix from the cohesion data set, we can export this correlation table
directly to EXCEL.

> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs")
> CORMAT
 COH01 COH02 COH03 COH04 COH05
COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426
COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316
COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837
COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961
COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000

> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA)

Going to EXCEL and issuing the "paste" command will put the matrix into the EXCEL

worksheet. Note the somewhat counter-intuitive use of col.names=NA in this example. This
command does not mean omit the column names (that would be achieved by col.names=F),
instead the command puts an extra blank in the first row of the column names to line up the
column names with the correct columns. Alternatively, one can use the option row.names=F
to omit the row numbers.

2.4.3 The foreign package and SPSS files

Included in current versions of R is the “foreign” package. This package contains functions to
import SPSS, SAS, Stata and minitab files.

> library(foreign)

Multilevel Models in R 16

> search()
 [1] ".GlobalEnv" "package:foreign" "package:multilevel"
 [4] "package:methods" "package:stats" "package:graphics"
 [7] "package:grDevices" "package:utils" "package:datasets"
[10] "Autoloads" "package:base"

> objects(2)
 [1] "data.restore" "lookup.xport" "read.dbf" "read.dta"
 [5] "read.epiinfo" "read.mtp" "read.octave" "read.S"
 [9] "read.spss" "read.ssd" "read.systat" "read.xport"
[13] "write.dbf" "write.dta" "write.foreign"

For example, if the data in cohesion is stored in an SPSS sav file in a TEMP directory, then
one could issue the following command to read in the data (text following the # mark is a
comment):

> help(read.spss) #look at the documentation on read.spss
> cohesion2<-read.spss("c:\\temp\\cohesion.sav")
> cohesion2 #look at the cohesion object
$UNIT
 [1] "1044B" "1044B" "1044B" "1044B" "1044B" "1044B" "1044C" "1044C" "1044C"
[10] "1044C" "1044C"
$PLATOON
 [1] "1ST" "1ST" "1ST" "2ND" "2ND" "2ND" "1ST" "1ST" "2ND" "2ND" "2ND"
$COH01
 [1] 4 3 2 3 4 3 3 3 3 2 1
$COH02
 [1] 5 NA 3 4 4 3 3 1 3 2 1
$COH03
 [1] 5 5 3 3 3 2 3 4 3 2 1
$COH04
 [1] 5 5 3 4 4 2 3 3 3 3 3
$COH05
 [1] 5 5 3 4 4 1 3 4 3 2 3
attr(,"label.table")
attr(,"label.table")$UNIT
NULL
attr(,"label.table")$PLATOON
NULL
attr(,"label.table")$COH01
NULL
attr(,"label.table")$COH02
NULL
attr(,"label.table")$COH03
NULL
attr(,"label.table")$COH04
NULL
attr(,"label.table")$COH05
NULL

The cohesion2 object is stored as a list rather than a dataframe. With the default options,
read.spss function imports the file as a list and reads information about data labels. In
almost every case, users will want to convert the list object into a dataframe for manipulation in
R. This can be done using the data.frame command.

> cohesion2<-data.frame(cohesion2)
> cohesion2

Multilevel Models in R 17

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
5 1044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
9 1044C 2ND 3 3 3 3 3
10 1044C 2ND 2 2 2 3 2
11 1044C 2ND 1 1 1 3 3

Alternatively, users can change the default options in read.spss to read the data directly
into a dataframe. Note the use of use.value.labels=F and to.data.frame=T below:

> cohesion2<-read.spss("c:\\temp\\cohesion.sav",
use.value.labels=F, to.data.frame=T)
> cohesion2
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
5 1044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
9 1044C 2ND 3 3 3 3 3
10 1044C 2ND 2 2 2 3 2
11 1044C 2ND 1 1 1 3 3

The cohesion dataframe (made using the EXCEL and csv files) and cohesion2
(imported from SPSS) are now identical.

2.4.4 Using choose.files to bring up a GUI to read data

One limitation with using command lines to specify where files are located is that in complex
directory structures it can be hard to specify the correct location of the data. For instance, if data
are embedded several layers deep in subdirectories, it may be difficult to specify the path. In
these cases, the choose.files function is very handy. The choose.files function opens
a Graphical User Interface (GUI) dialogue box allowing one to select files using the mouse. The
choose.files function can be embedded within any function where one has to specifically
identify a file. So, for instance, one can use choose.files with read.spss:

> cohesion2<-read.spss(choose.files(),
+ use.value.labels=F, to.data.frame=T)

Multilevel Models in R 18

Notice how "choose.files()" replaces "c:\\temp\\cohesion.sav" used in the
final example in section 2.4.3. With the use of choose.files a GUI dialogue box opens, and
one is able to select a specific SPSS sav file using a mouse.

2.4.5 Checking your dataframes with str , summary, and head

With small data sets it is easy to verify that the data has been read in correctly. Often,
however, one will be working with large data sets that are too large to visual verify they have
been read in correctly. Consequently, functions such as str (structure), summary and head
provide easy ways to examine dataframes.

> str(cohesion)
`data.frame': 11 obs. of 7 variables:
$ UNIT : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ...

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ...
 $ COH01 : int 4 3 2 3 4 3 3 3 3 2 ...
 $ COH02 : int 5 NA 3 4 4 3 3 1 3 2 ...
 $ COH03 : int 5 5 3 3 3 2 3 4 3 2 ...
 $ COH04 : int 5 5 3 4 4 2 3 3 3 3 ...
 $ COH05 : int 5 5 3 4 4 1 3 4 3 2 ...

> summary(cohesion)
 UNIT PLATOON COH01 COH02 COH03
 1044B:6 1ST:5 Min. :1.000 Min. :1.00 Min. :1.000
 1044C:5 2ND:6 1st Qu.:2.500 1st Qu.:2.25 1st Qu.:2.500
 Median :3.000 Median :3.00 Median :3.000
 Mean :2.818 Mean :2.90 Mean :3.091
 3rd Qu.:3.000 3rd Qu.:3.75 3rd Qu.:3.500
 Max. :4.000 Max. :5.00 Max. :5.000
 NA's :1.00
 COH04 COH05
 Min. :2.000 Min. :1.000
 1st Qu.:3.000 1st Qu.:3.000
 Median :3.000 Median :3.000
 Mean :3.455 Mean :3.364
 3rd Qu.:4.000 3rd Qu.:4.000
 Max. :5.000 Max. :5.000

> head(cohesion) #list the first six rows of data in a dataframe
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
5 1044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1

2.4.6 Loading data from packages

One of the useful attributes of R is that the data used in the examples are almost always
available to the user. These data are associated with specific packages. For instance, the

Multilevel Models in R 19

multilevel package uses a variety of data files to illustrate specific functions. To gain access to
these data, one uses the data command:

>data(package="multilevel")

This command lists the data sets associated with the multilevel package, and the command

>data(bhr2000, package="multilevel")

copies the bhr2000 data set to the workspace making it possible to work with the bhr2000
dataframe.

If a package has been attached by library, its datasets are automatically included in the search,
so that

>library(multilevel)

attaches the multilevel package;
>data()

lists all of available data sets in the multilevel package and in other packages, and
>data(bhr2000)

copies the data from the package to the workspace.

2.4.7 Exporting data to spreadsheets using write() and write.table()

There are likely to be occasions when it is useful to export data from R to spreadsheets. There
are two functions that are useful for exporting data -- the write function and the
write.table function. The write function is useful when one wants to export a vector
while the write.table function is useful for exporting dataframes or matrices. Below both
will be illustrated.

Let us assume that we were interested in calculating the average hours worked for the 99
companies in the bh1996 data set, and then exporting these 99 group means to a spreadsheet.
To calculate the vector of 99 group means and write them out to a file we can issue the following
commands:

> HRSMEANS<-tapply(bh1996$HRS,bh1996$GRP,mean)

> write(HRSMEANS,file="c:\\temp\\ghours.txt",ncolumns=1)

The tapply command subdivides HRS by GRP, and then performs the function mean on
the HRS data for each group. This command is similar to the aggregate function that will be
discussed in more detail in section 3.2.2. The write function takes the 99 group means stored
in the object HRSMEANS, and writes them to a file in the "c:\temp" subdirectory called
ghours.txt. It is important to use the ncolumns=1 option or else the write function will
default to five columns. The ghours.txt file can be read into any spreadsheet as a vector of 99
values.

Multilevel Models in R 20

The write.table function is similar to the write function, except that one must specify
the character value that will be used to distinguish columns. Common choices include tabs
(designated as \t) and commas. Of these two common choices, commas are likely to be most
useful in exporting dataframes or matrices to spreadsheets because programs like Microsoft
EXCEL automatically read in comma delimited or csv files. Below I export the entire bh1996
dataframe to a comma delimited file that can be read directly into Microsoft EXCEL.

> write.table(bh1996,file="c:\\temp\\bhdat.csv",sep=",",

row.names=F)

Notice the use of the sep="," option and also the row.names=F option. The
row.names=F stops the program from writing an additional column of row names typically
stored as a vector from 1 to the number of rows. Omitting this column is important because it
ensures that the column names match up with the correct columns. Recall from section 2.4.2 that
one can use the "file=clipboard" option to directly write to Window's clipboard.

2.5 More on using matrix brackets on dataframes

At this point, it may be useful to reconsider the utility of using matrix brackets to access
various parts of cohesion (see also section 2.3.1). While this may initially appear
cumbersome, mastering the use of matrix brackets provides considerable control over ones'
dataframe.

Recall that one accesses various parts of the dataframe via [rows, columns]. So, for instance,
we can access rows 1,5,and 8 and columns 3 and 4 of the cohesion dataframe as follows:

> cohesion[c(1,5,8),3:4]
 COH01 COH02
1 4 5
5 4 4
8 3 1

Alternatively, we can specify the column names (this helps avoid picking the wrong columns)

> cohesion[c(1,5,8),c("COH01","COH02")]
 COH01 COH02
1 4 5
5 4 4
8 3 1

It is often useful to pick specific rows that meet some criteria. So, for example, we might want
to pick rows that are from the 1ST PLATOON

> cohesion[cohesion$PLATOON=="1ST",]
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3

Multilevel Models in R 21

7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4

Upon inspection, we might want to further refine our choice and exclude missing values. We do
this by adding another condition using AND operator "&"

> cohesion[cohesion$PLATOON=="1ST"&is.na(cohesion$COH02)==F,]
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
3 1044B 1ST 2 3 3 3 3
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4

By using matrix brackets, one can easily and quickly specify particular portions of a dataframe
that are of interest.

2.6 Identifying Statistical models in R

This section presumes the reader has some familiarity with statistical methodology, in
particular with regression analysis and the analysis of variance. Almost all statistical models
from ANOVA to regression to random coefficient models are specified in a common format.
The format is DV ~ IV1+IV2+IV3. In a regression model this dictates that the dependent
variable (DV) will be regressed on three independent variables. By using + between the IV's, the
model is requesting only main effects. If the IVs were separated by the * sign, it would
designate both main effects and interactions (all two and three-way interactions in this case).

2.6.1 Examples

A few examples may be useful in illustrating some other aspects of model specification.
Suppose y, x, x0, x1 and x2 are numeric variables, and A, B, and C are factors or
categorical variables. The following formulae on the left side below specify statistical models as
described on the right.

y ~ x
y ~ 1 + x Both imply the same simple linear regression model of y on x. The first has an implicit

intercept term, and the second an explicit one.

y ~ A Single classification analysis of variance model of y, with classes determined by A.

Basically a one-way analysis of variance.

y ~ A + x Single classification analysis of covariance model of y, with classes determined by A,

and with covariate x. Basically an analysis of covariance.

2.6.2 Linear models

The basic function for fitting ordinary multiple regression models is lm(), and a streamlined
version of the call is as follows:

Multilevel Models in R 22

> fitted.model <- lm(formula, data = data.frame)

For example
> fm2 <- lm(y ~ x1 + x2, data = production)

would fit a multiple regression model of y on x1 and x2 (with implicit intercept term). The
important but technically optional parameter data = production specifies that any
variables needed to construct the model should come first from the production dataframe. This is
the case regardless of whether the dataframe production has or has not been attached on the
search (see section 2.3.3).

2.6.3 Generic functions for extracting model information

The object created by lm() is a fitted model object; technically a list of results of class "lm".
Information about the fitted model can then be displayed, extracted, plotted and so on by using
generic functions that orient themselves to objects of class "lm". These include:
add1 coef effects kappa predict residuals

alias deviance family labels print step

anova drop1 formula plot proj summary

A brief description of the most commonly used ones is given below.

coefficients(object)

Extract the regression coefficients.
Short form: coef(object).

plot(object)
Produce four plots, showing residuals, fitted values and some diagnostics.

predict(object, newdata=data.frame)
The dataframe supplied must have variables specified with the same labels as
the original. The value is a vector or matrix of predicted values corresponding
to the determining variable values in data.frame.

print(object)
Print a concise version of the object. Most often used implicitly.

residuals(object)
Extract the (matrix of) residuals, weighted as appropriate.
Short form: resid(object).

summary(object)
Print a comprehensive summary of the results of the regression analysis. The summary
function is widely used to extract more information from objects whether the objects
are dataframes or products of statistical functions.

Multilevel Models in R 23

2.7 Graphical procedures

Graphical facilities are an important and extremely versatile component of the R environment.
It is possible to use the facilities to display a wide variety of statistical graphs and also to build
entirely new types of graphs. The graphics facilities can be used in both interactive and batch
modes, but in most cases, interactive use is more productive. Interactive use is also easy because
at startup time R initiates a graphics device driver that opens a special graphics window for the
display of interactive graphics. Although this is done automatically, it is useful to know that the
command used is windows() under Windows. Once the device driver is running, R plotting
commands can be used to produce a variety of graphical displays and to create entirely new
kinds of display.

2.7.1 The plot() function

One of the most frequently used plotting functions in R is the plot() function. This is a
generic function: the type of plot produced is dependent on the type or class of the first
argument.

plot(x, y) If x and y are vectors, plot(x, y) produces a scatterplot of y against x.

plot(df)
plot(~ a+b+c, data=df)
plot(y ~ a+b+c, data=df)

where df is a dataframe. The first example produces scatter plots of all of the
variables in a dataframe. The second produces scatter plots for just the three named
variables (a, b and c). The third example plots y against a, b and c.

2.7.2 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If X is a numeric
matrix or dataframe, the command

> pairs(X)

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is, every
column of X is plotted against every other column of X and the resulting n(n - 1) plots are
arranged in a matrix with plot scales constant over the rows and columns of the matrix.

When three or four variables are involved a coplot may be more enlightening. If a and b are
numeric vectors and c is a numeric vector or factor object (all of the same length), then the
command

> coplot(a ~ b | c)

produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply
means that a is plotted against b for every level of c. When c is numeric, it is divided into a
number of conditioning intervals and for each interval a is plotted against b for values of c within

Multilevel Models in R 24

the interval. The number and position of intervals can be controlled with given.values=
argument to coplot() -- the function co.intervals() is useful for selecting intervals.
You can also use two given variables with a command like

> coplot(a ~ b | c + d)

which produces scatterplots of a against b for every joint conditioning interval of c and d. The
coplot() and pairs() function both take an argument panel= which can be used to
customize the type of plot which appears in each panel. The default is points() to produce a
scatterplot but by supplying some other low-level graphics function of two vectors x and y as the
value of panel= you can produce any type of plot you wish. An example panel function useful
for coplots is panel.smooth().

2.7.3 Advanced Graphics and the lattice package

An advanced graphics package called lattice is included with the base program. The
lattice package is an implementation of trellis graphics designed specifically for R. One of
the keys to using the lattice package is set up an appropriate graphics window in the R
session. It is often useful to set up a graphics window that creates graphs with a white or
transparent background so that graphics can be copied directly into documents and presentations.
Below is an example involving creating a histogram of 1000 random numbers on useful theme
that involves a transparent background (col.whitebg).
> library(lattice)

> trellis.device(device="windows",theme="col.whitebg")

> histogram(rnorm(1000),nint=30,xlab="1000 Random Numbers",

 col="sky blue")

1000 Random Numbers

P
er

ce
nt

 o
f T

ot
al

0

2

4

6

8

10

-2 0 2

Multilevel Models in R 25

3 Multilevel Analyses

In the remainder of this document, I illustrate how one can use R in multilevel modeling. I
begin by illustrating several R functions that I have found to be particularly useful in preparing
the data for subsequent data analysis. After this I illustrate:

• Within-group agreement and reliability

• Contextual OLS models

• Covariance theorem decomposition

• Random Coefficient Modeling

In discussing within-group agreement and the covariance theorem decomposition, I also
include sections on Random Group Resampling (or RGR). RGR is a resampling technique that
is useful in contrasting actual group results to pseudo-group results (see Bliese & Halverson,
2002; Bliese, Halverson & Rothberg, 2000).

3.1 Attaching the multilevel and nlme packages

Several of the features in the following sections assume that the multilevel and nlme
packages are accessible in R. Packages are attached in R using the library command. Thus, to
attach the multilevel package one issues the command:

> library(multilevel)

> library(nlme)

The nlme package comes with the base R package. The multilevel can be obtained from
http://cran.r-project.org or installed directly using the "packages" GUI option in R.

3.2 Helpful multilevel data manipulation functions

3.2.1 The merge Function

One of the key data manipulation tasks that must be accomplished prior to estimating several
of the multilevel models (specifically contextual models and random coefficient models) is that
group-level variables must be “assigned down” to the individual. To make a dataframe
containing both individual and group-level variables, one typically begins with two separate
dataframes. One dataframe contains individual-level data, and the other dataframe contains
group-level data. By combining these two dataframes using a group identifying variable
common to both, one is able to create a single data set containing both individual and group data.
In R, combining dataframes is accomplished using the merge function.

 For instance, let us consider the cohesion data that I introduced when I showed how to
read data from external files. The cohesion data is included as a multilevel data set, so we can
use it without having to use read.csv or read.table (see section 2.4.1).

> data(package="multilevel")
Data sets in package `multilevel':

Multilevel Models in R 26

bhr2000 Bliese Halverson and Rothberg (2000)
 agreement data

bh1996 Bliese and Halversion (1996) data
cohesion Platoon Cohesion file
klein2000 Klein et al. (2000) simulation data
univbct Univariate form data for growth modeling
 examples

To use the cohesion dataframe in the immediate working environment, we issue the
data(cohesion) command:

>data(cohesion)
 >cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
5 1044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
9 1044C 2ND 3 3 3 3 3
10 1044C 2ND 2 2 2 3 2
11 1044C 2ND 1 1 1 3 3

Now assume that we have another dataframe with platoon sizes. We can create this dataframe
as follows:

> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"),
PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3))
> group.size #look at the group.size dataframe
 UNIT PLATOON PSIZE
1 1044B 1ST 3
2 1044B 2ND 3
3 1044C 1ST 2
4 1044C 2ND 3

To create a single file (new.cohesion) that contains both individual and platoon
information, use the merge command.

> new.cohesion<-merge(cohesion,group.size,
 by=c("UNIT","PLATOON"))
> new.cohesion

 UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE
1 1044B 1ST 4 5 5 5 5 3
2 1044B 1ST 3 NA 5 5 5 3
3 1044B 1ST 2 3 3 3 3 3
4 1044B 2ND 3 4 3 4 4 3

Multilevel Models in R 27

5 1044B 2ND 4 4 3 4 4 3
6 1044B 2ND 3 3 2 2 1 3
7 1044C 1ST 3 3 3 3 3 2
8 1044C 1ST 3 1 4 3 4 2
9 1044C 2ND 3 3 3 3 3 3
10 1044C 2ND 2 2 2 3 2 3
11 1044C 2ND 1 1 1 3 3 3

Notice that every individual now has a value for PSIZE – a value that reflects the number of
individuals in the platoon.

3.2.2 The aggregate function

In many cases in multilevel analyses, one will be interested in creating a group-level variable
from individual responses. For example, one might be interested in calculating the group mean
and reassigning it back to the individual. In these cases, the aggregate function in
combination with the merge function is particularly useful. In our cohesion example, for
instance, we want to have the platoon means for variables COH01 and COH02 reassigned back
to the individuals.

The first step in this process is to create a group-level file. Creating this file is where one uses
the aggregate function. The aggregate function has three key arguments. The first
argument is a vector or matrix of variables that one wants to convert to group-level variables.
Second is the grouping variable(s) included as a list, and third is the function (mean, var,
length, etc.) executed on the variables. To calculate the means of COH01 and COH02
(columns 3 and 4 of the cohesion dataframe) issue the command:

>TEMP<-aggregate(cohesion[,3:4],
list(cohesion$UNIT,cohesion$PLATOON),mean)
> TEMP
 Group.1 Group.2 COH01 COH02
1 1044B 1ST 3.000000 NA
2 1044C 1ST 3.000000 2.000000
3 1044B 2ND 3.333333 3.666667
4 1044C 2ND 2.000000 2.000000

Notice that COH02 has an “NA” value for the mean. This is because there was a missing
value in the individual-level file. If we decide to base the group mean on the non-missing group
values we can add the parameter na.rm=T, to designate that NA values should be removed
prior to calculating the group mean.

> TEMP<-aggregate(cohesion[,3:4],
list(cohesion$UNIT,cohesion$PLATOON),mean,na.rm=T)
> TEMP
 Group.1 Group.2 COH01 COH02
1 1044B 1ST 3.000000 4.000000
2 1044C 1ST 3.000000 2.000000
3 1044B 2ND 3.333333 3.666667

Multilevel Models in R 28

4 1044C 2ND 2.000000 2.000000

To merge the TEMP dataframe with the new.cohesion dataframe, we must change the
names of the group identifiers in the TEMP frame to match the group identifiers in the
new.cohesion dataframe. We also want to change the names of COH01 and COH02 to
reflect the fact that they are group means. We will use “G.” to designate group mean.

> names(TEMP)<-c("UNIT","PLATOON","G.COH01","G.COH02")

Finally, we merge TEMP up with new.cohesion to get the complete data set.

> final.cohesion<-merge(new.cohesion,TEMP,
by=c("UNIT","PLATOON"))
> final.cohesion
 UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE G.COH01 G.COH02
1 1044B 1ST 4 5 5 5 5 3 3.000000 4.000000
2 1044B 1ST 3 NA 5 5 5 3 3.000000 4.000000
3 1044B 1ST 2 3 3 3 3 3 3.000000 4.000000
4 1044B 2ND 3 4 3 4 4 3 3.333333 3.666667
5 1044B 2ND 4 4 3 4 4 3 3.333333 3.666667
6 1044B 2ND 3 3 2 2 1 3 3.333333 3.666667
7 1044C 1ST 3 3 3 3 3 2 3.000000 2.000000
8 1044C 1ST 3 1 4 3 4 2 3.000000 2.000000
9 1044C 2ND 3 3 3 3 3 3 2.000000 2.000000
10 1044C 2ND 2 2 2 3 2 3 2.000000 2.000000
11 1044C 2ND 1 1 1 3 3 3 2.000000 2.000000

With the aggregate and merge functions, one has the tools necessary to manipulate data
and prepare it for subsequent multilevel analyses (excluding growth modeling which I consider
later). Note that I have illustrated a relatively complex situation where there are two levels of
nesting (Unit and Platoon). In cases where there is only one grouping variable (for example,
UNIT) the commands for aggregate and merge contain the name of a single grouping
variable. For instance,

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T)

3.3 Within-Group Agreement and Reliability

The data used in this section are taken from Bliese, Halverson & Rothberg (2000). The
examples are based upon the bhr2000 data set from the multilevel package. Thus, the first step
is to examine the bhr2000 data set and make it available for analysis.

> help(bhr2000)
> data(bhr2000,package="multilevel")#puts data in working environment
> names(bhr2000)
 [1] "GRP" "AF06" "AF07" "AP12" "AP17" "AP33" "AP34"
 "AS14" "AS15" "AS16" "AS17" "AS28" "HRS" "RELIG"
> nrow(bhr2000)
[1] 5400

Multilevel Models in R 29

The names function tells us that there are 14 variables. The first one, GRP, is the group
identifier. The variables in columns 2 through 12 are individual responses on 11 items that make
up a leadership scale. HRS represents individuals’ reports of work hours, and RELIG represents
individuals’ reports of the degree to which religion is a useful coping mechanism. The nrow
command indicates that there are 5400 observations. To find out how many groups there are we
can use the length command in conjunction with the unique command

> length(unique(bhr2000$GRP))

[1] 99

There are several functions in the multilevel library that are useful for estimating and
interpreting agreement indices. These functions are rwg, rwg.j, rwg.sim, rwg.j.sim,
rwg.j.lindell, ad.m, ad.m.sim and rgr.agree. The rwg function estimates the
James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function estimates the
James et al. (1984) rwg(j) for multi-item scales. The rwg.j.lindell function estimates r*wg(j)
(Lindell, & Brandt, 1997; 1999). The ad.m function estimates average deviation (AD) values
for the mean or median (Burke, Finkelstein & Dusig, 1999). A series of functions with “sim” in
the name (rwg.sim, rwg.j.sim and ad.m.sim) allow one to simulate agreement values
from a random uniform distribution to test for statistical significance agreement. The simulation
functions are based on work by Dunlap, Burke and Smith-Crowe (2003); Cohen, Doveh and Eich
(2001) and Cohen, Doveh and Nuham-Shani (in press). Finally, the rgr.agree function
performs a Random Group Resampling (RGR) agreement test (see Bliese, et al., 2000).

In addition to the agreement measures, there are two multilevel reliability measures, ICC1
and ICC2 than can be used on ANOVA models. As Bliese (2000) and others (e.g., Kozlowski
& Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1)
and ICC(2) are fundamentally different from agreement measures; nonetheless, they often
provide complementary information to agreement measures, so in this section, we illustrate the
use of each of these functions with the dataframe bhr2000.

3.3.1 Agreement: rwg, rwg(j), and r*wg(j)

Both the rwg and rwg.j functions are based upon the formulations described in James et al.
(1984). Both functions require the user to specify three pieces of information. The first piece of
information is the variable of interest (x), the second is the grouping variable (grpid), and third
is the estimate of the expected random variance (ranvar). The default estimate of ranvar is
2, which is the expected random variance based upon the rectangular distribution for a 5-point
item (i.e., σEU

2). See help(rwg), James et al., (1984), or Bliese et al., (2000) for details on
selecting appropriate ranvar values.

To use the rwg function to estimate agreement for the comfort from religion item (RELIG in
the bhr2000 dataframe) one would issue the following commands.

> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2)
> RWG.RELIG[1:10,] #examine first 10 rows of data
 grpid rwg gsize

Multilevel Models in R 30

1 1 0.11046172 59
2 2 0.26363636 45
3 3 0.21818983 83
4 4 0.31923077 26
5 5 0.22064137 82
6 6 0.41875000 16
7 7 0.05882353 18
8 8 0.38333333 21
9 9 0.14838710 31
10 10 0.13865546 35

This returns a dataframe with three columns. The first column contains the group names
(grpid), the second column contains the 99 rwg estimates – one for each group. The third
column contains the group size. To calculate the mean rwg value use the summary command:

> summary(RWG.RELIG)
 grpid rwg gsize
 1 : 1 Min. :0.0000 Min. : 8.00
 10 : 1 1st Qu.:0.1046 1st Qu.: 29.50
 11 : 1 Median :0.1899 Median : 45.00
 12 : 1 Mean :0.1864 Mean : 54.55
 13 : 1 3rd Qu.:0.2630 3rd Qu.: 72.50
 14 : 1 Max. :0.4328 Max. :188.00
 (Other):93

The summary command informs us that the average rwg value is .186 and the range is from 0
to 0.433. By convention, values at or above 0.70 are considered good agreement, so there
appears to be low agreement among individuals with regard to religion. The summary
command also provides information about the group sizes.

 Other useful options might include sorting the values or examining the values in a histogram.
Recall that the notation [,2] selects all rows and the second column of the RWG.RELIG object
– the column with the rwg results.

> sort(RWG.RELIG[,2])

> hist(RWG.RELIG[,2])

To estimate rwg for work hours, we need to change the expected random variance (EV). Work
hours was asked using an 11-point item, so EV based on the rectangular distribution (σEU

2) is
10.00 (σEU

2=(112-1)/12) – see the rwg help file for details).

> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00)
> mean(RWG.HRS[,2])
[1] 0.7353417

Multilevel Models in R 31

There is apparently much higher agreement about work hours than there was about whether
group members received comfort from religion in this sample. By convention, this mean value
would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide
evidence of agreement.

The use of the rwg.j function is nearly identical to the use of the rwg function except that
the first argument to rwg.j is a matrix instead of a vector. In the matrix, each column
represents one item in the multi-item scale, and each row represents an individual response. For
instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale. The
items were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the
expected random variance is 2.

> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2)
> summary(RWGJ.LEAD)
 grpid rwg.j gsize
 1 : 1 Min. :0.7859 Min. : 8.00
 10 : 1 1st Qu.:0.8708 1st Qu.: 29.50
 11 : 1 Median :0.8925 Median : 45.00
 12 : 1 Mean :0.8876 Mean : 54.55
 13 : 1 3rd Qu.:0.9088 3rd Qu.: 72.50
 14 : 1 Max. :0.9440 Max. :188.00
 (Other):93

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt &
Whitney, 1999) have raised important concerns about the mathematical underpinnings of the
rwg(j) formula. Specifically, they note that this formula is based upon the Spearman-Brown
reliability estimator. Generalizability theory provides a basis to believe that reliability should
increase as the number of measurements increase, so the Spearman-Brown formula is defensible
for measures of reliability. There may be no theoretical grounds, however, to believe that
generalizability theory applies to measures of agreement. That is, there may be no reason to
believe that agreement should increase as the number of measurements increase (but also see
LeBreton, James & Lindell, 2005).

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the
r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into
the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group
Variance/Expected Random Variance). Note that Lindell and colleagues also recommend
against truncating the Observed Group Variance value so that it matches the Expected Random
Variance value in cases where the observed variance is larger than the expected variance. This
results in a case where r*wg(j) values can take on negative values. We can use the function
rwg.j.lindell to estimate the r*wg(j) values for leadership.

> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12],
bhr2000$GRP,ranvar=2)
> summary(RWGJ.LEAD.LIN)
 grpid rwg.lindell gsize

Multilevel Models in R 32

 1 : 1 Min. :0.2502 Min. : 8.00
 10 : 1 1st Qu.:0.3799 1st Qu.: 29.50
 11 : 1 Median :0.4300 Median : 45.00
 12 : 1 Mean :0.4289 Mean : 54.55
 13 : 1 3rd Qu.:0.4753 3rd Qu.: 72.50
 14 : 1 Max. :0.6049 Max. :188.00
 (Other):93

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed
earlier.

3.3.2 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim

As noted in section 3.3.1, rwg and rwg(j) values at or above .70 are conventionally considered
providing evidence of within-group agreement. A series of studies by Charnes and Schriesheim
(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen,
Doveh and Nahum-Shani (in press) lay the groundwork for establishing tests of statistical
significance for rwg and rwg(j). The basic idea behind these simulations is to draw observations
from a known distribution (generally a uniform random null), and repeatedly estimate rwg or
rwg(j). Because the observations are drawn from a uniform random null, rwg or rwg(j) estimates will
frequently be zero. Occasionally, however, the rwg or rwg(j) values will be larger than zero
because of the pattern of random numbers drawn. Repeatedly drawing random numbers and
estimating rwg and rwg(j) provides a way to calculate expected values and confidence intervals.

The simulations conducted by Cohen et al., (2001) varied a number of parameters, but the two
found to be most important for the expected value of the rwg(j) were (a) group size and (b) the
number of items. Indeed, Cohen et al., (2001) found that expected rwg(j) values vary considerably
as a function of group size and number of items. This implies that the conventional value of .70
may be a reasonable cut-off value for significance with some configurations of group sizes and
items, but may not be reasonable for others. Thus, they recommended researchers simulate
parameters based on the specific characteristics of the researchers' samples when determining
whether rwg(j) values are significant.

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg
using the idea of simulating null distributions. Their work showed that the 95% confidence
interval for the single item measure varied as a function of (a) group size and (b) the number of
response options. In the case of 5 response options (e.g., strongly disagree, disagree, neither,
agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3
to 0.12 for a group of 150. That is, one would need an rwg estimate of 1.00 with groups of size
three to be 95% certain the groups agreed more than chance levels, but with groups of size 150
any value equal to or greater than 0.12 would represent significant agreement.

The function rwg.sim provides a way to replicate the results presented by Dunlap and
colleagues. For instance, to estimate the 95% confidence interval for a group of size 10 on an
item with 5 response options one would provide the following parameters to the rwg.sim
function:

> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000)

Multilevel Models in R 33

> summary(RWG.OUT)
$rwg
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.0000 0.0000 0.0000 0.1221 0.2167 0.8667

$gsize
[1] 10
$nresp
[1] 5
$nitems
[1] 1
$rwg.95
[1] 0.5277778

The results in the preceding example are based on 10,000 simulation runs. In contrast,
Dunlap et al., (2003) used 100,000 simulation runs. Nonetheless, both Table 2 from Dunlap et
al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a
group of size 10 with five response options. Note that a replication of these results may produce
slightly different values.

Because the estimation of rwg in the simulations produces a limited number of possible
responses, the typical methods for establishing confidence intervals (e.g., the generic function
quantile) cannot be used. Thus, the multilevel package provides a quantile method for
the objects of class agree.sim created using rwg.sim. To obtain 90%, 95% and 99%
confidence interval estimates (or any other values) one would issue the following command:

> quantile(RWG.OUT,c(.90,.95,.99))
 quantile.values confint.estimate
1 0.90 0.4222222
2 0.95 0.5277778
3 0.99 0.6666667

Cohen et al. (in press) expanded upon the work of Dunlap et al., (2003) and the early work by
Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to
multiple item scales in the case of rwg(j) values. The function rwg.j.sim is based upon the
work of Cohen et al., (in press) and simulates rwg(j) values from a uniform null distribution for
user supplied values of (a) group size, (b) number of items in the scale, and (c) number of
response options on the items. The user also provides the number of simulation runs
(repetitions) upon which to base the estimates. In most cases, the number of simulation runs will
be 10,000 or more although the examples illustrated here will be limited to 1,000. The final
optional argument to rwg.j.sim is itemcors. If this argument is omitted, the simulated
items used to comprise the scale are assumed to be independent (non-correlated). If the
argument is provided, the items comprising the scale are simulated to reflect a given
correlational structure. Cohen et al., (2001) showed that results based on independent (non-
correlated) items were similar to results based on correlated items; nonetheless, the model with
correlated items is more realistic and thereby preferable (see Cohen et al., in press). Estimating

Multilevel Models in R 34

models with a correlational structure requires the MASS package in addition to the
multilevel package.

For an example of using rwg.j.sim with non-correlated items, consider a case where a
researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where
group size was 15 using a 7-item scale with 5 response options for the items (A=5). The call to
rwg.j.sim would be:

> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000)
> summary(RWG.J.OUT)
$rwg.j
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.009447 0.161800 0.333900 0.713700
$gsize
[1] 15
$nresp
[1] 5
$nitems
[1] 7
$rwg.j.95
[1] 0.5559117

In this example, the upper expected 95% confidence interval is 0.56. This is lower than 0.70,
and suggests that in this case the value of 0.70 might be too stringent. Based on this simulation,
one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).
Note that if one replicates this example one will get slightly different results because each run is
based on slightly different combinations of randomly generated numbers. Using the simulation,
one can show that as group size increases and the number of items increase, the criteria for what
constitutes significant agreement decreases.

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will
examine whether group members agreed about three questions specific to mission importance in
the lq2002 data set. This data set was also analyzed in Cohen et al., in press. We first begin
by estimating the mean rwg(j) for the 49 groups in the sample. Notice that the mean estimate for
rwg(j) is .58. This value is below the .70 conventional criteria and suggests a lack of agreement.

> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")],
 lq2002$COMPID,ranvar=2)
> summary(RWG.J)
 grpid rwg.j gsize
 10 : 1 Min. :0.0000 Min. :10.00
 13 : 1 1st Qu.:0.5099 1st Qu.:18.00
 14 : 1 Median :0.6066 Median :30.00
 15 : 1 Mean :0.5847 Mean :41.67
 16 : 1 3rd Qu.:0.7091 3rd Qu.:68.00
 17 : 1 Max. :0.8195 Max. :99.00
 (Other):43

Multilevel Models in R 35

To determine whether the value of .58 is significant, one can use the rwg.j.sim function
using item correlations and average group size (41.67 rounded to 42). In this case, notice the
simulation suggests that a value of .35 is significant suggesting significant agreement. For
illustrations of how the simulations might be used in a group-by-group basis see Cohen et al., (in
press).

> library(MASS)
> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5,
 itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]),
 nrep=1000)
> summary(RWG.J.OUT)
$rwg.j
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.007224 0.088520 0.162500 0.548600
$gsize
[1] 42
$nresp
[1] 5
$nitems
[1] 3
$rwg.j.95
[1] 0.346875

3.3.3 Average Deviation (AD) Agreement using ad.m

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as
measures of within-group agreement. Cohen et al., in press note that AD indices are also
referred to as Mean or Median Average Deviation or MAD. AD indices are calculated by first
computing the absolute deviation of each observation from the mean or median. Second, these
absolute deviations are averaged to produce a single AD estimate for each group. The formula
for AD calculation on a single item is:

AD = Σ|xij - Xj|/N

where xij represents an individual observation (i) in group j; Xj represents the group mean or
median, and N represents the group size. When AD is calculated on a scale, the AD formula
above is estimated for each item on the scale, and each item's AD value is averaged to compute
the scale AD score.

AD values are considered practically significant when the values are less than A/6 where A
represents the number of response options on the item. For instance, A is 5 when items are asked
on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format.

The function ad.m is used to compute the average deviation of the mean or median. The
function requires the two arguments, x and grpid. The x argument represents the item or scale
upon which one wants to estimate the AD value. The ad.m function determines whether x is a
vector (single item) or multiple item matrix or data frame (multiple item scale), and performs the
AD calculation appropriate for the type of variable. The second function, grpid, is a vector

Multilevel Models in R 36

containing the group ids of the x argument. The third argument is optional. The default value is
to compute the Average Deviation of the mean. The other option is to change the type
argument to "median" and compute the Average Deviation of the median.

 For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a
leadership scale. The items were assessed using 5-point response options (Strongly Disagree to
Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.833. The AD
estimates based on the mean for the first five groups and the overall sample in the bhr2000
data set are provided below:

> data(bhr2000)
> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP)
> AD.VAL[1:5,]
 grpid AD.M gsize
1 1 0.8481366 59
2 2 0.8261279 45
3 3 0.8809829 83
4 4 0.8227542 26
5 5 0.8341355 82
> mean(AD.VAL[,2:3])
 AD.M gsize
 0.8690723 54.5454545

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about
ratings of leadership. The overall AD estimate is 0.87, which is also higher than 0.83 and
suggests a general lack of agreement.

The AD value estimated using the median instead of the mean, in contrast, suggests
practically significant agreement for the sample as a whole.

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median")
> mean(AD.VAL[,2:3])
 AD.M gsize
 0.8297882 54.5454545

To use the ad.m function for single item variables such as the work hours (HRS) variable in
the bhr2000 data set it is only necessary to provide a vector instead of a matrix as the first
argument to the ad.m function. Recall the work hours variable is asked on an 11-point response
format scale so practical significance is 11/6 or 1.83. The average observed value of 1.25
suggests agreement about work hours.

> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP)
> mean(AD.VAL.HRS[,2:3])
 AD.M gsize
 1.249275 54.545455

Multilevel Models in R 37

3.3.4 Significance testing of AD using ad.m.sim

The function ad.m.sim is used simulate AD values and test for significance of various
combinations of group size, number of response options and number of items in multiple-item
scales. The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to
test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg,
the ad.m.sim function works with both single items and multiple-item scales.

The ad.m.sim function is based upon the work of Cohen et al. (in press) and of Dunlap et
al., (2003). The function simulates AD values from a uniform null distribution for user supplied
values of (a) group size, (b) number of items in the scale, and (c) number of response options on
the items. Based on Cohen et al. (in press), the final optional parameter allows one to include
correlations among items when simulating multiple-item scales. The user also provides the
number of simulation runs (repetitions) upon which to base the estimates. In most cases, the
number of simulation runs will be 10,000 or more although the examples illustrated here will be
limited to 1,000.

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000
dataframe. Recall the AD value based on the mean suggested that groups failed to agree about
leadership. In contrast, the AD value based on the median suggested that groups agreed. To
determine whether the overall AD value based on the mean is statistically significant, one can
simulate data matching the characteristics of the bhr2000 sample:

> library(MASS)
> AD.SIM<-

ad.m.sim(gsize=55,nresp=5,itemcors=cor(bhr2000[,2:12]),
+ type="mean",nrep=1000)
> summary(AD.SIM)
$ad.m
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1.087 1.182 1.208 1.209 1.236 1.340

$gsize
[1] 55

$nresp
[1] 5

$nitems
[1] 11

$ad.m.05
[1] 1.138212

$pract.sig
[1] 0.8333333

Multilevel Models in R 38

The simulation suggests that any AD mean value less than or equal to 1.14 is statistically
significant. Thus, while the AD value for the leadership items (0.87) may not meet the criteria
for practical significance, it does for statistical significance. As with the rwg simulation
functions, the ad.m.sim function has a specifically associated quantile function to identify
different cut-off points. The example below illustrates how to identify values corresponding to
the .90 (.10), .95 (.05) and .99 (.01) significance levels. That is, to be 99% certain that a value
was significant, it would need to be smaller than or equal to 1.114.

> quantile(AD.SIM,c(.10,.05,.01))
 quantile.values confint.estimate
1 0.10 1.155763
2 0.05 1.138212
3 0.01 1.114170

3.3.5 Agreement: Random Group Resampling

The final agreement related function in the multilevel library is rgr.agree. In some ways
this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to
draw inferences about agreement. The difference is that the rgr.agree function uses the
actual group data, while the rwg.j.sim function simulates from an expected distribution (the
uniform null).

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and
calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of
significance to determine whether actual group and pseudo group variances differ. To use
rgr.agree, one must provide three variables. The first is a vector representing the variable
upon which one wishes to estimate agreement. The second is group membership (grpid). The
third parameter is the number of pseudo groups that one wants to create.

The third parameter requires a little explanation, because in many cases the number of pseudo
groups returned in the output will not exactly match the third parameter. For instance, in our
example, we will request 1000 pseudo groups, but the output will return only 990. This is
because the rgr.agree algorithm creates pseudo groups that are identical in size
characteristics to the actual groups. In so doing, however, the algorithm creates sets of pseudo
groups in “chunks.” The size of each chunk is based upon the size of the number of actual
groups. So, for instance, if there are 99 actual groups, then the total number of pseudo groups
must be evenly divisible by 99. Nine-hundred-and-ninety is evenly divisible by 99, while 1000
is not. Rather than have the user determine what is evenly divisible by the number of groups,
rgr.agree will do this automatically. Below is an example of using rgr.agree on the
work hours variable.

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000)

The first step is to create an RGR Agreement object named RGR.HRS. The object contains a
number of components. In most cases, however, users will be interested in the estimated z-value
indicating whether the within-group variances from the actual groups are smaller than the
variances from the pseudo groups. A useful way to get this information is to use the summary

Multilevel Models in R 39

command. When summary is applied to the RGR agreement object it provides standard
deviations, variance estimates, an estimate of the z-value, and upper and lower confidence
intervals.

> summary(RGR.HRS)
$"Summary Statistics for Random and Real Groups"
 N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z-value
1 990 3.322772 0.762333 2.646583 -8.82554

$"Lower Confidence Intervals (one-tailed)"
 0.5% 1% 2.5% 5% 10%
1.648162 1.795134 1.974839 2.168830 2.407337

$"Upper Confidence Intervals (one-Tailed)"
 90% 95% 97.5% 99% 99.5%
4.251676 4.545078 4.832813 5.642410 5.845143

The first section of the summary provides key statistics for contrasting within-group variances
from real group with within-group variances from random groups. The second and third sections
provide lower and upper confidence intervals. Keep in mind that if one replicates this example
one is likely to get slightly different results. This is because the rgr.agree function uses a
random number generator to create pseudo groups; thus, the results are partially a product of the
specific numbers used in the random number generator. While the exact numbers may differ, the
conclusions drawn should be nearly identical.

Notice in the first section that although we requested 1000 random groups, we got 990 (for
reasons described previously). The first section also reveals that the average within-group
variance for the random groups was 3.32 with a Standard Deviation of 0.76. In contrast, the
average within-group variance for the real groups was considerably smaller at 2.65. The
estimated z-value suggests that, overall, the within-group variances in ratings of work hours from
real groups were significantly smaller than the within-group variances from the random groups.
This suggests that group members agree about work hours. Recall that a z-value greater than or
less than 1.96 signifies significance at p<.05, two-tailed.

The upper and lower confidence interval information allows one to estimate whether specific
groups do or do not display agreement. For instance, only 5% of the pseudo groups had a
variance less than 2.17. Thus, if we observed a real group with a variance smaller than 2.17, we
could be 95% confident this group variance was smaller than the variances from the pseudo
groups. Likewise, if we want to be 90% confident we were selecting groups showing
agreement, we could identify real groups with variances less than 2.41.

To see which groups meet this criterion, use the tapply function in conjunction with the
sort function. The tapply function partitions the first variable by the level of the second
variable performs the specified function much like the aggregate function (see section 3.2.2).
Thus, tapply(HRS,GRP,var) partitions HRS into separate Groups (GRP), and calculates
the variance for each group (var). Using sort in front of this command simply makes the
output easier to read.

Multilevel Models in R 40

> sort(tapply(bhr2000$HRS,bhr2000$GRP,var))

 33 43 38 19 6 39 69 17

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282

 20 99 98 44 4 53 61 63

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430

 66 14 76 71 21 18 59 50

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667

 48 60 83 8 22 2 75 11

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947

 96 23 54 47 55 26 74 57

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858

 45 97 64 35 32 41 1 24

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678

 82 37 81 68 42 73 34 25

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000

 93 62 92 12 40 88 5 29

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616

 85 70 77 51 3 13 79 87

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569

 7 95 78 84 46 27 36 15

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287

 89 16 58 49 9 31 90 72

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714

 91 80 86 10 94 28 30 56

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707

 65 52 67

4.7537594 5.2252964 5.3168148

If we starting counting from group 33 (the group with the lowest variance of 0.82) we find 46
groups with variances smaller than 2.41. That is, we find 46 groups that have smaller than
expected variance using the 90% confidence estimate.

It may also be interesting to see what a “large” variance is when defined in terms of pseudo
group variances. This information is found in the third part of the summary of the RGR.HRS
object. A variance of 4.55 is in the upper 95% of all random group variances. Given this
criterion, we have five groups that meet or exceed this standard. In an applied setting, one might
be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.
That is, one might be interested in determining what drives certain groups to have very large
differences in how individuals perceive work hours.

Finally, for confidence intervals not given in the summary, one can use the quantile
function with the random variances (RGRVARS) in the RGR.HRS object. For instance to get the
lower .20 confidence interval:

Multilevel Models in R 41

> quantile(RGR.HRS$RGRVARS, c(.20))
 20%
2.695619

Note that rgr.agree only works on vectors. Consequently, to use rgr.agree with the
leadership scale we would need to create a leadership scale score. We can do this using the
rowMeans function. We will create a leadership scale (LEAD) and put it in the bhr2000
dataframe, so the specific command we issue is:

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12])

Now that we have created a leadership scale score, we can perform the RGR agreement
analysis on the variable.

> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000))

$"Summary Statistics for Random and Real Groups"
 N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z-value
1 990 0.6011976 0.1317229 0.5156757 -6.46002

$"Lower Confidence Intervals (one-tailed)"
 0.5% 1% 2.5% 5% 10%
0.2701002 0.3081618 0.3605966 0.3939504 0.4432335

$"Upper Confidence Intervals (one-Tailed)"
 90% 95% 97.5% 99% 99.5%
0.7727185 0.8284755 0.8969857 0.9651415 1.0331922

The results indicate that the variance in actual groups about leadership ratings is significantly
smaller than the variance in randomly created groups (i.e., individuals agree about leadership).
For interesting cases examining situations where group members do not agree see Bliese &
Halverson (1998a) and Bliese and Britt (2001).

3.3.6 Reliability: ICC(1) and ICC(2)

The multilevel package also contains the reliability functions, ICC1 and ICC2. These two
functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as
described by Bartko, (1976), James (1982), and Bliese (2000). To use these functions, one first
performs a one-way analysis of variance on the variable of interest. For instance, to calculate a
one-way analysis of variance on work hours, we issue the aov (ANOVA) function from the R
base package. Note that in using the aov function, we use the as.factor function on GRP.
The as.factor function tells aov that GRP (which is numeric in this dataframe) is to be
treated as a categorical variable; consequently, R creates N-1 dummy codes in the model matrix
(the exact form of the effects coding can be controlled, but will not be discussed in detail here).
In the present example, there are 99 groups, so the as.factor function results in the creation
of 98 dummy coded categories (98 df). Interested readers who estimate the model without the

Multilevel Models in R 42

as.factor option will see that GRP erroneously only accounts for 1 df if the as.factor
command is omitted.

> data(bhr2000)

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000)

> summary(hrs.mod)
 Df Sum Sq Mean Sq F value Pr(>F)
as.factor(GRP) 98 3371.4 34.4 12.498 < 2.2e-16 ***
Residuals 5301 14591.4 2.8

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

The ICC1 and ICC2 functions are then applied to the aov object.
> ICC1(hrs.mod)

[1] 0.1741008

> ICC2(hrs.mod)
[1] 0.9199889

Bliese (2000) provides a thorough interpretation of these values, but briefly, the ICC(1) value
of .17 indicates that 17% of the variance in individual perceptions of work hours can be
“explained” by group membership. The ICC(2) value of .92 indicates that groups can be reliably
differentiated in terms of average work hours.

3.3.7 Visualizing an ICC(1) with graph.ran.mean

It is often valuable to visually examine the group-level properties of data to see the exact form
of the group-level effects. For instance, Levine (1967) notes that a high ICC(1) value can be the
product of one or two highly aberrant groups rather than indicating generally shared group
properties among the entire sample.

One way to examine the group-level properties of the data is to contrast the observed group
means with group means that are the result of randomly assigning individuals to pseudo groups.
If the actual group means and the pseudo-group means are identical, there is no evidence of
group effects. If one or two groups are clearly different from the pseudo-group distribution it
suggests the ICC(1) value is simply caused by a few aberrant observations. If a number of
groups have higher than expected means, and a number have lower than expected means, it
suggests fairly well-distributed group-level properties.

The graph.ran.mean function allows one to visually contrast actual group means with
pseudo group means. The function requires three parameters. The first is the variable on which
one is interested in examining. The second is the group designator, and the third is a smoothing
parameter (nreps) determining how many sets of pseudo groups should be created to create the
pseudo group curve. Low numbers (<10) for this last parameter create a choppy line while high
numbers (>25) create smooth lines. In cases where the parameter bootci is TRUE (see
optional parameters), nreps should equal 1000 or more.

Multilevel Models in R 43

 Three optional parameters control the y axis limits (limits); whether a plot is created
(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence
intervals are estimated and plotted (bootci=TRUE). The default for limits is to use the
lower 10% and upper 90% values of the raw data. The default for graph is to produce a plot,
but returning a dataframe can be useful for exporting results to other graphing software. Finally,
the default for bootci is to return a plot or a dataframe without bootstrap confidence interval
estimates.

In the following example, we plot the observed and pseudo group distribution of the work
hours variable from the data set bhr2000. Recall, the ICC(1) value for this variable was .17 (see
section 3.3.6).

> data(bhr2000)

> graph.ran.mean(bhr2000$HRS, bhr2000$GRP, nreps=1000,

limits=c(8,14),bootci=TRUE)

The command produced the resulting plot where the bar chart represents each groups' average
rating of work hours sorted from highest to lowest, and the line represents a random distribution
where 99 pseudo groups (with exact size characteristics of the actual groups) were created 100
times and the sorted values were averaged across the 1000 iterations. The dotted lines represent
the upper and lower 95% confidence interval estimates. In short, the line represents the expected
distribution if there were no group-level properties associated with these data. The graph
suggests fairly evenly distributed group-level properties associated with the data. That is, the
ICC(1) value of .17 does not seem to be caused by one or two aberrant groups.

Multilevel Models in R 44

0 20 40 60 80 100

8
9

10
11

12
13

14

Index

G
ro

up
 A

ve
ra

ge

3.4 Regression and Contextual OLS Models

Prior to the introduction of multilevel random coefficient models, OLS regression models
were widely used to detect contextual effects. Firebaugh (1978) provides a good methodological
discussion of these types of contextual models as does Kreft and DeLeeuw (1998) and James and
Williams (2000).

The basic logic behind these models is that an aggregated group mean can explain unique
variance over and above an individual variable of the same name. So, for instance, Bliese (2002)
found that average group work hours explained unique variance in individual well-being over-
and-above individual reports of work hours. This occurs because there is no mathematical
reason why the group-level relationship between means must be the same as the individual-level
relationship between raw variables. When the slope of the group-mean relationship differs from
the slope of the individual-level relationship, a contextual effect is present (Firebaugh, 1978).

To estimate contextual regression models in R, one uses the OLS regression function lm to
simultaneously test the significance of the individual and group mean variable. If the group-
mean variable is significant it indicates the individual-level and group-level slopes are
significantly different, and one has evidence of a contextual effect (Firebaugh, 1978; Snijders &
Bosker, 1999). As discussed in the next section, there is an important caveat. Specifically, the

Multilevel Models in R 45

standard error associated with the group-level effect is almost always too small producing tests
that are too liberal. For this reason random coefficient models (RCM) are a preferred way to
identify contextual effects.

3.4.1 Contextual Effect Example

 In this example we use the bh1996 dataframe to illustrate the estimation of a contextual
model. The bh1996 dataframe has group mean variables included; however, we will pretend
that it does not so we can illustrate the use of the aggregate and merge functions.

> data(bh1996)
> names(bh1996)
 [1] "GRP" "COHES" "G.COHES" "W.COHES" "LEAD" "G.LEAD"
 [7] "W.LEAD" "HRS" "G.HRS" "W.HRS" "WBEING" "G.WBEING"
[13] "W.WBEING"
> TDAT<-bh1996[,c(1,8,11)] # a dataframe with GRP, HRS and WBEING
> names(TDAT)
[1] "GRP" "HRS" "WBEING"
> TEMP<-aggregate(TDAT$HRS,list(TDAT$GRP),mean,na.rm=T)
> names(TEMP)
[1] "Group.1" "x"
> names(TEMP)<-c("GRP","G.HRS")
> TBH1996<-merge(TDAT,TEMP,by="GRP") #merge group and individual data
> names(TBH1996)
[1] "GRP" "HRS" "WBEING" "G.HRS"
> tmod<-lm(WBEING~HRS+G.HRS,data=TBH1996) #estimate the linear model
> summary(tmod,cor=F)
Call:
lm(formula = WBEING ~ HRS + G.HRS, data = TBH1996)
Residuals:
 Min 1Q Median 3Q Max
-2.87657 -0.57737 0.03755 0.64453 2.37267
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.783105 0.136395 35.068 <2e-16 ***
HRS -0.046461 0.004927 -9.431 <2e-16 ***
G.HRS -0.130836 0.013006 -10.060 <2e-16 ***

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.8902 on 7379 degrees of freedom
Multiple R-Squared: 0.0398, Adjusted R-squared: 0.03954
F-statistic: 152.9 on 2 and 7379 DF, p-value: 0

Notice that G.HRS is significant with a t-value of –10.060. This provides evidence of
significant contextual effects. If we want to examine the form of the relationship, we can plot
the regression slopes for the two models using the following commands:

> plot(TBH1996$HRS,TBH1996$WBEING,xlab="Work Hours",ylab="Well-

Being",type="n") #type = n omits the points which is important since
we have 7,382 observations

> abline(lm(WBEING~HRS,data=TBH1996)) # plots the individual-
level slope

> abline(lm(WBEING~G.HRS,data=TBH1996),lty=2) #group-level slope

Multilevel Models in R 46

This produces the plot provided below. Notice that the group-mean slope (the dotted line) is
considerably steeper than the individual slope (the solid line).

0 5 10 15 20

0
1

2
3

4
5

Work Hours

W
el

l-B
ei

ng

While contextual models are valuable, a major limitation with them is that they do not

account for the fact that individuals are nested within groups. In essence, the models “pretend”
that individual observations are independent instead of acknowledging that responses from
individuals might be more similar than would be expected by chance. For instance, individual
responses on well-being are somewhat influenced by group membership (as we will show later).
This has the effect of biasing the standard errors, and making one a little too likely to detect
contextual effects. Specifically, it is likely that the standard error of 0.013 associated with
G.HRS is too small. This in turn makes the t-value too large. Better models, such as random
coefficient models, account for this non-independence. We will illustrate the estimation of these
in section 3.6. For more details on the effects of non-independence see Bliese (2002); Bliese and
Hanges (2004); Kenny and Judd, (1986) and Snijders and Bosker, (1999).

3.5 Correlation Decomposition and the Covariance Theorem

OLS contextual models provide a way of determining whether or not regression slopes based
on group means differ from regression slopes of individual-level variables. The covariance
theorem provides a way of doing a similar thing for correlations nested in a two-level structure.
Essentially, the covariance theorem allows one to break down a raw correlation into two separate
components – the portion of the raw correlation attributable to within-group (individual)
processes, and the portion of the correlation attributable to between-group (group-level)
processes.

Robinson (1950) was one of the first researchers to propose the covariance theorem, but
Dansereau and colleagues increased the visibility of the theorem by incorporating it into an
analysis system they labeled WABA for Within-And-Between-Analyses (Dansereau, Alutto &

Multilevel Models in R 47

Yammarino, 1984). WABA is actually two integrated procedures, WABA I and WABA II.
WABA I uses a set of decision tools based on eta values to inform decisions about the individual
or group-level nature of the data. Eta values, however, are highly influenced by group size, but
WABA I makes no group size adjustments; consequently, there is little value in WABA I unless
one is working with dyads (see Bliese, 2000; Bliese & Halverson, 1998b). Arguably a more
useful way of drawing inferences from eta-values is to contrast eta-values from actual groups to
eta-values from pseudo groups. We will illustrate this in a Random Group Resampling extension
of the covariance theorem decomposition (see section 3.5.2).

3.5.1 The waba and cordif functions

Dansereau et al.’s (1984) WABA II revolves around the estimation of the covariance theorem
components, and the waba function in the multilevel library provides the covariance theorem
components for the relationship between two variables. For example, to decompose the
correlation between work hours and well-being into the between-group and within-group
component we would issue the following command. Note that for comparative purposes we use
the same data as we did in OLS contextual model example (section 3.4.1).

> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP)
$Cov.Theorem
 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW
1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031
$n.obs
[1] 7382
$n.grps
[1] 99

The waba function returns a list with three elements. The first element is the covariance
theorem with all its components. The second element is the number of observations used in the
estimate of the covariance theorem. The third element is the number of groups. The latter two
elements should routinely be examined because the waba function, by default, performs listwise
deletion of missing values.

This formula shows that the raw correlation of -.163=(EtaBX*EtaBY*CorrB) +
(EtaWX*EtaWY*CorrW) or (.379*.236*-.712)+(.925*.972*-.111). Everything in the first set of
parentheses represents the between-group component of the correlation, and everything in the
second set of parentheses represents the within-group component of the correlation.

The group-mean correlation of -.71 definitely looks larger than the within-group correlation of
-.11. Furthermore, since these two correlations are independent, we can contrast them using the
cordif function. This function performs an r to z' transformation of the two correlations (see
also the rtoz function) and then tests for differences between the two z' values using the
formula provided in Cohen and Cohen (1983, p. 54). There are four arguments that must be
provided to cordif. These are (1) the first correlation of interest, (2) the second correlation of
interest, (3) the N on which the first correlation is based, and (4) the N on which the second
correlation is based. In our example, we already have the two correlations of interest (-.13 and -
.66); to get the N for the between-group correlation, we need to know the number of groups. We
can get this N by determining how many unique elements there are in GRP.
> length(unique(bh1996$GRP))

Multilevel Models in R 48

[1] 99

The N for the within-group correlation is slightly more complicated. It is calculated as the
total N minus the number of groups (see Dansereau, et al., 1984). In our example, we already
know that the total N is 7,382 from the waba function output. We also know that the number of
groups is 99. Thus, the N for the within-group correlation is 7,382-99 or 7,283. For illustrative
purposes, however, we will use the nrow function to get the number of observations.
> nrow(bh1996)-99
[1] 7283

With this information, we have all the necessary components for the cordif function.
> cordif(-.1107,-.7122,7283,99)
$"z value"
[1] 7.597172

The z-value is larger than 1.96, so we conclude that the two correlations are significantly
different for each other. That is, the between-group correlation is significantly larger than the
within-group correlation. This finding mirrors what we found in our contextual analysis. Note
that the within-group correlation is based on X and Y deviation scores. These deviation scores
are estimated by subtracting the group mean of X from X, and the group mean of Y from Y. In
random coefficient modeling, these deviation scores are also called group-mean centered scores.

3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba)

As noted above, it may be interesting to see how the eta-between, eta-within, between group
and within-group correlations vary as a function of the group-level properties of the data. To do
this, one can use the rgr.waba function. Essentially, the rgr.waba function allows one to
answer questions such as "is my eta-between value for x larger than would be expected by
chance?" The rgr.waba routine randomly assigns individuals into pseudo groups having the
exact size characteristics as the actual groups, and then calculates the covariance theorem
parameters. By repeatedly assigning individuals to pseudo groups and re-estimating the
covariance theorem components, one can create sampling distributions of the covariance theorem
components to see if actual group results differ from pseudo group results (see Bliese &
Halverson, 2002). Below I illustrate the use of rgr.waba. Note that this is a very
computationally intensive routine, so it may take some time to complete. For comparative
purposes, I begin by re-estimating the covariance theorem components using the first 1000
observations.

> TDAT<-bh1996[1:1000,c(1,8,11)]
> waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP) #Model for first 1000 obs
 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW
1 -0.1500598 0.4136304 0.192642 -0.6302504 0.9104449 0.9812691 -0.1117537

> RGR.WABA<-rgr.waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP,1000)
> round(summary(RGR.WABA),dig=4)
 RawCorr EtaBX EtaBY CorrB EtaWX EtaWY CorrW
NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1.00e+03 1000.0000
Mean -0.1501 0.1236 0.1241 -0.1409 0.9921 9.92e-01 -0.1501
SD 0.0000 0.0209 0.0217 0.2463 0.0026 2.80e-03 0.0040

Multilevel Models in R 49

The summary of the rgr.waba object produces a table giving the number of random
repetitions, the means and the standard deviations from analysis. Notice the raw correlation has
a standard deviation of zero because it does not change. In contrast, the between-group
correlation has the highest standard deviation (.25) indicating that it varied across pseudo group
runs. It is apparent that all of covariance theorem components in the actual groups significantly
vary from their counterparts in the pseudo group analysis. This is obvious because most actual
group components are close to two standard deviations different from the pseudo group means.
To test for significant differences in this resampling design, however, one can simply look at the
sampling distribution of the random runs, and use the 2.5% and 97.5% sorted values to
approximate 95% confidence intervals. Any values outside of this range would be considered
significantly different from their pseudo group counterparts. To estimate the 95% confidence
intervals we can use the quantile function.

> quantile(RGR.WABA,c(.025,.975))
 EtaBX EtaBY CorrB EtaWX EtaWY CorrW
2.5% 0.08340649 0.08288485 -0.6048007 0.9861588 0.9857920 -0.1585368
97.5% 0.16580367 0.16797054 0.3613034 0.9965156 0.9965591 -0.1417005

 Notice that all of the covariance theorem values based on the actual groups are outside of the
95% confidence interval estimates. That is, all of the actual group results are significantly
different than would be expected by chance (p<.05). If we estimate the 99% confidence intervals
we find that the between-group correlation is no longer outside of the 99% confidence interval,
but the other values are.

> quantile(RGR.WABA,c(.005,.995))
 EtaBX EtaBY CorrB EtaWX EtaWY CorrW
0.5% 0.07280037 0.07128845 -0.7216473 0.9843644 0.9831655 -0.1608020
99.5% 0.17614418 0.18271719 0.4825655 0.9973465 0.9974557 -0.1386436

Keep in mind in estimating the rgr.waba models that one's results are likely to differ
slightly from those presented here because of the random generation process underlying random
group sampling.

3.6 Multilevel Random Coefficient modeling

In this section, I illustrate the estimation of multilevel random coefficient (MRC) models
using the nlme package (Pinhiero & Bates, 2000). Most of the examples described in this
section are taken from Bliese (2002) and use the Bliese and Halverson (1996) data set (bh1996)
included in the multilevel library. In describing the models, I use the notation from Bryk &
Raudenbush (1992).

While a complete description of MRC modeling is beyond the scope of document, I will
provide a short overview. For more detailed discussions see Bliese, (2002); Bryk and
Raudenbush, (1992); Hofmann, (1997); Hox (2002); Kreft and De leeuw, (1998) and Snidjers
and Bosker (1999).

Multilevel Models in R 50

One can think of MRC models as ordinary regression models that have additional variance
terms for handling group membership effects. The key to understanding MRC models is
understanding how group membership can lead to additional sources of variance in ones model.

The first variance term that distinguishes a MRC model from a regression model is a term that
allows groups to differ in their mean values (intercepts) on the dependent variable. When this
variance term, τ00, is non-zero, it suggests that groups differ on the dependent variable. When
groups differ by more than chance levels one can potentially model why some groups have high
average DV values while other groups have low average DV values. One predicts group-mean
differences with group-level variables. These are variables that differ across groups, but do not
differ within-groups. Group-level variables are often called “level-2” variables. For example, a
cohesion measure that is the same across all members of the same group would be a level-2
variable, and a level-2 cohesion variable might be related to the average level of well-being in a
group.

The second variance term (or really class of terms) that distinguishes a MRC model from a
typical regression model is the term that allows slopes between independent and dependent
variables to differ across groups (τ11). Single-level regression models generally assume that the
relationship between the independent and dependent variable is constant across groups. In
contrast, MRC models allow the slope to vary from one group to another. If slopes randomly
vary, one can attempt to explain this slope variation as a function of group differences – again,
one uses level-2 variables such as cohesion to explain why the slopes within some groups are
stronger than the slopes within other groups.

A third variance term is common to both MRC and regression models. This variance term,
σ2, reflects the degree to which an individual score differs from its predicted value within a
specific group. One can think of σ2 as an estimate of within-group variance. One uses
individual-level or level-1 variables to predict within-group variance, σ2. Level-1 variables
differ among members of the same group. For instance, a level-1 variable such as self-efficacy
would vary among members of the same group.

In summary, in a complete MRC analysis, one wants to know (1) what level-1 factors are
related to the within-group variance σ2?; (2) what group-level factors are related to the between-
group variation in intercepts τ00?; and (3) what group-level factors are related to within-group
slope differences, τ11? In the next sections, I re-analyze portions of the Bliese and Halverson
data set to illustrate a typical sequence of steps that one might use in multilevel modeling.

3.6.1 Steps in multilevel modeling

Step 1. Because multilevel modeling involves predicting variance at different levels, one
typically begins a multilevel analysis by determining the levels at which significant variation
exists. In the case of the two-level model (the only models that I will consider here), one
generally assumes that there is significant variation in σ2 – that is, one assumes that within-group
variation is present. One does not necessarily assume, however, that there will be significant
intercept variation (τ00) or between-group slope variation (τ11). Therefore, one typically begins
by examining intercept variability (see Bryk & Raudenbush, 1992; Hofmann, 1997). If τ00 does
not differ by more than chance levels, there may be little reason to use random coefficient
modeling since simpler OLS modeling will suffice. Note that if slopes randomly vary even if

Multilevel Models in R 51

intercepts do not, there may still be reason to estimate random coefficient models (see Snijders &
Bosker, 1999).

In Step 1 of a MRCM analysis, one explores the group-level properties of the outcome
variable to determine three things: First, what is the ICC(1) (commonly referred to simply as the
ICC in random coefficient models) associated with the outcome variable. That is, how much of
the variance in the outcome can be explained by group membership. Second, one examines
whether the group means of the outcome variable are reliable. By convention, one would like
the group mean reliability to be around .70 because this indicates that groups can be reliably
differentiated (see Bliese, 2000). Third, one wants to know whether the variance of the intercept
(τ00) is significantly larger than zero.

These three aspects of the outcome variable are examined by estimating an unconditional
means model. An unconditional means model does not contain any predictors, but includes a
random intercept variance term for groups. This model essentially looks at how much variability
there is in mean Y values (i.e., how much variability there is in the intercept) relative to the total
variability. In the two stage HLM notation, the model is:

Yij = β0j+rij
β0j = γ00 + u0j

In combined form, the model is: Yij =γ00 + u0j+rij. This model states that the dependent
variable is a function of a common intercept γ00, and two error terms: the between-group error
term, u0j, and the within-group error term, rij. The model essentially states that any Y value can
be described in terms of an overall mean plus some error associated with group membership and
some individual error. In the null model, one gets two estimates of variance; τ00 for how much
each groups’ intercept varies from the overall intercept (γ00), and σ2 for how much each
individuals’ score differs from the group mean. Bryk and Raudenbush (1992) note that this
model is directly equivalent to a one-way random effects ANOVA – an ANOVA model where
one predicts the dependent variable as a function of group membership.

The unconditional means model and all other random coefficient models that we will consider
are estimated using the lme (for linear mixed effects) function in the nlme package (see
Pinheiro & Bates, 2000). There are two formulas that must be specified in any lme call: a fixed
effects formula and a random effects formula.

 In the unconditional means model, the fixed portion of the model is γ00 (an intercept term)
and the random component is u0j+rij. The random portion of the model states that intercepts will
be allowed to vary among groups. We begin the analysis by attaching the multilevel package
(which also loads the nlme package) and making the bh1996 data set in the multilevel package
available for analysis.

> library(multilevel)
> library(nlme)
> data(bh1996)
> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996)

In the model, the fixed formula is WBEING~1. This states that the only predictor of well-being
is an intercept term. The random formula is random=~1|GRP. This specifies that the intercept
can vary as a function of group membership. This is the simplest random formula that one will

Multilevel Models in R 52

encounter, and in many situations a random intercept model may be all that is required to
adequately account for the nested nature of the grouped data.

Estimating ICC. The unconditional means model provides between-group and within-group
variance estimates in the form of τ00 and σ2, respectively. As with the ANOVA model, it is often
valuable to determine how much of the total variance is between-group variance. This can be
accomplished by calculating the Intraclass Correlation Coefficient (ICC) using the formula: ICC
= τ00/(τ00 + σ2) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes
that the ICC is equivalent to Bartko’s ICC(1) formula (Bartko, 1976) and to Shrout and Fleiss’s
ICC(1,1) formula (Shrout & Fleiss, 1979). To get the estimates of variance for an lme object,
one uses the VarCorr function.

> VarCorr(Null.Model)
GRP = pdSymm(1)
 Variance StdDev
(Intercept) 0.03580079 0.1892110
Residual 0.78949727 0.8885366
> 0.03580079/(0.03580079+0.78949727)
[1] 0.04337922

The estimate of τ00 (between-group variance or Intercept) is 0.036, and the estimate of σ2
(within-group variance or Residual) is 0.789. The ICC estimate (τ00/(τ00 + σ2)) is .04.

To verify that the ICC results from the random coefficient modeling are similar to those from
an ANOVA model and the ICC1 function (see section 0) one can perform an ANOVA analysis
on the same data.

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996)

> ICC1(tmod)

[1] 0.04336905

The ICC value from the random coefficient model and the ICC(1) from the ANOVA model are
basically identical.

Estimating Group-Mean Reliability. When exploring the properties of the outcome variable, it
can also be of interest to examine the reliability of the group mean. The reliability of group
means often affects one’s ability to detect emergent phenomena. In other words, a prerequisite
for detecting emergent relationships at the aggregate level is to have reliable group means (Bliese
1998). By convention, one strives to have group mean reliability estimates around .70. Group
mean reliability estimates are a function of the ICC and group size (see Bliese, 2000; Bryk &
Raudenbush, 1992). The GmeanRel function from the multilevel package calculates the ICC,
the group size, and the group mean reliability for each group.

When we apply the GmeanRel function to our Null.Model based on the 99 groups in the
bh1996 data set, we are interested in two things. First, we are interested in the average
reliability of the 99 groups. Second, we are interested in determining whether or not there are
specific groups that have particularly low reliability.

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996)

Multilevel Models in R 53

> GREL.DAT<-GmeanRel(Null.Model)
> names(GREL.DAT)
[1] "ICC" "Group" "GrpSize" "MeanRel"
> GREL.DAT$ICC #ICC estimate
[1] 0.04337922
> GREL.DAT$MeanRel
 [1] 0.7704119 0.7407189 0.8131975 0.6557120 0.8222325
 [6] 0.5594125 0.5680426 0.6065741 0.6387944 0.7466758
[11] 0.6387944 0.6201282 0.7996183 0.8099782 0.7860071
[16] 0.6759486 0.8116016 0.7860071 0.6557120 0.7437319
[21] 0.8066460 0.6661367 0.7839102 0.8131975 0.5920169
[26] 0.7210397 0.8222325 0.6065741 0.7245244 0.6134699
[31] 0.6557120 0.6852003 0.5843267 0.8178269 0.8066460
[36] 0.7940029 0.6896308 0.7174657 0.6610045 0.8131975
[41] 0.7376341 0.6610045 0.8193195 0.7061723 0.7727775
[46] 0.8207878 0.6557120 0.7407189 0.7795906 0.5680426
[51] 0.6201282 0.6265610 0.5994277 0.7407189 0.7137989
[56] 0.7750949 0.8163095 0.7437319 0.7959093 0.8099782
[61] 0.7022044 0.8207878 0.6939384 0.7022044 0.7704119
[66] 0.7376341 0.8099782 0.6661367 0.5994277 0.8193195
[71] 0.7860071 0.4048309 0.6502517 0.7604355 0.7279232
[76] 0.7959093 0.6852003 0.7523651 0.7210397 0.6939384
[81] 0.8964926 0.7210397 0.9110974 0.8795291 0.8788673
[86] 0.9088937 0.8863580 0.7860071 0.8277854 0.9100090
[91] 0.8083266 0.8379118 0.8886532 0.8330020 0.8250530
[96] 0.6661367 0.7551150 0.4204716 0.5504306
> mean(GREL.DAT$MeanRel) #Average group-mean reliability
[1] 0.7335212

Notice that the overall group-mean reliability is acceptable at .73, but that several groups have
quite low reliability estimates. Specifically, group 71 and group 98 have reliability estimates
below .50.

We can show that the group-mean reliability from the random coefficient model is equivalent
to the ICC(2) from the ANOVA model by using the bh1996 data to estimate the ICC(2) in an
ANOVA framework (see section 0.).

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996)

> ICC2(tmod)

[1] 0.7717129

In this case the ICC(2) estimate from the ANOVA model is slightly higher than the group-
mean reliability estimate from the random coefficient model. This occurs because group sizes
are unequal. If all the groups were the same size, then the two measures would be nearly
identical.

With reference to ICC(2) values and group-mean reliability, note that there are alternate ways
of estimating group-mean reliability. Snijders and Bosker (1999) show, for example, that one
can estimate overall group-mean reliability by determining what percentage of the total group
variance is made up by τ00.

Multilevel Models in R 54

Finally, keep in mind that the estimates of within-group and between-group variance from the
random coefficient model will be nearly identical to those from the ANOVA model as long as
restricted maximum likelihood estimation (REML) is used in the random coefficient modeling
(this is the default in the lme routine of the nlme package). If full maximum likelihood is used,
the variance estimates may differ somewhat from the ANOVA estimates particularly in small
sample situations. In our running example, the use of REML versus full maximum likelihood
makes little difference. Interested readers may calculate ICC values from an lme model with
maximum likelihood to verify this result.

> mod.ml<-lme(WBEING~1,random=~1|GRP,data=bh1996,method="ML")
> VarCorr(mod.ml)
GRP = pdLogChol(1)
 Variance StdDev
(Intercept) 0.03531699 0.1879282
Residual 0.78949525 0.8885354

The maximum likelihood estimate of the ICC is 0.042, and is very similar to the 0.043 REML
estimate.

Determining whether τ00 is significant. Returning to our original analysis involving well-
being from the bh1996 data set, we might be interested in knowing whether the intercept
variance (i.e.,τ00) estimate of 0.036 is significantly different from zero. To do this we compare –
2 log likelihood values between (1) a model with a random intercept, and (2) a model without a
random intercept.

A model without a random intercept is estimated using the gls function in the nlme
package. The –2 log likelihood values for an lme or gls object are obtained using the logLik
function and multiplying this value by –2. If the –2 log likelihood value for the model with
random intercept is significantly larger than the model without the random intercept (based on a
Chi-square distribution), then one concludes that the model with the random intercept fits the
data significantly “better” than does the model without the random intercept. In the nlme
package, model contrasts via –2 log likelihood values are facilitated by using the anova
function.

> Null.Model.2<-gls(WBEING~1,data=bh1996)
> logLik(Null.Model.2)*-2
`log Lik.' 19536.17 (df=2)
> logLik(Null.Model)*-2
`log Lik.' 19347.34 (df=3)
> 19536.17-19347.34
[1] 188.83
> anova(Null.Model,Null.Model.2)
 Model df AIC BIC logLik Test L.Ratio p-value
Null.Model 1 3 19353.34 19374.06 -9673.669
Null.Model.2 2 2 19540.17 19553.98 -9768.084 1 vs 2 188.8303 <.0001

The –2 log likelihood value for the gls model without the random intercept is 19536.17. The
–2 log likelihood value for the model with the random intercept is 19347.34. The difference of
188.8 is significant on a Chi-Squared distribution with one degree of freedom (one model

Multilevel Models in R 55

estimated a random intercept, the other did not, and this results in the one df difference). These
results suggest that there is significant intercept variation.

In summary, we would conclude that there is significant intercept variation in terms of general
well-being scores across the 99 Army companies in our sample. We also estimate that 4% of the
variation in individuals’ well-being score is a function of the group to which he or she belongs.
Thus, a model that allows for random variation in well-being among Army companies is better
than a model that does not allow for this random variation.

Step 2. At this point in our example we have two sources of variation that we can attempt to
explain in subsequent modeling – within-group variation (σ2) and between-group intercept (i.e.,
mean) variation (τ00). In many cases, these may be the only two sources of variation we are
interested in explaining so let us begin by building a model that predicts these two sources of
variation.

To make things interesting, let us assume that individual well-being is related to individual
reports of work hours. We expect that individuals who report high work hours will report low
well-being. At the same time, however, let us assume that average work hours in an Army
Company are related to the average well-being of the Company over-and-above the individual-
level work-hours and well-being relationship. Using Hofmann and Gavin’s (1998) terminology,
this means that we are testing an incremental model where the level-2 variable predicts unique
variance after controlling for level-1 variables. This is also directly equivalent to the contextual
model that we estimated in section 3.4.1.

The form of the model using Bryk and Raudenbush’s (1992) notation is:
 WBEINGij = β0j + β1j(HRSij)+rij

 β0j = γ00 + γ01(G.HRSj) + u0j
β1j = γ10

Let us consider each row of the notation. The first row states that individual well-being is a
function of the groups’ intercept plus a component that reflects the linear effect of individual
reports of work hours plus some random error. The second line states that each groups’ intercept
is a function of some common intercept (γ00) plus a component that reflects the linear effect of
average group work hours plus some random between-group error. The third line states that the
slope between individual work hours and well-being is fixed—it is not allowed to randomly vary
across groups. Stated another way, we assume that the relationship between work hours and
well-being is identical in each group.

When we combine the three rows into a single equation we get an equation that looks like a
common regression equation with an extra error term (u0j). This error term indicates that
WBEING intercepts (i.e., means) can randomly differ across groups. The combined model is:

 WBEINGij = γ00 + γ10(HRSij) + γ01(G.HRSj) + u0j + rij

This model is specified in lme as:
> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996)

> summary(Model.1)
Linear mixed-effects model fit by REML
 Data: bh1996

Multilevel Models in R 56

 AIC BIC logLik
 19222.28 19256.81 -9606.14

Random effects:
 Formula: ~1 | GRP
 (Intercept) Residual
StdDev: 0.1163900 0.8832353

Fixed effects: WBEING ~ HRS + G.HRS
 Value Std.Error DF t-value p-value
(Intercept) 4.740829 0.21368746 7282 22.185808 <.0001
HRS -0.046461 0.00488798 7282 -9.505056 <.0001
G.HRS -0.126926 0.01940357 97 -6.541368 <.0001
 Correlation:
 (Intr) HRS
HRS 0.000
G.HRS -0.965 -0.252

Standardized Within-Group Residuals:
 Min Q1 Med Q3 Max
-3.35320562 -0.65024982 0.03760797 0.71319835 2.70917777

Number of Observations: 7382

 Number of Groups: 99

Notice that work hours are significantly negatively related to individual well-being.
Furthermore after controlling the individual-level relationship, average work hours (G.HRS) are
related to the average well-being in a group.

At this point one can also estimate how much of the variance was explained by these two
predictors. Because individual work hours were significantly related to well-being, we expect
that it will have “explained” some of the within-group variance σ2. Similarly, since average
work hours were related to the group well-being intercept we expect that it will have “explained”
some of intercept variance, τ00. Recall that in the null model, the variance estimate for the
within-group residuals, σ2, was 0.789; and the variance estimate for the intercept, τ00, was 0.036.
The VarCorr function on the Model.1 object reveals that each variance component has
changed slightly.

> VarCorr(Model.1)
GRP = pdSymm(1)
 Variance StdDev
(Intercept) 0.01354663 0.1163900

 Residual 0.78010466 0.8832353

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.
That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the
variance of the between-group intercepts decreased from 0.036 to 0.014. We can calculate the
percent of variance explained by using the following formula:

 Variance Explained = 1 – (Var with Predictor/Var without Predictor)

Multilevel Models in R 57

To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%)
of the within-group variance in σ2, and group-mean work hours explained 1 – (0.014/0.036) or
0.611 (61%) of the between-group intercept variance τ00. While the logic behind variance
estimates appears pretty straightforward (at least in models without random slopes), the variance
estimates should be treated with some degree of caution because they are partially dependent
upon how one specifies the models. Interested readers are directed to Snijders and Bosker (1994;
1999) for an in-depth discussion of variance estimates.

Step 3. Let us continue our analysis by trying to explain the third source of variation, namely,
variation in our slopes (τ11, τ12, etc.). To do this, let us examine another variable from the Bliese
and Halverson (1996) data set. This variable represents Army Company members’ ratings of
leadership consideration (LEAD). Generally individual soldiers’ ratings of leadership are related
to well-being. In this analysis, however, we will consider the possibility that the strength of the
relationship between individual ratings of leadership consideration and well-being varies among
groups.

We begin by examining slope variation among the first 25 groups. Visually we can do this
using xyplot from the lattice package.

> library(lattice)
> trellis.device(device="windows",theme="col.whitebg")
> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,],
 type=c("p","g","r"),col="dark blue",col.line="black",
 xlab="Leadership Consideration",
 ylab="Well-Being")

Multilevel Models in R 58

Leadership Consideration

W
el

l-B
ei

ng

1 2 3 4 5

0
1
2
3
4
5

1 2

1 2 3 4 5

3 4

1 2 3 4 5

5

6 7 8 9

0
1
2
3
4
5

10
0
1
2
3
4
5

11 12 13 14 15

16 17 18 19

0
1
2
3
4
5

20
0
1
2
3
4
5

21

1 2 3 4 5

22 23

1 2 3 4 5

24 25

From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some
slope variation. The plot, however, does not tell us whether or not this variation is significant.
Thus, the first thing to do is to determine whether the slope variation differs by more than chance
levels.

Is slope variation significant? We begin our formal analysis of slope variability by adding
leadership consideration to our model and testing whether or not there is significant variation in
the leadership consideration and well-being slopes across groups. The model that we test is:

 WBEINGij = β0j + β1j(HRSij)+ β2j(LEADij) + rij
 β0j = γ00 + γ01(G.HRSj) + u0j

 β1j = γ10

 β2j = γ20 + u2j

The last line of the model includes the error term u2j. This term indicates that the leadership
consideration and well-being slope is permitted to randomly vary across groups. The variance
term associated with u2j is τ12. It is this variance term that interests us in the cross-level
interaction hypothesis. Note that we have not permitted the slope between individual work hours
and individual well-being to randomly vary across groups.

In combined form the model is: WBEINGij = γ00 + γ10(HRSij) + γ20(LEADij) + γ01(G.HRSj) +
u0j + u2j * LEADij + rij. In R this model is designated as:

Multilevel Models in R 59

> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996)
> summary(Model.2)

Linear mixed-effects model fit by REML
 Data: bh1996
 AIC BIC logLik
 17838.58 17893.83 -8911.29

Random effects:
 Formula: ~LEAD | GRP
 Structure: General positive-definite, Log-Cholesky parametrization
 StdDev Corr
(Intercept) 0.3794891 (Intr)
LEAD 0.1021935 -0.97
Residual 0.8008079

Fixed effects: WBEING ~ HRS + LEAD + G.HRS
 Value Std.Error DF t-value p-value
(Intercept) 2.4631348 0.20832607 7281 11.823459 <.0001
HRS -0.0284776 0.00446795 7281 -6.373764 <.0001
LEAD 0.4946550 0.01680846 7281 29.428928 <.0001
G.HRS -0.0705047 0.01789284 97 -3.940387 2e-04
...

Number of Observations: 7382
Number of Groups: 99

In line with our expectations, leadership consideration is significantly related to well-being.
What we are interested in from this model, however, is whether τ12, the slope between leadership
consideration and well-being significantly varies across groups. To determine whether the slope
is significant, we test the –2 log likelihood ratios between a model with and a model without a
random slope for leadership consideration and well-being. We have already estimated a model
with a random slope. To estimate a model without a random slope we use update on
Model.2 and change the random statement so that is only includes a random intercept.
> Model.2a<-update(Model.2,random=~1|GRP)

> anova(Model.2,Model.2a)

 Model df AIC BIC logLik Test L.Ratio p-value

Model.2 1 8 17838.58 17893.83 -8911.290

Model.2a 2 6 17862.68 17904.12 -8925.341 1 vs 2 28.10254 <.0001

The difference of 28.10 is significant on two degrees of freedom. Note that there are two
degrees of freedom because the model with the random slope also estimates a covariance term
for the slope-intercept relationship. The log likelihood results indicate that model with the
random effect for the leadership consideration and well-being slope is significantly better than
the model without this random effect. This indicates significant slope variation.

Now we know we have significant variation in the leadership and well-being slope, we can
attempt to see what group-level properties are related to this variation. In this example, we
hypothesize that when groups are under a lot of strain from work requirements, the relationship

Multilevel Models in R 60

between leadership consideration and well-being will be relatively strong. In contrast, when
groups are under little strain, we expect a relatively weak relationship between leadership
consideration and well-being. We expect these relationships because we believe that leadership
is relatively unimportant in terms of individual well-being when groups are under little stress, but
that the importance of leadership consideration increases when groups are under high stress. We
are, in essence, proposing a contextual effect in an occupational stress model (see Bliese & Jex,
2002).

A proposition such as the one that we presented in the previous paragraph represents a cross-
level interaction. Specifically, it proposes that the slope between leadership consideration and
well-being within groups varies as a function of a level-2 variable, namely group work demands.
In random coefficient modeling, we test this hypothesis by examining whether a level-2 variable
explains a significant amount of the level-1 slope variation among groups. In our example, we
will specifically be testing whether average work hours in the group “explains” group-by-group
variation in the relationship between leadership consideration and well-being. In Bryk and
Raudenbush’s (1992) notation, the model that we are testing is:

 WBEINGij = β0j + β1j(HRSij)+ β2j(LEADij) + rij

 β0j = γ00 + γ01(G.HRSj) + u0j
 β1j = γ10

 β2j = γ20 +γ21(G.HRSj) + u2j

In combined form the model is:

WBEINGij = γ00 + γ10(HRSij) + γ20(LEADij) + γ01(G.HRSj) + γ21(LEADij * G.HRSj) + u0j + u2j
*LEADij + rij.

In lme we specify the cross-level interaction by adding an interaction term between
leadership (LEAD) and average group work hours (G.HRS). Specifically, the model is:

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,
random=~LEAD|GRP,data=bh1996)
> round(summary(Final.Model)$tTable,dig=3)
 Value Std.Error DF t-value p-value
(Intercept) 3.654 0.726 7280 5.032 0.000
HRS -0.029 0.004 7280 -6.391 0.000
LEAD 0.126 0.217 7280 0.578 0.564
G.HRS -0.175 0.064 97 -2.751 0.007
LEAD:G.HRS 0.032 0.019 7280 1.703 0.089

The tTable results from the final model indicate there is a significant cross-level interaction
(the last row using a liberal p-value of less than .10). This result indicates that average work
hours “explained” a significant portion of the variation in τ12 – the vertical cohesion and well-
being slope.

We can examine the form of our interaction by predicting four points – high and low group
work hours and high and low leadership consideration. We start by selecting values for G.HRS
and LEAD that are one standard deviation above the mean and one standard deviation below the

Multilevel Models in R 61

mean. By using the Group Work Hours variable in the original data set, we have means and
standard deviation values weighted by group size.

 > mean(bh1996$G.HRS)
[1] 11.2987
> sd(bh1996$G.HRS)
[1] 0.8608297
> 11.30-.86; 11.30+.86
[1] 10.44
[1] 12.16

> mean(bh1996$LEAD)
[1] 2.890665
> sd(bh1996$LEAD)
[1] 0.771938
> 2.89-.77; 2.89+.77
[1] 2.12
[1] 3.66

Once we have the high and low values we create a small data set (TDAT) with high and low
values for the interactive variables, and mean values for the non-interactive variables (individual
work hours in this case). We then use the predict function to get estimates of the outcome
given the values of the variables.

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),
 LEAD=c(2.12,2.12,3.66,3.66),
 G.HRS=c(10.44, 12.16, 10.44, 12.16),
 GRP=c(1,1,1,1))
> predict(Final.Model,TDAT,level=1)
 1 1 1 1
2.380610 2.198103 3.217337 3.120810

The predicted values in this case are specifically for GRP 1. Each group in the sample will
have different predicted values because the slopes and intercepts randomly vary among groups.
In many cases, one will not be specifically interested in the predicted values for specific groups,
but interested in the patterns for the sample as a whole. If one is interested in estimating overall
values, one can change the level of prediction to level=0.
> predict(Final.Model,TDAT,level=0)
[1] 2.489508 2.307001 3.204766 3.108239
attr(,"label")
[1] "Predicted values"

Notice that the values for the sample as a whole differ from those for GRP 1.

When the values are plotted, the form of the interaction supports our proposition; however, to
make the effect more dramatic I selected group work hour values of 7 and 12 to represent low
and high average work hours and have plotted the predictions from these values. Note this plot
was generated in PowerPoint.

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),
+ LEAD=c(2.12,2.12,3.66,3.66),
+ G.HRS=c(7, 12, 7, 12),

Multilevel Models in R 62

+ GRP=c(1,1,1,1))
> predict(Final.Model,TDAT,level=0)
[1] 2.854523 2.323978 3.397820 3.117218
attr(,"label")
[1] "Predicted values"

2.0

2.3

2.5

2.8

3.0

3.3

3.5

Negative Positive

Individual Ratings of Leadership Consideration

In
di

vi
du

al
 W

el
l-B

ei
ng

12 Hours (group average) 7 Hours (group average)

Soldiers’ perceptions of leadership consideration are positively related to their well-being

regardless of the number of hours that the group, on average, works; however, the relationship
between leadership consideration and well-being is stronger (steeper slope) in groups with high
work hours than in groups with low work hours. Another way to think about the interaction is to
note that well-being really drops (in relative terms) when one perceives that leadership is low in
consideration and one is a member of a group with high work hours. This supports our
proposition that considerate leadership is relatively more important in a high work demand
context.

In this model one can also estimate how much of the variation in the slopes is “explained” by
the group work hours. The estimate of the between group slope variance, τ12, in the model with
a random slope for the relationship between leadership and well-being (Model.2) is 0.0104.
> VarCorr(Model.2)
GRP = pdLogChol(LEAD)
 Variance StdDev Corr
(Intercept) 0.14401197 0.3794891 (Intr)
LEAD 0.01044352 0.1021935 -0.97
Residual 0.64129330 0.8008079

 The estimate after average work hours has “explained” some of the slope variance
(Final.Model) is 0.0095.

Multilevel Models in R 63

> VarCorr(Final.Model)
GRP = pdLogChol(LEAD)
 Variance StdDev Corr
(Intercept) 0.131260632 0.36229909 (Intr)
LEAD 0.009545556 0.09770136 -0.965
Residual 0.641404947 0.80087761

 Thus, average group work hours accounts for 1 – (0.0095/0.0104) or 8.6% of the slope
variance. Once again, I emphasize that this is a rough estimate, and I direct readers to Snijders
and Bosker (1994; 1999) for additional information on estimating effect sizes.

3.6.2 Some Notes on Centering

In multilevel modeling, one will eventually have to contend with centering issues. In our
examples, we have simply used raw, untransformed variables as predictors. In some cases,
though, there may be good reasons to consider centering the variables. Basically, there are two
centering options with level-1 variables.

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.
Grand-mean centering is often worth considering because doing so helps reduce multicollinearity
among predictors and random effect terms. In cases where interactive terms are included, grand-
mean centering can be particularly helpful in reducing correlations between main-effect and
interactive terms. Hofmann and Gavin (1998) and others have shown that grand-mean centered
and raw variable models are basically identical; however, grand-mean centered models will often
converge in situations where a model based on raw variables will not. The computational
efficiency of grand-mean centered models is due entirely to reductions in multicollinearity
because the computer algorithms tend have trouble converging when correlations among
variables become too high.

Grand-mean centering can be accomplished in one of two ways. The explicit way is to
subtract the overall mean from the raw variable. The less obvious way is to use the scale
function. The scale function is typically used to standardize (mean=0, sd=1) variables, but can
also be used to grand-mean center. Below I create grand-mean centered variables for leadership
both ways.

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD)

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=F)

In the first example a single scalar element (the mean of leadership) is recycled and subtracted
from each element in the vector of leadership scores to create a new variable. In the second
example, the use of the option scale=F instructs scale to provide a grand-mean centered
variable.

Group-mean centering is another centering option with level-1 variables. In group-mean
centering, one subtracts the group mean from each individual score. The new variable reflects
how much an individual differs from his or her group average. It is important to keep in mind
that group-mean centering represents a completely different parameterization of the model than
does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 2002; Snijders &
Bosker, 1999). Most authors recommend that one use group-mean centering only if there is a

Multilevel Models in R 64

strong theoretical reason to believe that a respondent's relative position within the group is more
important than the absolute rating (Hox, 2002; Snijders & Bosker, 1999). For instance, one
might use group-mean centering if one believed that the key predictive aspect of work hours was
whether an individual worked more or less than his or her group members.

There may also be value in using group-mean centering when testing a cross-level interaction.
Hofmann and Gavin (1998) contend that group-mean provides the “purest” estimate of the
within-group slope in these situations. That is, slope estimates based on raw variables and
grand-mean centered variables can be partially influenced by between-group factors. In contrast,
group-mean centered variables have any between-group effects removed. Bryk and Raudenbush
(1992) show that group-level interactions can some times pose as cross-level interactions, so a
logical strategy is to use raw or grand-mean centered variables to test for cross-level interactions,
but verify the final results with group-mean centered variables.

Group-mean centered variables are created by subtracting the group-mean from the raw
variable. Thus they are identical to the within-group scores calculated in WABA (see section
3.5.1). To create group-mean centered variables in R, one needs two columns in the dataframe –
the raw variable and the group-mean. In section 3.2 the aggregate and merge functions
were illustrated as ways of creating a group-mean variable (via aggregate) and merging the
group means back with the raw data (via merge). Below these functions are used to help create
a group-centered leadership variable.

> TDAT<-bh1996[,c("GRP","LEAD")]
> TEMP<-aggregate(TDAT$LEAD,list(TDAT$GRP),mean)
> names(TEMP)<-c("GRP","G.LEAD")
> TDAT<-merge(TDAT,TEMP,by="GRP")
> names(TDAT)
[1] "GRP" "LEAD" "G.LEAD"
> TDAT$GRP.CENT.LEAD<-TDAT$LEAD-TDAT$G.LEAD
> names(TDAT)
[1] "GRP" "LEAD" "G.LEAD" "GRP.CENT.LEAD"

One would typically choose a shorter name for the group-mean centered variables, but this
name was chosen to be explicit.

The bh1996 dataframe has group-mean centered variables for all the predictors. The group-
mean centered variables begin with a "W" for "within-group". For comparison, the model below
uses the group-mean centered leadership variable in lieu of the raw leadership variable used in
the final model in the preceding section.

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,
+ random=~LEAD|GRP,data=bh1996)
> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS,
+ random=~LEAD|GRP,data=bh1996)
> round(summary(Final.Model.R)$tTable,dig=3)
 Value Std.Error DF t-value p-value
(Intercept) 4.705 0.211 7280 22.250 0.000
HRS -0.028 0.004 7280 -6.264 0.000
W.LEAD 0.044 0.222 7280 0.197 0.844

Multilevel Models in R 65

G.HRS -0.142 0.019 97 -7.421 0.000
W.LEAD:G.HRS 0.040 0.019 7280 2.064 0.039

Notice that the cross-level interaction is now significant with a t-value of 2.064. In contrast,
recall that the cross-level interaction in the model with the non-centered leadership variable had a
t-value of 1.703 (p<.10). Thus, there are some minor differences between the two model
specifications.

4 Growth Modeling

Growth models are an extremely useful variation of multilevel models (see section 3.6). In
growth modeling, however, repeated observations from an individual represent the level-1
variables, and the attributes of the individual represent the level-2 variables. The fact that the
level-1 variables are repeated over time poses some additional analytic considerations; however,
the steps used to analyze the basic growth model and the steps used to analyze a multilevel
model share many key similarities.

In this chapter, I begin by briefly reviewing some of the methodological challenges associated
with growth modeling. Following this, I illustrate how data must be configured in order to
conduct growth modeling. Finally, I illustrate a complete growth modeling analysis using the
nlme package. Much of this material is taken from Bliese and Ployhart (2002).

4.1 Methodological challenges

In general, the methodological challenges associated with longitudinal analyses of any kind
can be daunting. For instance, since longitudinal data is collected from single entities (usually
persons) over multiple times, it is likely that there will be some degree of non-independence in
the responses. Multiple responses from an individual will tend to be related by virtue of being
provided by the same person, and this non-independence violates the statistical assumption of
independence underlying many common data analytic techniques (Kenny & Judd, 1986). The
issue of non-independence should be familiar to individuals who have worked with multilevel
modeling since non-independence due to group membership is key characteristic of multilevel
models. That is, multilevel models are fundamentally about modeling the non-independence that
occurs when individual responses are affected by group membership.

In longitudinal designs, however, there are additional complications associated with the level-
1 responses. First, it is likely that responses temporally close to each other (e.g., responses 1 and
2) will be more strongly related than responses temporally far apart (e.g., responses 1 and 4).
This pattern is defined as a simplex pattern or lag 1 autocorrelation. Second, it is likely that
responses will tend to become either more variable over time or less variable over time. For
instance, individuals starting jobs may initially have a high degree of variability in performance,
but over time the variance in job performance may diminish. In statistical terms, outcome
variables in longitudinal data are likely to display heteroscedasticity. To obtain correct standard
errors and to draw the correct statistical inferences, autocorrelation and heteroscedasticity both
need to be incorporated into the statistical model.

The need to test for both autocorrelation and heteroscedasticity in growth models arises
because the level-1 variables (repeated measures from an individual) are ordered by time. One
of the main difference between growth models and multilevel models revolves around

Multilevel Models in R 66

understanding how to properly account for time in both the statistical models and in the data
structures.

In R, growth modeling is conducted using the nlme package (Pinhiero & Bates, 2000) and
the lme function in particular. These are, of course, the same functions used in multilevel
modeling (see section 3.6). It will become apparent, however, that the nlme package has a wide
variety of options available for handling autocorrelation and heteroscedasticity in growth models.

Prior to conducting a growth modeling analysis, one has to create a data set that explicitly
includes time as a variable. This data transformation is referred to as changing a data set from
multivariate to univariate form or “stacking” data set. In the next section, we show how to create
a dataframe for growth modeling.

4.2 Data Structure and the make.univ Function

The first step in conducting a growth modeling analysis is to create a data set that is amenable
to analysis. Often data is stored in a format where each row represents observations from one
individual. For instance, an individual might provide three measures of job satisfaction in a
longitudinal study, and the data might be arranged such that column 1 is the subject number;
column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 4 is job
satisfaction at time 3, etc.

The univbct dataframe in the multilevel library allows us to illustrate this arrangement.
This data set contains three measures taken six-months apart on three variables – job satisfaction,
commitment, and readiness. It also contains some stable individual characteristics such as
respondent gender, marital status and age at the initial data collection time. These latter
variables are treated as level-2 predictors in subsequent modeling.

For convenience, the univbct dataframe has already been converted into univariate or
stacked form. Thus, it is ready to be analyzed in a growth model; however, for the purposes of
illustration, we will select a subset of the entire univbct dataframe and transform it back into
multivariate form. With this subset we will illustrate how to convert a typical multivariate
dataframe into the format necessary for growth modeling.

> library(multilevel)
> data(univbct)
> names(univbct)
 [1] "BTN" "COMPANY" "MARITAL" "GENDER" "HOWLONG" "RANK" "EDUCATE"
 [8] "AGE" "JOBSAT1" "COMMIT1" "READY1" "JOBSAT2" "COMMIT2" "READY2"
[15] "JOBSAT3" "COMMIT3" "READY3" "TIME" "JSAT" "COMMIT" "READY"
[22] "SUBNUM"
> nrow(univbct)
[1] 1485

> length(unique(univbct$SUBNUM))

[1] 495

These commands tell us that there are 1495 rows in the data set, and that there are data from
495 individuals. Thus each individual provides three rows of data. To create a multivariate data
set out of the univbct dataframe, we can select every third row of the univbct dataframe. In

Multilevel Models in R 67

this illustration we restrict our analyses to the three job satisfaction scores and to respondent age
at the initial data collection period.

> GROWDAT<-univbct[3*(1:495),c(22,8,9,12,15)] #selects every third row
> GROWDAT[1:3,]
 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3
3 1 20 1.666667 1 3
6 2 24 3.666667 4 4
9 3 24 4.000000 4 4

The dataframe GROWDAT now contains data from 495 individuals. The first individual was
20 years old at the first data collection time. At time 1, the first individual’s job satisfaction
score was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0.

Because of the nature of the univbct dataframe in the multilevel package, we have added
additional steps by converting a univariate dataframe to a multivariate dataframe; nonetheless,
from a practical standpoint the important issue is that the GROWDAT dataframe represents a
typical multivariate data set containing repeated measures. Specifically, the GROWDAT
dataframe contains one row of information for each subject, and the repeated measures (job
satisfaction) are represented by three different variables.

From a growth modeling perspective, the key problem with multivariate dataframes like
GROWDAT is that they do not contain a variable that indexes time. That is, we know time is an
attribute of this data because we have three different measures of job satisfaction; however,
analytically we have no way of explicitly modeling time. Thus, it is critical to create a new
variable that explicitly indexes time. Thus requires transforming the data to univariate or a
stacked format.

The make.univ function from the multilevel package provides a simple way to perform this
transformation. Two arguments are required (x and dvs), and two are optional (tname and
outname). The first required argument is the dataframe in multivariate or wide format. The
second required argument is a subset of the entire dataframe identifying the columns containing
the repeated measures. The second required argument must be time-sorted -- column 1 must be
time 1, column 2 must be time 2, and so on. The two optional arguments control the names of
the two created variables: tname defaults to "TIME" and outname defaults to "MULTDV".

 For instance, to convert GROWDAT into univariate form we issue the following command:

> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5])
> UNIV.GROW[1:9,]
 SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV
X3 1 20 1.666667 1 3 0 1.666667
X31 1 20 1.666667 1 3 1 1.000000
X32 1 20 1.666667 1 3 2 3.000000
X6 2 24 3.666667 4 4 0 3.666667
X63 2 24 3.666667 4 4 1 4.000000
X64 2 24 3.666667 4 4 2 4.000000
X9 3 24 4.000000 4 4 0 4.000000

Multilevel Models in R 68

X95 3 24 4.000000 4 4 1 4.000000
X96 3 24 4.000000 4 4 2 4.000000

Note that each individual now has three rows of data indexed by the variable “TIME”. Time
ranges from 0 to 2. To facilitate model interpretation, the first time is coded as 0 instead of as 1.
Doing so allows one to interpret the intercept as the level of job satisfaction at the initial data
collection time. Second, notice that the make.univ function has created a variable called
“MULTDV”. This variable represents the multivariate dependent variable. The variable
“TIME” and the variable “MULTDV” are two of the primary variables used in growth modeling.
Finally, notice that AGE, SUBNUM and the values for the three job satisfaction variables were
repeated three times for each individual. By repeating the individual variables, the make.univ
function has essentially created a dataframe with level-2 variables in the proper format. For
instance, subject age can now be used as a level-2 predictor in subsequent modeling.

4.3 Growth Modeling Illustration

With the data in univariate form, we can begin to visually examine whether or not we see
patterns between time and the outcome. For instance, the commands below use the lattice
package to produce a plot of the first 30 individuals:

>trellis.device(device="windows",theme="col.whitebg")
> xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,],
 type=c("p","r","g"),col="blue",col.line="black",
 xlab="Time",ylab="Job Satisfaction")

Multilevel Models in R 69

Time

Jo
b

Sa
tis

fa
ct

io
n

0.00.51.01.52.0

1
2
3
4
5

1 2

0.00.51.01.52.0

3 4

0.00.51.01.52.0

5 6

7 8 9 10 11

1
2
3
4
5

12
1
2
3
4
5

13 14 15 16 17 18

19 20 21 22 23

1
2
3
4
5

24
1
2
3
4
5

25

0.00.51.01.52.0

26 27

0.00.51.01.52.0

28 29

0.00.51.01.52.0

30

From this plot, it appears as though there is considerable variability both in overall levels of

job satisfaction and in how job satisfaction changes over time. The goal in growth modeling is to
determine whether or not we can find consistent patterns in the relationship between time and job
satisfaction. Thus, we are now ready to illustrate growth modeling in a step-by-step approach.
In this illustration, we follow the model comparison approach outlined by Bliese and Ployhart
(2002) and in also discussed in Ployhart, Holtz and Bliese (2002).

As an overview of the steps, the basic procedure is to start by examining the nature of the
outcome. Much as we did in multilevel modeling, we are interested in estimating the ICC and
determining whether the outcome (job satisfaction) randomly varies among individuals. Second,
we are interested in examining the form of the relationship between time and the outcome. In
essence, we want to know whether the outcome generally increases, decreases, or shows some
other type of relationship with time. The plot of the first 30 individuals shows no clear pattern in
how job satisfaction is changing over time, but the analysis might identify an overall trend
among the 495 respondents. Third, we attempt to determine whether the relationship between
time and the outcome is constant among individuals or whether it varies on an individual-by-
individual basis. Fourth, we model in more complicated error structures such as autocorrelation,
and finally we add level-2 predictors of intercept and slope variances.

Multilevel Models in R 70

4.3.1 Step 1: Examine the DV

 The first step in growth modeling is to examine the properties of the dependent variable. As
in multilevel modeling, one begins by estimating a null model and calculating the ICC.

> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW,
na.action=na.omit)
> VarCorr(null.model)
SUBNUM = pdLogChol(1)
 Variance StdDev
(Intercept) 0.4337729 0.6586144
Residual 0.4319055 0.6571952
> 0.4337729/(0.4337729+0.4319055)
[1] 0.5010786

In our example using the UNIV.GROW dataframe, the ICC associated with job satisfaction is
.50. This indicates that 50% of the variance in any individual report of job satisfaction can be
explained by the properties of the individual who provided the rating. Another way to think
about this is to note that individuals tend to remain fairly constant in ratings over time, and that
there are differences among individuals. This observation is reflected in the graph of the first 30
respondents.

4.3.2 Step 2: Model Time

Step two involves modeling the fixed relationship between time and the dependent variable.
In almost all cases, one will begin by modeling a linear relationship and progressively add more
complicated relationships such as quadratic, cubic, etc. To test whether there is a linear
relationship between time and job satisfaction, we regress job satisfaction on time in a model
with a random intercept.

> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW,
na.action=na.omit)
> summary(model.2)$tTable
 Value Std.Error DF t-value p-value
(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000
TIME 0.05176461 0.02168024 903 2.387640 0.01716169

An examination of the fixed effects indicates that there is a significant linear relationship
between time and job satisfaction such that job satisfaction increases by .05 each time period.
Note that since the first time period was coded as 0, the intercept value in this model represents
the average level of job satisfaction at the first time period. Specifically, at the first time period
the average job satisfaction was 3.22.

More complicated time functions can be included in one of two ways – either through raising
the time variable to various powers, or by converting time into power polynomials. Below both
techniques are illustrated.

> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM,
data=UNIV.GROW,na.action=na.omit)
> summary(model.2b)$tTable

Multilevel Models in R 71

 Value Std.Error DF t-value p-value
(Intercept) 3.23308157 0.04262697 902 75.8459120 0.0000000
TIME -0.03373846 0.07816572 902 -0.4316273 0.6661154
I(TIME^2) 0.04276425 0.03756137 902 1.1385167 0.2552071

> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM,
data=UNIV.GROW,na.action=na.omit)
> summary(model.2c)$tTable
 Value Std.Error DF t-value p-value
(Intercept) 3.2704416 0.0346156 902 94.478836 0.00000000
poly(TIME, 2)1 1.5778835 0.6613714 902 2.385775 0.01724863
poly(TIME, 2)2 0.7530736 0.6614515 902 1.138517 0.25520707

Both models clearly show that there is no significant quadratic trend. Note that a key
advantage of the power polynomials is that the linear and quadratic effects are orthogonal. Thus,
in the second model the linear effect of time is still significant even with the quadratic effect in
the model. In either case, however, we conclude that time only has a linear relationship with job
satisfaction.

4.3.3 Step 3: Model Slope Variability

A potential limitation with model 2 is that it assumes that the relationship between time and
job satisfaction is constant for all individuals. Specifically, it assumes that each individual
increases job satisfaction by .05 points at each time period. An alternative model that needs to
be tested is one that allows slopes to randomly vary. Given the degree of variability in the graph
of the first 30 respondents, a random slope model seems quite plausible with the current data.
The random slope model is tested by adding the linear effect for time as a random effect. In the
running example, we can simply update model.2 by adding a different random effect
component and contrast model 2 and model 3.

> model.3<-update(model.2,random=~TIME|SUBNUM)
> anova(model.2,model.3)
 Model df AIC BIC logLik Test L.Ratio p-value
model.2 1 4 3461.234 3482.194 -1726.617
model.3 2 6 3434.132 3465.571 -1711.066 1 vs 2 31.10262 <.0001

The results clearly indicate that a model that allows the slope between time and job
satisfaction to randomly vary fits the data better than a model that fixes the slope to a constant
value for all individuals.

In cases where higher-level trends were also significant, one would also be interested in
determining whether allowing the slopes of the higher-level variables to randomly vary also
improved model fit. For instance, one might find that a quadratic relationship varied in strength
among individuals.

4.3.4 Step 4: Modeling Error Structures

The fourth step in developing the level-1 model involves assessing the error structure of the
model. It is important to carefully scrutinize the level-1 error structure because significance tests
may be dramatically affected if error structures are not properly specified. The goal of step 4 is

Multilevel Models in R 72

to determine whether one’s model fit improves by incorporating (a) an autoregressive structure
with serial correlations and (b) heterogeneity in the error structures.

Tests for autoregressive structure (autocorrelation) are conducted by including the
correlation option in lme. For instance, we can update model.3 and include lag 1
autocorrelation as follows:

> model.4a<-update(model.3,correlation=corAR1())
> anova(model.3,model.4a)
 Model df AIC BIC logLik Test L.Ratio p-value
model.3 1 6 3434.132 3465.571 -1711.066
model.4a 2 7 3429.771 3466.451 -1707.886 1 vs 2 6.360465 0.0117

A model that allows for autocorrelation fits the data better than does a model that assumes no
autocorrelation. A summary of model 4a reveals that the autocorrelation estimate is .367 (see the
Phi coefficient).

> summary(model.4a)
Linear mixed-effects model fit by REML
 Data: UNIV.GROW
 AIC BIC logLik
 3429.771 3466.451 -1707.886
.....
Correlation Structure: AR(1)
 Formula: ~1 | SUBNUM
 Parameter estimate(s):
 Phi
0.3676831

Finally, we can examine the degree to which the variance of the responses changes over time.
A simple preliminary test of variance homogeneity can be conducted by examining the variance
of job satisfaction at each time point using the tapply command.

> tapply(UNIV.GROW$MULTDV,UNIV.GROW$TIME,var,na.rm=T)
 0 1 2
0.9681912 0.8831397 0.7313358

The analysis suggests the variance of job satisfaction is decreasing over time. To model
decreasing variance one can use the varExp option. In cases where variance increases can use
the varFixed option (see Pinheiro & Bates, 2000 for details).

> model.4b<-update(model.4a,weights=varExp(form=~TIME))
> anova(model.4a,model.4b)
 Model df AIC BIC logLik Test L.Ratio p-value
model.4a 1 7 3429.771 3466.451 -1707.886
model.4b 2 8 3428.390 3470.309 -1706.195 1 vs 2 3.381686 0.0659

The model that includes both autocorrelation and allows for decreases in variance fits the data
marginally better (using a liberal p-value) than does the model that only includes autocorrelation.
In subsequent analyses, however, model.4b ran into convergence problems. Consequently, we
elect to use model.4a as our final level-1 model.

Multilevel Models in R 73

With the completion of step 4, we have exhaustively examined the form of the level-1
relationship between time and job satisfaction. This analysis has revealed that (a) individuals
randomly vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not
quadratic, relationship between time and job satisfaction, (c) the strength of the linear
relationships randomly varies among individuals, and (d) there is a fair amount of autocorrelation
in the data. At this point, we are ready to add level-2 variables to try and explain the random
variation in intercepts (i.e., mean job satisfaction) and in the time-job satisfaction slope.

4.3.5 Step 5: Predicting Intercept Variation

Step 5 in growth modeling is to examine factors that can potentially explain intercept
variation. Specifically, in our case we are interested in examining factors that explain why some
individuals have high job satisfaction while other individuals have low job satisfaction. In this
example, we explore the idea that age is related to intercept variation.

To model this relationship, the individual-level characteristic, age, is used as a predictor of the
job satisfaction intercept. The model that we will test is represented below using the Bryk and
Raudenbush (1992) notation.

 Yij = π0j + π1j(Timeij) + rij

 π0j = β00 + β01(Agej) + u0j

π1j = β10 + u1j

This equation states that respondent j’s initial job satisfaction (π0j) can be modeled as a function
of two things. One is the mean level of job satisfaction (β00) for all respondents. The second is a
coefficient associated with the individual’s age (β01). Note that the error term for the intercept
(u0j) now represents the difference between an individuals’ intercept and the overall intercept
after accounting for age. In lme the model is specified as:

> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM,
 correlation=corAR1(),na.action=na.omit,data=UNIV.GROW)

> round(summary(model.5)$tTable,dig=3)
 Value Std.Error DF t-value p-value
(Intercept) 2.347 0.146 897 16.086 0.000
TIME 0.053 0.024 897 2.205 0.028
AGE 0.034 0.005 486 6.241 0.000

Model 5 differs only from Model 4a in that Model 5 includes a new fixed effect, AGE.
Notice that age is positively related to initial levels of job satisfaction. Also notice that there are
fewer degrees of freedom for age than for time since age is an individual (level-2) attribute.

In interpreting the coefficients from model 5, we conclude that in cases where age is 0 and
where time is 0, the expected level of job satisfaction is 2.347. In some ways, this interpretation
is strange because age will never actually be 0 in this population. Consequently, it may be useful
to reparameterize age by grand-mean centering the variable (see Singer, 1998). Grand mean

Multilevel Models in R 74

centering involves subtracting the overall mean from each observation (see section 3.6.2). A
model using a grand-mean centered version of age (AGE2) is presented below.

> UNIV.GROW$AGE2<-UNIV.GROW$AGE-mean(UNIV.GROW$AGE,na.rm=T)
> model.5b<-lme(MULTDV~TIME+AGE2,random=~TIME|SUBNUM,
 correlation=corAR1(),na.action=na.omit,data=UNIV.GROW)
> round(summary(model.5b)$tTable,dig=3)
 Value Std.Error DF t-value p-value
(Intercept) 3.216 0.043 897 74.564 0.000
TIME 0.053 0.024 897 2.205 0.028
AGE2 0.034 0.005 486 6.241 0.000

With age grand-mean centered, the intercept estimate of 3.216 now represents the initial job
satisfaction value for a respondent of average age (25.7 years old). Notice that the t-values for
time and age did not change between this and the previous model. While we will continue our
analyses using the untransformed age variable, readers should keep in mind that grand-mean
centering is often valuable in terms of both enhancing the interpretability of models.

4.3.6 Step 6: Predicting Slope Variation

The final aspect of growth modeling involves attempting to determine attributes of individual
respondents that are related to slope variability. In this section, we attempt to determine whether
respondent age can explain some of the variation in the time-job satisfaction slope. The model
that we test is presented below:

Yij = π0j + π1j(Timeij) + rij

 π0j = β00 + β01(Agej) + u0j

 π1j = β10 + β11(Agej) + u1j

This model is similar to the model specified in step 5 except that we now test the assumption
that the slope between time and job satisfaction for an individual (π1j) is a function of an overall
slope (β10), individual age (β11), and an error term (u1j). In lme, the model is specified as:

> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM,
correlation=corAR1(),na.action=na.omit,data=UNIV.GROW)

Note that the only difference between model 5 and model 6 is that we include an interaction
term for time and age. A summary of model 6 reveals that there is a significant interaction
between time and age.

> round(summary(model.6)$tTable,dig=3)
 Value Std.Error DF t-value p-value
(Intercept) 2.098 0.186 896 11.264 0.000
TIME 0.271 0.104 896 2.608 0.009
AGE 0.043 0.007 486 6.180 0.000
TIME:AGE -0.008 0.004 896 -2.153 0.032

Multilevel Models in R 75

In section 3.6.1 we illustrated how to use the predict command to generate points that could
be used to plot out interactions. An alternative approach is to use the overall coefficients from
the final model in conjunction with high and low values for the predictors to generate points for
plots. Notice in the example that follows that the first row in the TDAT dataframe is a row of 1s
for the intercept, while the other rows contain high and low values for time, age and the time*age
interaction.

> TDAT<-data.frame(COEFS=(summary(model.6)$tTable)[,1],
CASE1=c(1,0,21,0),CASE1=c(1,0,31,0),
CASE3=c(1,2,21,42),CASE4=c(1,2,31,62))
> TDAT
 COEFS CASE1 CASE1 CASE3 CASE4
(Intercept) 2.097720117 1 1 1 1
TIME 0.271036716 0 0 2 2
AGE 0.043449071 21 31 21 31
TIME:AGE -0.008432157 0 0 42 62
> sum(TDAT[,1]*TDAT[,2])
[1] 3.010151
> sum(TDAT[,1]*TDAT[,3])
[1] 3.444641
> sum(TDAT[,1]*TDAT[,4])
[1] 3.198073
> sum(TDAT[,1]*TDAT[,5])
[1] 3.463921

These points are used in the plot of the interaction. Notice that older individuals reported
higher job satisfaction initially, and tended to show a very slight increase over time. In contrast,
younger respondents tended to report lower initial job satisfaction, but showed a more
pronounced increase in job satisfaction over time.

Multilevel Models in R 76

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Time 0 Time 2

21 Years Old
31 Years Old

5 Miscellaneous Functions
The multilevel package has a number of other functions that have either been

referenced in appendices of published papers, or are of basic utility to applied organizational
researchers. This section briefly describes these functions. Complete help files are available in
the multilevel package for each of the functions discussed.

5.1 Scale reliability: cronbach and item.total
Two functions that are can be particularly useful in estimating the reliability of multi-item

scales are the cronbach and the item.total functions. Both functions take a single
argument, a dataframe with multiple columns where each column represents one item in a multi-
item scale.

5.2 Random Group Resampling for OLS Regression Models
The function rgr.OLS allows one to contrast a group-level hierarchical regression model

with an identically specified model where group identifiers are randomly generated. This type of
model was estimated in Bliese and Halverson (2002).

5.3 Estimate multiple ICC values: mult.icc
The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a

given data set. For instance, to estimate the ICC(1) and ICC(2) values for work hours,
leadership, cohesion and well-being in the bh1996 data set one provides a dataframe with the

Multilevel Models in R 77

variables of interest as the first argument in the mult.icc function, and a grouping variable as
the second argument. The mult.icc function uses the nlme package, so it is important to
have this package loaded.

> library(nlme)
> mult.icc(bh1996[,c("HRS","LEAD","COHES","WBEING")],bh1996$GRP)
 Variable ICC1 ICC2
1 HRS 0.12923696 0.9171286
2 LEAD 0.14746131 0.9280442
3 COHES 0.04804840 0.7900745
4 WBEING 0.04337922 0.7717561

5.4 Estimating bias in nested regression models: simbias
Bliese and Hanges (2004) showed that a failure to model the nested properties of data in

ordinary least squares regression could lead to a loss of power in terms of detecting effects. The
article provided the simbias function to help estimate the degree of power loss in complex
situations.

5.5 Detecting mediation effects: sobel and sobel.lme
MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the

mediation tests used in psychology tend to have low power. One test that had reasonable power
was Sobel's (1982) indirect test for mediation. The sobel function provides a simple way to
run Sobel's (1982) test for mediation. A second function, sobel.lme, is a variant that allows
one to include a single level of nesting by adding a group identifier. In sobel.lme, the three
models used in the mediation test are estimated using a two-level linear mixed effects (lme)
model. Using the lme model in the case of nested data helps provide accurate standard error
estimates (Bliese & Hanges, 2004). Details on the use of the sobel and the sobel.lme
functions are available in the help files.

6 Conclusion

This document has provided an overview of how R can be used in a wide variety of multilevel
models. It should be apparent that R is a very powerful language that is well-suited to multilevel
analyses. Clearly, in learning to use any new program, there is some degree of effort. I am
convinced, however, that the benefits associated with learning R will be well worth the effort for
scientists whose work revolves around making senses of data. Hopefully, the numerous
examples in this document will go a long way towards helping researchers use R for their own
multilevel problems, and for any number of other statistical procedures.

7 References

Bartko, J. J. (1976). On various intraclass correlation reliability coefficients. Psychological
Bulletin, 83, 762-765.

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language. New York:

Chapman & Hall.

Multilevel Models in R 78

Bliese, P. D. (1998). Group size, ICC values, and group-level correlations: A simulation.

Organizational Research Methods, 1, 355-373.

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications

for data aggregation and Analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel
Theory, Research, and Methods in Organizations (pp. 349-381). San Francisco, CA:
Jossey-Bass, Inc.

Bliese, P. D. (2002). Multilevel random coefficient modeling in organizational research:

Examples using SAS and S-PLUS. In F. Drasgow & N. Schmitt (Eds.), Modeling in
Organizational Research: Measuring and Analyzing Behavior in Organizations (pp.
401-445). San Francisco, CA: Jossey-Bass, Inc.

Bliese, P. D., & Britt, T. W. (2001). Social support, group consensus and stressor-strain

relationships: Social context matters. Journal of Organizational Behavior, 22, 425-436.

Bliese, P. D. & Hanges, P. J. (2004). Being both too liberal and too conservative: The perils of

treating grouped data as though they were independent. Organizational Research
Methods, 7, 400-417.

Bliese, P. D. & Halverson, R. R. (1996). Individual and nomothetic models of job stress: An

examination of work hours, cohesion, and well-being. Journal of Applied Social
Psychology, 26, 1171-1189.

Bliese, P. D., & Halverson, R. R. (1998a). Group consensus and psychological well-being: A

large field study. Journal of Applied Social Psychology, 28, 563-580.

Bliese, P. D., & Halverson, R. R. (1998b). Group size and measures of group-level properties:
An examination of eta-squared and ICC values. Journal of Management, 24, 157-172.

Bliese, P. D., & Halverson, R. R. (2002). Using random group resampling in multilevel

research. Leadership Quarterly, 13, 53-68.

Bliese, P. D., & Halverson, R.R. & Rothberg, J. (2000). Using random group resampling (RGR)

to estimate within-group agreement with examples using the statistical language R.
Unpublished Manuscript.

Bliese, P. D. & Jex, S. M. (2002). Incorporating a multilevel perspective into occupational stress

research: Theoretical, methodological, and practical implications. Journal of
Occupational Health Psychology, 7, 265-276.

Bliese, P. D., & Jex S. M. (1999). Incorporating multiple levels of analysis into occupational

stress research. Work and Stress, 13, 1-6.

Multilevel Models in R 79

Bliese, P. D., & Ployhart, R. E. (2002). Growth modeling using random coefficient models:
Model building, testing and illustrations. Organizational Research Methods, 5, 362-387.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, CA:

Sage.

Burke, M. J., Finkelstein, L. M., & Dusig, M. S. (1999). On average deviation indices for

estimating interrater agreement. Organizational Research Methods, 2, 49-68.

Chambers, J. M. & Hastie, T. J. (1992). Statistical Models in S. New York: Chapman & Hall.

Cohen, J. & Cohen, P. (1983). Applied multiple regression/correlation analysis for the

behavioral sciences (2nd Ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cohen, A., Doveh, E. & Eick, U. (2001). Statistical properties of the rwg(j) index of agreement.

Psychological Methods, 6, 297-310.

Cohen, A., Doveh, E. & Nahum-Shani, I. (in press). Testing agreement for multi-item scales

with the indices rwg(j) and ADM(J). Organizational Research Methods.

Dansereau, F., Alutto, J. A., & Yammarino, F. J. (1984). Theory testing in organizational

behavior: The varient approach. Englewood Cliffs, NJ: Prentice-Hall.

Dunlap, W. P., Burke, M. J., & Smith-Crowe, K. (2003). Accurate tests of statistical

significance for rwg and average deviation interrater agreement indices. Journal of
Applied Psychology, 88, 356-362.

Firebaugh, G. (1978). A rule for inferring individual-level relationships from aggregate data.

American Sociological Review, 43, 557-572.

Hofmann, D. A. (1997). An overview of the logic and rationale of Hierarchical Linear Models.

Journal of Management, 23, 723-744.

Hofmann, D. A. & Gavin, M. (1998). Centering decisions in hierarchical linear models:

Theoretical and methodological implications for research in organizations. Journal of
Management, 24, 623-641.

James, L. R. (1982). Aggregation bias in estimates of perceptual agreement. Journal of Applied

Psychology, 67, 219-229.

James, L.R., Demaree, R.G., & Wolf, G. (1984). Estimating within-group interrater reliability

with and without response bias. Journal of Applied Psychology, 69, 85-98.

James, L. R. & Williams, L. J. (2000). The cross-level operator in regression, ANCOVA, and

contextual analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel Theory,

Multilevel Models in R 80

Research, and Methods in Organizations (pp. 382-424). San Francisco, CA: Jossey-
Bass, Inc.

Hox, J. J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence

Erlbaum Associates.

Klein, K. J. & Kozlowski, S. W. J, (2000). Multilevel theory, research, and methods in

organizations. San Francisco, CA: Jossey-Bass, Inc.

Klein, K. J., Bliese, P.D., Kozlowski, S. W. J, Dansereau, F., Gavin, M. B., Griffin, M. A.,

Hofmann, D. A., James, L. R., Yammarino, F. J. & Bligh, M. C. (2000). Multilevel
analytical techniques: Commonalities, differences, and continuing questions. In K. J.
Klein & S. W. Kozlowski (Eds.), Multilevel Theory, Research, and Methods in
Organizations (pp. 512-553). San Francisco, CA: Jossey-Bass, Inc.

Kozlowski, S. W. J., & Hattrup, K. (1992). A disagreement about within-group agreement:

Disentangling issues of consistency versus consensus. Journal of Applied Psychology,
77, 161-167.

Kreft, I. & De Leeuw, J. (1998). Introducing multilevel modeling. London: Sage Publications.

LeBreton, J. M., James, L. R. & Lindell, M. K. (2005). Recent Issues Regarding rWG, rWG,

rWG(J), and rWG(J). Organizational Research Methods, 8, 128-138.

Levin, J. R. (1967). Comment: Misinterpreting the significance of “explained variation.”

American Psychologist, 22, 675-676.

Lindell, M. K. & Brandt, C. J. (1997). Measuring interrater agreement for ratings of a single

target. Applied Psychological Measurement, 21, 271-278.

Lindell, M. K. & Brandt, C. J. (1999). Assessing interrater agreement on the job relevance of a

test: A comparison of CVI, T, rWG(J), and r*WG(J) indexes. Journal of Applied
Psychology, 84, 640-647.

Lindell, M. K. & Brandt, C. J. (2000). Climate quality and climate consensus as mediators of the

relationship between organizational antecedents and outcomes. Journal of Applied
Psychology, 85, 331-348.

Lindell, M. K., Brandt, C. J. & Whitney, D. J. (1999). A revised index of interrater agreement for

multi-item ratings of a single target. Applied Psychological Measurement, 23, 127-135.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., Sheets, V. (2002). A

comparison of methods to test mediation and other intervening variable effects.
Psychological Methods, 7, 83-104.

Multilevel Models in R 81

Pinheiro, J. C. & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York:
Springer-Verlag.

Ployhart, R. E., Holtz, B. C. & Bliese, P. D. (2002). Longitudinal data analysis: Applications of

random coefficient modeling to leadership research. Leadership Quarterly, 13, 455-486.

Robinson, W. S. (1950). Ecological correlations and the behavior of individuals. American

Sociological Review, 15, 351-357.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability.

Psychological Bulletin, 86, 420-428.

Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models,

and individual growth models. Journal of Educational and Behavioral Statistics, 24,
323-355.

Snijders, T. A. B. & Bosker, R. J. (1994). Modeled variance in two-level models. Sociological

Methods and Research, 22, 342-363.

Snijders, T. A. B. & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and

advanced multilevel modeling. London: Sage Publications.

Sobel, M. E., (1982). Asymptotic confidence intervals for indirect effects in structural equation

models. In S. Leinhardt (Ed.), Sociological Methodology 1982 (pp. 290-312).
Washington, DC: American Sociological Association.

Tinsley, H. E. A., & Weiss, D. J. (1975). Interrater reliability and agreement of subjective

judgements. Journal of Counseling Psychology, 22, 358-376.

