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1 Introduction 

This is an introduction to how R can be used to perform a wide variety of multilevel analyses.  
“Multilevel analysis” has lately become a term to describe random coefficient modeling (see 
Bryk & Raudenbush, 1992; Kreft & De leeuw, 1998; Snijders & Bosker, 1999).  Without a 
doubt, random coefficient models (RCM) are well-suited to multilevel analyses; nonetheless, a 
number of multilevel analytic techniques existed before random coefficient modeling emerged as 
the tool of choice.  In addition, RCM analyses are often augmented by work in related areas such 
as work in within-group agreement and group-mean reliability.  Consequently, the definition of 
multilevel analyses that I use in this document reflects a wide range of inter-related multilevel 
topics (see also Klein & Kozlowski, 2000).  Specifically, I will cover: 

• Within-group agreement and reliability 

• Contextual OLS models 

• Covariance theorem decomposition 

• Random Coefficient Modeling 

• Random Group Resampling 

Because of the wide variety of topics covered in this definition of multilevel analyses, it is 
necessary to use several “packages” written for R.  The first of these packages is the “base” 
package that comes with R.  This package is automatically loaded and provides the basic 
structure of R along with routines to estimate ANOVA and regression models important in 
contextual OLS models. 

In addition to the base package, I will rely heavily on a package that I have developed while 
conducting multilevel analyses – the “multilevel” package.  This package provides tools to 
estimate within-group agreement and reliability; it has routines to conduct Random Group 
Resampling (Bliese & Halverson, 2002; Bliese, Halverson & Rothberg, 2000); and it has 
routines to conduct covariance theorem decomposition (Robinson, 1950; Dansereau, Alutto & 
Yammarino, 1984). 

Finally, I will make use of the non-linear and linear mixed-effects (nlme) model package, 
(Pinheiro & Bates, 2000).  This package is a powerful set of programs that can be used to 
estimate a variety of random coefficient models.  The programs in the nlme package have 
remarkable flexibility, allowing excellent control over statistical models.  

The layout of this document is as follows.  First I briefly introduce R.  The material that I 
discuss in this introduction is in many cases lifted word-for-word from the document entitled 
“An Introduction to R” (see the copyright notice on page 2).  This brief introduction is intended 
to give readers a feel for R.  Following the introduction to R, I illustrate the use of R in 
multilevel analyses. 
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2 An Introduction to R 

2.1 Overview 

R is an integrated suite of software facilities for data manipulation, calculation and graphical 
display. R is a vehicle for developing methods of interactive data analysis.  Among other things 
it has  

• an effective data handling and storage facility,  

• a suite of operators for calculations on arrays, in particular matrices,  

• a large, integrated collection of tools for data analysis, 

• graphical facilities for data analysis and display either directly at the computer or on 
hardcopy, and  

• a well-developed and effective programming language.  

The term "environment" is intended to characterize R as a fully planned and coherent system, 
rather than an incremental growth of specific and inflexible tools, as is frequently the case with 
other data analysis software. 

2.1.1 Related software and documentation  

R can be regarded as a re-implementation of the S language developed at AT&T by Rick 
Becker, John Chambers and Allan Wilks. A number of the books and manuals about S bear some 
relevance to R.  

The basic reference is The New S Language: A Programming Environment for Data Analysis 
and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks. The features of the 
1991 release of S (S version 3) are covered in Statistical Models in S edited by John M. 
Chambers and Trevor J. Hastie.  Both of these texts would be highly useful to users of R. 

 

2.1.2 R and statistics  

The developers of R think of it as an environment within which many classical and modern 
statistical techniques have been implemented. Some of these are built into the base R 
environment, but many are supplied as packages.  There are a number of packages supplied with 
R (called "standard" packages) and many more are available through the CRAN family of 
Internet sites (via http://cran.r-project.org).  

There is an important difference in philosophy between R and the other main statistical 
systems. In R a statistical analysis is normally done as a series of steps with intermediate results 
stored in objects. Thus, whereas SAS and SPSS will give copious output from an analysis, R will 
give minimal output and store the results in a fit object for subsequent interrogation by functions 
such as summary. 

For multilevel analyses, we will be interested primarily in two packages.  The first is the 
multilevel package.  This package provides routines to estimate within-group agreement and 
reliability indices; it performs Random Group Resampling (RGR), and also has routines to 
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conduct covariance theorem decomposition of multilevel correlations.  As with all other R 
packages, the multilevel package is open-source and can be obtained from http://cran.r-
project.org or installed directly using the "packages" GUI option in R. 

The second package that will be used for multilevel random coefficient modeling (i.e., 
Hierarchical Linear Modeling) is the mixed-effects package nlme (Pinheiro & Bates, 2000).  
This package provides a complete set of resources for estimating random coefficient models.  
The nlme package is a standard package available once R is installed. 

Finally, we will make use of both the foreign package and the lattice package.  The 
former provides functions for importing data files from SAS, SPSS, etc.  The latter is an 
advanced graphical package that allows one to produce production quality graphics. 

2.1.3 Starting R in a Windows environment 

The CRAN websites and mirrors (http: //cran.r-project.org) provide binary files for installing 
R in Windows computing environments.  The base program and a number of default packages 
can be downloaded and installed using a single executable file (*.exe).   

2.1.4 Data permanency and removing objects 

In R, one works in an area called the “workspace.”  The workspace is a working environment 
where objects are created and manipulated.  Objects that are commonly kept in the workspace 
are (a) entire data sets (i.e. dataframes) and (b) the output of statistical analyses.  It is also 
relatively common to keep programs (i.e., functions) that do special project-related tasks within 
the workspace. 

The R commands 
> objects() 

or 

> ls() 

display the names of the objects in the workspace.  As given above, the objects() command 
lists the objects in search position 1 corresponding to the workspace (or technically the 
“.GlobalEnv” ).  The open and closed parentheses containing no content are a shortcut for (1).  
It will later become apparent that it is often useful to list objects in other search positions. 

Within the workspace, one removes objects using the rm function: 
> rm(x, y, ink, temp, foo) 

It is important to keep in mind that there are two types of objects listed in the workspace.  The 
first type of object is permanently stored in the “.Rdata” file in the working directory.  The 
second type of object is created during the current session.  These latter objects reside entirely in 
memory unless explicitly written to the “.Rdata” file.  In other words, if you fail to save objects 
that you create in the current session, they will NOT be there next time you start R. 
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There are two ways to save current objects, both of which use the save.image function.  
First, one can use the “Save Workspace” option from the File menu to specify where to save the 
workspace.  This option is GUI based, and allows the user to use a mouse to specify a location.  
The other option is to call the save.image function directly from the command line, as in: 

> save.image("F:/Temp/Project 1.RData") 

In this case, the save.image function writes the objects in memory to the “Project 1.Rdata” 
file in the TEMP subdirectory on the F: Drive.  If calling save.image directly, it is advisable 
to end the file name with ".RData" so that R recognizes the file as an R workspace. 

2.1.5 Running R for Different Projects 

As one develops proficiency with R, the program will inevitably end up being used for 
multiple projects.  It will become necessary, therefore, to keep separate workspaces.  Each 
workspace will likely contain one or more related datasets, model results and programs written 
for specific projects. 

For instance, I often use R to analyze data files for manuscripts that are being written, revised 
and (theoretically) eventually published.   Often because of the length of the review process I 
may go several months between analyses on specific projects.  Consequently, I store the R 
Workspace in the same location as the manuscript.  Therefore, when I return to a revision of a 
manuscript, the data and statistical models supporting the manuscript are immediately at hand.  
To save workspaces, follow these steps: 

1. Keep your initial workspace empty – no objects 
2. Import the raw data (more no this later) and perform the analyses. 
3. From the File menu, select “Save Workspace” and save the workspace in a project folder. 

 
By working keeping separate workspaces, all data objects and analysis objects will be 

available for subsequent analyses and there will be no need to import the data again. 
 

2.1.6 Recall and correction of previous commands 

Under Windows, R provides a mechanism for recalling and re-executing previous commands. 
The vertical arrow keys on the keyboard can be used to scroll forward and backward through a 
command history. Once a command is located in this way, the cursor can be moved within the 
command using the horizontal arrow keys, and characters can be removed with the DEL key or 
added with the other keys. 

2.1.7 Getting help with functions and features 

R has a built in help facility. To get more information on any specific named function, for 
example solve, the command is 

> help(solve) 

An alternative is 
> ?solve 
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For a feature specified by special characters, the argument must be enclosed in double or 
single quotes, making it a "character string": 

> help("[[") 

Either form of quote mark may be used to escape the other, as in the string "It's important". 
Our convention is to use double quote marks for preference. 

On most versions of R help is available in html format by running 
> help.start() 

to launch a Web browser that allows the help pages to be browsed with hyperlinks. 

Searches of help files can by conducted using the help.search function.  For instance to 
find functions related to regression one would type: 

> help.search("regression") 

2.1.8 R commands, case sensitivity, etc. 

Technically R is an expression language with a very simple syntax. It is case sensitive, so “A” 
and “a” are different symbols and would refer to different variables. 

Elementary commands consist of either expressions or assignments. If an expression is given 
as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an 
expression and passes the value to a variable but the result is not automatically printed. 

Commands are separated either by a semi-colon (‘;’), or by a new line. Elementary commands 
can be grouped together into one compound expression by braces (‘{’ .. ‘}’).  Comments can be 
put almost anywhere, starting with a hashmark (‘#’), everything to the end of the line is a 
comment. 

If a command is not complete at the end of a line, R will give a different prompt, by default 

+ 

on second and subsequent lines and continue to read input until the command is syntactically 
complete. In providing examples, this document will generally omit the continuation prompt and 
indicate continuation by simple indenting. 

2.2 Simple manipulations; numbers and vectors 

2.2.1 Vectors and assignment 

R operates on named data structures. The simplest such structure is the numeric vector, which 
is a single entity consisting of an ordered collection of numbers. To set up a vector named x, say, 
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command 

> x <- c(10.4, 5.6, 3.1, 6.4, 21.7) 
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This is an assignment statement using the function c() which in this context can take n 
arbitrary number of vector arguments and whose value is a vector gotten by concatenating its 
arguments end to end. 

A number occurring by itself in an expression is taken as a vector of length one. Notice that 
the assignment operator (‘<-‘) consists of the two characters ‘<’ (“less than”) and ‘-’(“minus”) 
occurring strictly side-by-side and it ‘points’ to the object receiving the value of the expression.  
In current versions of R, assignments can also be made using the = sign. 

> x=c(10.4, 5.6, 3.1, 6.4, 21.7) 

Assignments can also be made in the other direction, using the obvious change in the 
assignment operator. So the same assignment could be made using 

> c(10.4, 5.6, 3.1, 6.4, 21.7) -> x 

If an expression is used as a complete command, the value is printed and lost. So now if we 
were to issue the command 

> 1/x 

the reciprocals of the five values would be printed at the terminal (and the value of x, of course, 
unchanged). 

The further assignment 
> y <- c(x, 0, x) 

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle 
place. 

2.2.2 Missing values 

In some cases the components of a vector may not be completely known. When an element or 
value is “not available” or a “missing value” in the statistical sense, a place within a vector may 
be reserved for it by assigning it the special value NA. In general, any operation on an NA 
becomes an NA. The motivation for this rule is simply that if the specification of an operation is 
incomplete, the result cannot be known and hence is not available. 

Most of the functions in the multilevel package (that we will discuss in detail later) require 
data that have no missing values.  To create such data, one may make use of the na.exclude 
function.  The object returned from na.exclude is a new dataframe that has listwise deletion 
of missing values.  So 

> TDATA<-na.exclude(DATA) 

will produce a dataframe TDATA that contains no missing values.  The TDATA dataframe can 
then be used subsequent analyses.  We discuss dataframes in more detail in the next section. 
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2.3 Dataframes 

2.3.1 Introduction to dataframes 

A dataframe is an object that stores data.  Dataframes have multiple columns representing 
different variables and multiple rows representing different observations.  The columns can be 
numeric vectors or non-numeric vectors, however each column must have the same number of 
observations.  Thus, for all practical purposes one can consider dataframes to be spreadsheets 
with the limitation that each column must have the same number of observations. 

Dataframes may be displayed in matrix form, and its rows and columns extracted using matrix 
indexing conventions.  This means, for example, that one can access specific rows and columns 
of a dataframe using brackets [rows, columns].  For example to access rows 1-3 and all columns 
of a dataframe object named TDAT 

> TDAT[1:3,] 

To access rows 1:3 and columns 1,5 and 8 
> TDAT[1:3,c(1,5,8)] 

We will consider matrix bracket manipulations in more detail with a specific example in section 
2.5. 

2.3.2 Making dataframes 

Data frames can be made using the data.frame function.  The following example makes a 
dataframe object called accountants. 

 
> accountants<-data.frame(home=c("MD","CA","TX"),income=c(45000, 
+ 55000,60000),car=c("honda","acura","toyota")) 
> accountants 
  home income    car 
1   MD  45000  honda 
2   CA  55000  acura 
3   TX  60000 toyota 

In practice, however, one will generally make dataframes from existing files using data 
importing functions such as read.table, read.csv or read.spss.  These functions 
read data sets from external files and create dataframes.  We discuss these types of functions in 
section 2.4. 

2.3.3 Using attach() and detach() 

To access specific components of dataframes, we can use the $ notation.  For instance, 
accountants$car returns the car vector within the dataframe accountants.  Sometimes 
it is useful to make the components of a list or dataframe temporarily visible as variables under 
their component name, without the need to quote the list name explicitly each time. 

The attach() function, as well as having a directory name as its argument, may also have a 
dataframe. Thus  
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> attach(accountants) 

places the dataframe in the search path at position 2.  In this case if there are no variables home, 
income or car in position 1, then the dataframe accountants is searched and home, 
income or car are available as variables in their own right.  In general, I do not recommend 
attaching specific dataframes just so that one can use short names such as "car" instead of the 
longer names "accountants$car".  While it is theoretically a time saving option, my 
experience shows that it can lead to unanticipated consequences when one has fairly complex 
workspaces with several objects having similar names.  Though a little more time consuming, it 
is better to be explicit about where specific objects are located using the $ notation. 

To detach a dataframe, use  
> detach() 

More precisely, this statement detaches from the search path the entity currently at position 2. 
Entities at positions greater than 2 on the search path can be detached by giving their number to 
detach, but it is much safer to always use a name, for example by detach(accountants). 

To make a permanent change to the dataframe itself, the simplest way is to resort once 
again to the $ notation: 
 

> accountants$income2<-accountants$income+100 
> accountants 
  home income    car income2 
1   MD  45000  honda   45100 
2   CA  55000  acura   55100 
3   TX  60000 toyota   60100 

2.3.4 Managing the search path 

The function search shows the current search path and so is a useful way to keep track of 
what has been attached.  Initially, it gives the global environment in search position 1 followed 
by various packages that are automatically loaded (actual results may vary depending upon the 
specific version of R). 

 
> search() 
[1] ".GlobalEnv"       "package:methods"  "package:stats"    
[4] "package:graphics" "package:utils"    "Autoloads"        
[7] "package:base" 

where .GlobalEnv is the workspace.   Basically, the search path means that if you type in an 
object such as car the program will look for something named car first in the workspace, then 
in the package methods, then in the package stats, etc.  Because car does not exist in any 
of these places, the following error message will be returned: 

 
> car 
Error: Object "car" not found 



Multilevel Models in R  13 

If one attaches the dataframe accountants; however, the search path changes as follows: 
 
> attach(accountants) 
> search() 
[1] ".GlobalEnv"       "accountants"      "package:methods"  
[4] "package:stats"    "package:graphics" "package:utils"    
[7] "Autoloads"        "package:base" 

In this case, typing car at the command prompt returns: 
> car 
[1] honda  acura  toyota 
Levels: acura honda toyota 

It is often useful to see what objects exist within various components of the search path.  The 
function objects() with the search position of interest in the parentheses can be used to 
examine the contents of any object in the search path.  For instance to see the contexts of search 
position 2 one types: 

> objects(2) 

[1] "car"     "home"    "income"  "income2" 

Finally, we detach the dataframe and confirm it has been removed from the search path. 
> detach("accountants") 

> search() 

[1] ".GlobalEnv"       "package:methods"  "package:stats"    

[4] "package:graphics" "package:utils"    "Autoloads"        

[7] "package:base" 

 

2.4 Reading data from files 

In R sessions, large data objects will almost always be read from external files and stored as 
dataframes.  There are several options available to read external files. 

If variables are stored in spreadsheets such as EXCEL, entire dataframes can be read directly 
using the function read.table() and variants such as read.csv() and read.delim().  
The help file for read.table() discusses the variants of read.table() in detail. 

If variables are stored in other statistical packages such as SPSS or SAS, then the foreign 
package provides some useful programs for importing the data.  This document will illustrate 
importing spreadsheet data and SPSS data. 

2.4.1 Reading Spreadsheet (EXCEL) data 

External spreadsheets normally have this form. 

•  The first line of the file has a name for each variable. 

•  Each additional line of the file has values for each variable. 

So the first few lines of a spreadsheet data might look as follows. 
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UNIT PLATOON COH01 COH02 COH03 COH04 COH05
1044B 1ST 4 5 5 5 5 
1044B 1ST 3 NA 5 5 5 
1044B 1ST 2 3 3 3 3 
1044B 2ND 3 4 3 4 4 
1044B 2ND 4 4 3 4 4 
1044B 2ND 3 3 2 2 1 
1044C 1ST 3 3 3 3 3 
1044C 1ST 3 1 4 3 4 
1044C 2ND 3 3 3 3 3 
1044C 2ND 2 2 2 3 2 
1044C 2ND 1 1 1 3 3 

 

One of the most reliable ways to import any type of data into R is to use EXCEL to process 
the data file into a comma delimited (*.csv) format. Note that most statistical packages (SAS, 
SPSS) can save data as an EXCEL file.  Users who use SPSS and export data to EXCEL may 
encounter the error type value marker "#NULL!" for missing values.  This value must be 
changed to NA as under the second entry under COH02 in the example above to avoid problems 
in R.  In addition, all blank spaces and any other missing value markers should be replaced with 
NA to facilitate dataframe creation. 

Once the comma delimited file is created using the “Save As” feature in EXCEL one can 
import it into R using either the read.table() or the read.csv() function.  For instance, 
if the file above is saved as “cohesion.csv” in the root directory of C: (C:\) the function 
read.table() can be used to read the dataframe directly 

>cohesion<-read.table("c:\\cohesion.csv", "header=T", sep=",") 

Alternatively, one can use read.csv() 
>cohesion<-read.csv("c:\\cohesion.csv","header=T") 

Note that subdirectories are designated using the double slash instead of a single slash, also 
recall that R is case sensitive. 

Typing in the name of the cohesion object displays all of the data: 
 
> cohesion 
    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1  1044B     1ST     4     5     5     5     5 
2  1044B     1ST     3    NA     5     5     5 
3  1044B     1ST     2     3     3     3     3 
4  1044B     2ND     3     4     3     4     4 
5  1044B     2ND     4     4     3     4     4 
6  1044B     2ND     3     3     2     2     1 
7  1044C     1ST     3     3     3     3     3 
8  1044C     1ST     3     1     4     3     4 
9  1044C     2ND     3     3     3     3     3 
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10 1044C     2ND     2     2     2     3     2 
11 1044C     2ND     1     1     1     3     3 
 

2.4.2 The extremely useful "clipboard" option  
In R, users can directly read and write data to a Windows clipboard.  This can be a 

tremendous time saving feature for it allows users to export and import data into EXCEL and 
other programs without saving intermediate files. 

For instance, to read cohesion into R directly from EXCEL, one would: 
1.  Open the cohesion.xls file in EXCEL 
2.  Select and copy the relevant cells in Windows 
3.  Issue the R command: 
 
> cohesion<-read.table(file="clipboard",sep="\t",header=T) 
 
The file "clipboard" instructs read.table to read the file from the Windows 

clipboard, and the separator option of "\t" notifies read.table that elements are separated 
by tabs. 

Because the "clipboard" option also works with write.table, (see section 2.4.7) it can 
be a useful way to export the results of data analyses to EXCEL or other programs.  For instance, 
if we create a correlation matrix from the cohesion data set, we can export this correlation table 
directly to EXCEL. 

 
> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs") 
> CORMAT 
          COH01     COH02     COH03     COH04     COH05 
COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426 
COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316 
COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837 
COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961 
COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000 
 
> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA) 
 
Going to EXCEL and issuing the "paste" command will put the matrix into the EXCEL 

worksheet.  Note the somewhat counter-intuitive use of col.names=NA in this example.  This 
command does not mean omit the column names (that would be achieved by col.names=F), 
instead the command puts an extra blank in the first row of the column names to line up the 
column names with the correct columns.  Alternatively, one can use the option row.names=F 
to omit the row numbers. 

2.4.3 The foreign package and SPSS files 

Included in current versions of R is the “foreign” package.  This package contains functions to 
import SPSS, SAS, Stata and minitab files. 

  
> library(foreign) 
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> search() 
 [1] ".GlobalEnv"         "package:foreign"    "package:multilevel" 
 [4] "package:methods"    "package:stats"      "package:graphics"   
 [7] "package:grDevices"  "package:utils"      "package:datasets"   
[10] "Autoloads"          "package:base" 
    
> objects(2) 
 [1] "data.restore"  "lookup.xport"  "read.dbf"      "read.dta"      
 [5] "read.epiinfo"  "read.mtp"      "read.octave"   "read.S"        
 [9] "read.spss"     "read.ssd"      "read.systat"   "read.xport"    
[13] "write.dbf"     "write.dta"     "write.foreign" 

For example, if the data in cohesion is stored in an SPSS sav file in a TEMP directory, then 
one could issue the following command to read in the data (text following the # mark is a 
comment): 

 
> help(read.spss)     #look at the documentation on read.spss 
> cohesion2<-read.spss("c:\\temp\\cohesion.sav")   
> cohesion2       #look at the cohesion object 
$UNIT 
 [1] "1044B" "1044B" "1044B" "1044B" "1044B" "1044B" "1044C" "1044C" "1044C" 
[10] "1044C" "1044C" 
$PLATOON 
 [1] "1ST" "1ST" "1ST" "2ND" "2ND" "2ND" "1ST" "1ST" "2ND" "2ND" "2ND" 
$COH01 
 [1] 4 3 2 3 4 3 3 3 3 2 1 
$COH02 
 [1]  5 NA  3  4  4  3  3  1  3  2  1 
$COH03 
 [1] 5 5 3 3 3 2 3 4 3 2 1 
$COH04 
 [1] 5 5 3 4 4 2 3 3 3 3 3 
$COH05 
 [1] 5 5 3 4 4 1 3 4 3 2 3 
attr(,"label.table") 
attr(,"label.table")$UNIT 
NULL 
attr(,"label.table")$PLATOON 
NULL 
attr(,"label.table")$COH01 
NULL 
attr(,"label.table")$COH02 
NULL 
attr(,"label.table")$COH03 
NULL 
attr(,"label.table")$COH04 
NULL 
attr(,"label.table")$COH05 
NULL 

The cohesion2 object is stored as a list rather than a dataframe.  With the default options, 
read.spss function imports the file as a list and reads information about data labels.  In 
almost every case, users will want to convert the list object into a dataframe for manipulation in 
R.  This can be done using the data.frame command. 

 
> cohesion2<-data.frame(cohesion2) 
> cohesion2 
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    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1  1044B     1ST     4     5     5     5     5 
2  1044B     1ST     3    NA     5     5     5 
3  1044B     1ST     2     3     3     3     3 
4  1044B     2ND     3     4     3     4     4 
5  1044B     2ND     4     4     3     4     4 
6  1044B     2ND     3     3     2     2     1 
7  1044C     1ST     3     3     3     3     3 
8  1044C     1ST     3     1     4     3     4 
9  1044C     2ND     3     3     3     3     3 
10 1044C     2ND     2     2     2     3     2 
11 1044C     2ND     1     1     1     3     3 

Alternatively, users can change the default options in read.spss to read the data directly 
into a dataframe.  Note the use of use.value.labels=F and to.data.frame=T below: 

 
> cohesion2<-read.spss("c:\\temp\\cohesion.sav", 
use.value.labels=F, to.data.frame=T) 
> cohesion2 
    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1  1044B     1ST     4     5     5     5     5 
2  1044B     1ST     3    NA     5     5     5 
3  1044B     1ST     2     3     3     3     3 
4  1044B     2ND     3     4     3     4     4 
5  1044B     2ND     4     4     3     4     4 
6  1044B     2ND     3     3     2     2     1 
7  1044C     1ST     3     3     3     3     3 
8  1044C     1ST     3     1     4     3     4 
9  1044C     2ND     3     3     3     3     3 
10 1044C     2ND     2     2     2     3     2 
11 1044C     2ND     1     1     1     3     3 
 

The cohesion dataframe (made using the EXCEL and csv files) and cohesion2 
(imported from SPSS) are now identical. 

2.4.4 Using choose.files to bring up a GUI to read data 

One limitation with using command lines to specify where files are located is that in complex 
directory structures it can be hard to specify the correct location of the data.  For instance, if data 
are embedded several layers deep in subdirectories, it may be difficult to specify the path.  In 
these cases, the choose.files function is very handy.  The choose.files function opens 
a Graphical User Interface (GUI) dialogue box allowing one to select files using the mouse.  The 
choose.files function can be embedded within any function where one has to specifically 
identify a file.  So, for instance, one can use choose.files with read.spss: 

 
> cohesion2<-read.spss(choose.files(), 
+ use.value.labels=F, to.data.frame=T) 
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Notice how "choose.files()" replaces "c:\\temp\\cohesion.sav" used in the 
final example in section 2.4.3.  With the use of choose.files a GUI dialogue box opens, and 
one is able to select a specific SPSS sav file using a mouse. 

2.4.5 Checking your dataframes with str , summary, and head 

With small data sets it is easy to verify that the data has been read in correctly.  Often, 
however, one will be working with large data sets that are too large to visual verify they have 
been read in correctly.  Consequently, functions such as str (structure), summary and head 
provide easy ways to examine dataframes. 

 
> str(cohesion) 
`data.frame':   11 obs. of  7 variables: 
$ UNIT   : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ... 

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ... 
 $ COH01  : int  4 3 2 3 4 3 3 3 3 2 ... 
 $ COH02  : int  5 NA 3 4 4 3 3 1 3 2 ... 
 $ COH03  : int  5 5 3 3 3 2 3 4 3 2 ... 
 $ COH04  : int  5 5 3 4 4 2 3 3 3 3 ... 
 $ COH05  : int  5 5 3 4 4 1 3 4 3 2 ... 
 
> summary(cohesion) 
    UNIT   PLATOON     COH01           COH02          COH03       
 1044B:6   1ST:5   Min.   :1.000   Min.   :1.00   Min.   :1.000   
 1044C:5   2ND:6   1st Qu.:2.500   1st Qu.:2.25   1st Qu.:2.500   
                   Median :3.000   Median :3.00   Median :3.000   
                   Mean   :2.818   Mean   :2.90   Mean   :3.091   
                   3rd Qu.:3.000   3rd Qu.:3.75   3rd Qu.:3.500   
                   Max.   :4.000   Max.   :5.00   Max.   :5.000   
                                   NA's   :1.00                   
     COH04           COH05       
 Min.   :2.000   Min.   :1.000   
 1st Qu.:3.000   1st Qu.:3.000   
 Median :3.000   Median :3.000   
 Mean   :3.455   Mean   :3.364   
 3rd Qu.:4.000   3rd Qu.:4.000   
 Max.   :5.000   Max.   :5.000 
 
> head(cohesion)  #list the first six rows of data in a dataframe 
   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1 1044B     1ST     4     5     5     5     5 
2 1044B     1ST     3    NA     5     5     5 
3 1044B     1ST     2     3     3     3     3 
4 1044B     2ND     3     4     3     4     4 
5 1044B     2ND     4     4     3     4     4 
6 1044B     2ND     3     3     2     2     1  

  

2.4.6 Loading data from packages 

One of the useful attributes of R is that the data used in the examples are almost always 
available to the user.  These data are associated with specific packages.  For instance, the 
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multilevel package uses a variety of data files to illustrate specific functions.  To gain access to 
these data, one uses the data command:   

>data(package="multilevel") 

This command lists the data sets associated with the multilevel package, and the command 

>data(bhr2000, package="multilevel") 

copies the bhr2000 data set to the workspace making it possible to work with the bhr2000 
dataframe. 

If a package has been attached by library, its datasets are automatically included in the search, 
so that  

>library(multilevel) 

attaches the multilevel package; 
>data() 

lists all of available data sets in the multilevel package and in other packages, and  
>data(bhr2000) 

copies the data from the package to the workspace.  

2.4.7 Exporting data to spreadsheets using write() and write.table() 

There are likely to be occasions when it is useful to export data from R to spreadsheets.  There 
are two functions that are useful for exporting data -- the write function and the 
write.table function.  The write function is useful when one wants to export a vector 
while the write.table function is useful for exporting dataframes or matrices.  Below both 
will be illustrated. 

Let us assume that we were interested in calculating the average hours worked for the 99 
companies in the bh1996 data set, and then exporting these 99 group means to a spreadsheet.  
To calculate the vector of 99 group means and write them out to a file we can issue the following 
commands: 

> HRSMEANS<-tapply(bh1996$HRS,bh1996$GRP,mean) 

> write(HRSMEANS,file="c:\\temp\\ghours.txt",ncolumns=1)  

The tapply command subdivides HRS by GRP, and then performs the function mean on 
the HRS data for each group.  This command is similar to the aggregate function that will be 
discussed in more detail in section 3.2.2.  The write function takes the 99 group means stored 
in the object HRSMEANS, and writes them to a file in the "c:\temp" subdirectory called 
ghours.txt.  It is important to use the ncolumns=1 option or else the write function will 
default to five columns.  The ghours.txt file can be read into any spreadsheet as a vector of 99 
values. 
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The write.table function is similar to the write function, except that one must specify 
the character value that will be used to distinguish columns.  Common choices include tabs 
(designated as \t) and commas.  Of these two common choices, commas are likely to be most 
useful in exporting dataframes or matrices to spreadsheets because programs like Microsoft 
EXCEL automatically read in comma delimited or csv files.  Below I export the entire bh1996 
dataframe to a comma delimited file that can be read directly into Microsoft EXCEL. 

> write.table(bh1996,file="c:\\temp\\bhdat.csv",sep=",", 

row.names=F) 

Notice the use of the sep="," option and also the row.names=F option.  The 
row.names=F stops the program from writing an additional column of row names typically 
stored as a vector from 1 to the number of rows.   Omitting this column is important because it 
ensures that the column names match up with the correct columns.  Recall from section 2.4.2 that 
one can use the "file=clipboard" option to directly write to Window's clipboard. 

2.5 More on using matrix brackets on dataframes 

At this point, it may be useful to reconsider the utility of using matrix brackets to access 
various parts of cohesion (see also section 2.3.1).  While this may initially appear 
cumbersome, mastering the use of matrix brackets provides considerable control over ones' 
dataframe. 

Recall that one accesses various parts of the dataframe via [rows, columns].  So, for instance, 
we can access rows 1,5,and 8 and columns 3 and 4 of the cohesion dataframe as follows: 

 
> cohesion[c(1,5,8),3:4] 
  COH01 COH02 
1     4     5 
5     4     4 
8     3     1 

Alternatively, we can specify the column names (this helps avoid picking the wrong columns) 
 
> cohesion[c(1,5,8),c("COH01","COH02")] 
  COH01 COH02 
1     4     5 
5     4     4 
8     3     1 

It is often useful to pick specific rows that meet some criteria.  So, for example, we might want 
to pick rows that are from the 1ST PLATOON 

 
> cohesion[cohesion$PLATOON=="1ST",] 
   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1 1044B     1ST     4     5     5     5     5 
2 1044B     1ST     3    NA     5     5     5 
3 1044B     1ST     2     3     3     3     3 
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7 1044C     1ST     3     3     3     3     3 
8 1044C     1ST     3     1     4     3     4 

Upon inspection, we might want to further refine our choice and exclude missing values.  We do 
this by adding another condition using AND operator "&" 
 
> cohesion[cohesion$PLATOON=="1ST"&is.na(cohesion$COH02)==F,] 
   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1 1044B     1ST     4     5     5     5     5 
3 1044B     1ST     2     3     3     3     3 
7 1044C     1ST     3     3     3     3     3 
8 1044C     1ST     3     1     4     3     4 

By using matrix brackets, one can easily and quickly specify particular portions of a dataframe 
that are of interest. 
 
2.6 Identifying Statistical models in R 

This section presumes the reader has some familiarity with statistical methodology, in 
particular with regression analysis and the analysis of variance.  Almost all statistical models 
from ANOVA to regression to random coefficient models are specified in a common format.  
The format is DV ~ IV1+IV2+IV3.  In a regression model this dictates that the dependent 
variable (DV) will be regressed on three independent variables.  By using + between the IV's, the 
model is requesting only main effects.  If the IVs were separated by the * sign, it would 
designate both main effects and interactions (all two and three-way interactions in this case). 

2.6.1 Examples 

A few examples may be useful in illustrating some other aspects of model specification.  
Suppose y,  x, x0, x1 and x2 are numeric variables, and A, B, and C are factors or 
categorical variables. The following formulae on the left side below specify statistical models as 
described on the right. 
 
y ~ x   
y ~ 1 + x Both imply the same simple linear regression model of y on x. The first has an implicit 

intercept term, and the second an explicit one. 
 
y ~ A  Single classification analysis of variance model of y, with classes determined by A. 

Basically a one-way analysis of variance. 
 
y ~ A + x  Single classification analysis of covariance model of y, with classes determined by A, 

and with covariate x.  Basically an analysis of covariance. 

2.6.2 Linear models 

The basic function for fitting ordinary multiple regression models is lm(), and a streamlined 
version of the call is as follows: 
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> fitted.model <- lm(formula, data = data.frame) 

For example 
> fm2 <- lm(y ~ x1 + x2, data = production) 

would fit a multiple regression model of y on x1 and x2 (with implicit intercept term).  The 
important but technically optional parameter data = production specifies that any 
variables needed to construct the model should come first from the production dataframe.  This is 
the case regardless of whether the dataframe production has or has not been attached on the 
search (see section 2.3.3). 

2.6.3 Generic functions for extracting model information 

The object created by lm() is a fitted model object; technically a list of results of class "lm". 
Information about the fitted model can then be displayed, extracted, plotted and so on by using 
generic functions that orient themselves to objects of class "lm". These include: 
add1   coef     effects  kappa   predict  residuals 

alias  deviance family   labels  print    step 

anova  drop1    formula  plot    proj     summary 

A brief description of the most commonly used ones is given below. 

 
coefficients(object) 

Extract the regression coefficients. 
Short form: coef(object). 
 

plot(object) 
Produce four plots, showing residuals, fitted values and some diagnostics. 
 

predict(object, newdata=data.frame) 
The dataframe supplied must have variables specified with the same labels as 
the original. The value is a vector or matrix of predicted values corresponding 
to the determining variable values in data.frame. 
 

print(object) 
Print a concise version of the object. Most often used implicitly. 
 

residuals(object) 
Extract the (matrix of) residuals, weighted as appropriate. 
Short form: resid(object). 
 

summary(object) 
Print a comprehensive summary of the results of the regression analysis.  The summary 
function is widely used to extract more information from objects whether the objects 
are dataframes or products of statistical functions. 
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2.7 Graphical procedures 

Graphical facilities are an important and extremely versatile component of the R environment. 
It is possible to use the facilities to display a wide variety of statistical graphs and also to build 
entirely new types of graphs.  The graphics facilities can be used in both interactive and batch 
modes, but in most cases, interactive use is more productive. Interactive use is also easy because 
at startup time R initiates a graphics device driver that opens a special graphics window for the 
display of interactive graphics. Although this is done automatically, it is useful to know that the 
command used is windows() under Windows. Once the device driver is running, R plotting 
commands can be used to produce a variety of graphical displays and to create entirely new 
kinds of display. 

 

2.7.1 The plot() function 

One of the most frequently used plotting functions in R is the plot() function. This is a 
generic function: the type of plot produced is dependent on the type or class of the first 
argument. 
 
plot(x, y) If x and y are vectors, plot(x, y) produces a scatterplot of y against x.  
 
plot(df) 
plot(~ a+b+c, data=df) 
plot(y ~ a+b+c, data=df) 

where df is a dataframe. The first example produces scatter plots of all of the 
variables in a dataframe.  The second produces scatter plots for just the three named 
variables (a, b and c). The third example plots y against a, b and c. 

 

2.7.2 Displaying multivariate data 

R provides two very useful functions for representing multivariate data. If X is a numeric 
matrix or dataframe, the command 

> pairs(X) 

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is, every 
column of X is plotted against every other column of X and the resulting n(n - 1) plots are 
arranged in a matrix with plot scales constant over the rows and columns of the matrix. 

When three or four variables are involved a coplot may be more enlightening. If a and b are 
numeric vectors and c is a numeric vector or factor object (all of the same length), then the 
command 

> coplot(a ~ b | c) 

produces a number of scatterplots of a against b for given values of c. If c is a factor, this simply 
means that a is plotted against b for every level of c. When c is numeric, it is divided into a 
number of conditioning intervals and for each interval a is plotted against b for values of c within 
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the interval. The number and position of intervals can be controlled with given.values= 
argument to coplot() -- the function co.intervals() is useful for selecting intervals. 
You can also use two given variables with a command like 

> coplot(a ~ b | c + d) 

which produces scatterplots of a against b for every joint conditioning interval of c and d. The 
coplot() and pairs() function both take an argument panel= which can be used to 
customize the type of plot which appears in each panel. The default is points() to produce a 
scatterplot but by supplying some other low-level graphics function of two vectors x and y as the 
value of panel= you can produce any type of plot you wish. An example panel function useful 
for coplots is panel.smooth(). 

 

2.7.3 Advanced Graphics and the lattice package 

An advanced graphics package called lattice is included with the base program.  The 
lattice package is an implementation of trellis graphics designed specifically for R.  One of 
the keys to using the lattice package is set up an appropriate graphics window in the R 
session.  It is often useful to set up a graphics window that creates graphs with a white or 
transparent background so that graphics can be copied directly into documents and presentations.  
Below is an example involving creating a histogram of 1000 random numbers on useful theme 
that involves a transparent background (col.whitebg).   
> library(lattice) 

> trellis.device(device="windows",theme="col.whitebg") 

> histogram(rnorm(1000),nint=30,xlab="1000 Random Numbers", 

 col="sky blue") 
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3 Multilevel Analyses 

In the remainder of this document, I illustrate how one can use R in multilevel modeling.  I 
begin by illustrating several R functions that I have found to be particularly useful in preparing 
the data for subsequent data analysis.  After this I illustrate: 

• Within-group agreement and reliability 

• Contextual OLS models 

• Covariance theorem decomposition 

• Random Coefficient Modeling 

In discussing within-group agreement and the covariance theorem decomposition, I also 
include sections on Random Group Resampling (or RGR).  RGR is a resampling technique that 
is useful in contrasting actual group results to pseudo-group results (see Bliese & Halverson, 
2002; Bliese, Halverson & Rothberg, 2000). 

3.1 Attaching the multilevel and nlme packages 

Several of the features in the following sections assume that the multilevel and nlme 
packages are accessible in R.  Packages are attached in R using the library command.  Thus, to 
attach the multilevel package one issues the command: 

> library(multilevel) 

> library(nlme) 

The nlme package comes with the base R package.  The multilevel can be obtained from 
http://cran.r-project.org or installed directly using the "packages" GUI option in R. 

3.2 Helpful multilevel data manipulation functions 

3.2.1 The merge Function 

One of the key data manipulation tasks that must be accomplished prior to estimating several 
of the multilevel models (specifically contextual models and random coefficient models) is that 
group-level variables must be “assigned down” to the individual.  To make a dataframe 
containing both individual and group-level variables, one typically begins with two separate 
dataframes.  One dataframe contains individual-level data, and the other dataframe contains 
group-level data.  By combining these two dataframes using a group identifying variable 
common to both, one is able to create a single data set containing both individual and group data.  
In R, combining dataframes is accomplished using the merge function. 

  For instance, let us consider the cohesion data that I introduced when I showed how to 
read data from external files.  The cohesion data is included as a multilevel data set, so we can 
use it without having to use read.csv or read.table (see section 2.4.1). 

 
> data(package="multilevel") 
Data sets in package `multilevel': 
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bhr2000                 Bliese Halverson and Rothberg (2000) 
  agreement data 

bh1996                  Bliese and Halversion (1996) data 
cohesion                Platoon Cohesion file 
klein2000               Klein et al. (2000) simulation data 
univbct                 Univariate form data for growth modeling 
                        examples 

To use the cohesion dataframe in the immediate working environment, we issue the 
data(cohesion) command: 
 

>data(cohesion) 
 >cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 
1  1044B     1ST     4     5     5     5     5 
2  1044B     1ST     3    NA     5     5     5 
3  1044B     1ST     2     3     3     3     3 
4  1044B     2ND     3     4     3     4     4 
5  1044B     2ND     4     4     3     4     4 
6  1044B     2ND     3     3     2     2     1 
7  1044C     1ST     3     3     3     3     3 
8  1044C     1ST     3     1     4     3     4 
9  1044C     2ND     3     3     3     3     3 
10 1044C     2ND     2     2     2     3     2 
11 1044C     2ND     1     1     1     3     3 

Now assume that we have another dataframe with platoon sizes.  We can create this dataframe 
as follows: 

 
> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"), 
PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3)) 
> group.size  #look at the group.size dataframe 
   UNIT PLATOON PSIZE 
1 1044B     1ST     3 
2 1044B     2ND     3 
3 1044C     1ST     2 
4 1044C     2ND     3 

To create a single file (new.cohesion) that contains both individual and platoon 
information, use the merge command. 

 
> new.cohesion<-merge(cohesion,group.size, 
  by=c("UNIT","PLATOON")) 
> new.cohesion 

     UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE 
1  1044B     1ST     4     5     5     5     5     3 
2  1044B     1ST     3    NA     5     5     5     3 
3  1044B     1ST     2     3     3     3     3     3 
4  1044B     2ND     3     4     3     4     4     3 
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5  1044B     2ND     4     4     3     4     4     3 
6  1044B     2ND     3     3     2     2     1     3 
7  1044C     1ST     3     3     3     3     3     2 
8  1044C     1ST     3     1     4     3     4     2 
9  1044C     2ND     3     3     3     3     3     3 
10 1044C     2ND     2     2     2     3     2     3 
11 1044C     2ND     1     1     1     3     3     3 

Notice that every individual now has a value for PSIZE – a value that reflects the number of 
individuals in the platoon. 

3.2.2 The aggregate function 

In many cases in multilevel analyses, one will be interested in creating a group-level variable 
from individual responses.  For example, one might be interested in calculating the group mean 
and reassigning it back to the individual.   In these cases, the aggregate function in 
combination with the merge function is particularly useful.  In our cohesion example, for 
instance, we want to have the platoon means for variables COH01 and COH02 reassigned back 
to the individuals. 

The first step in this process is to create a group-level file.  Creating this file is where one uses 
the aggregate function.  The aggregate function has three key arguments.  The first 
argument is a vector or matrix of variables that one wants to convert to group-level variables.  
Second is the grouping variable(s) included as a list, and third is the function (mean, var, 
length, etc.) executed on the variables.  To calculate the means of COH01 and COH02 
(columns 3 and 4 of the cohesion dataframe) issue the command:  

 
>TEMP<-aggregate(cohesion[,3:4], 
list(cohesion$UNIT,cohesion$PLATOON),mean) 
> TEMP 
  Group.1 Group.2    COH01    COH02 
1   1044B     1ST 3.000000       NA 
2   1044C     1ST 3.000000 2.000000 
3   1044B     2ND 3.333333 3.666667 
4   1044C     2ND 2.000000 2.000000 

Notice that COH02 has an “NA” value for the mean.  This is because there was a missing 
value in the individual-level file.  If we decide to base the group mean on the non-missing group 
values we can add the parameter na.rm=T, to designate that NA values should be removed 
prior to calculating the group mean. 

 
> TEMP<-aggregate(cohesion[,3:4], 
list(cohesion$UNIT,cohesion$PLATOON),mean,na.rm=T) 
> TEMP 
  Group.1 Group.2    COH01    COH02 
1   1044B     1ST 3.000000 4.000000 
2   1044C     1ST 3.000000 2.000000 
3   1044B     2ND 3.333333 3.666667 
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4   1044C     2ND 2.000000 2.000000 

To merge the TEMP dataframe with the new.cohesion dataframe, we must change the 
names of the group identifiers in the TEMP frame to match the group identifiers in the 
new.cohesion dataframe. We also want to change the names of COH01 and COH02 to 
reflect the fact that they are group means.  We will use “G.” to designate group mean. 

> names(TEMP)<-c("UNIT","PLATOON","G.COH01","G.COH02") 

Finally, we merge TEMP up with new.cohesion to get the complete data set. 
 
> final.cohesion<-merge(new.cohesion,TEMP, 
by=c("UNIT","PLATOON")) 
> final.cohesion 
    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE  G.COH01  G.COH02 
1  1044B     1ST     4     5     5     5     5     3 3.000000 4.000000 
2  1044B     1ST     3    NA     5     5     5     3 3.000000 4.000000 
3  1044B     1ST     2     3     3     3     3     3 3.000000 4.000000 
4  1044B     2ND     3     4     3     4     4     3 3.333333 3.666667 
5  1044B     2ND     4     4     3     4     4     3 3.333333 3.666667 
6  1044B     2ND     3     3     2     2     1     3 3.333333 3.666667 
7  1044C     1ST     3     3     3     3     3     2 3.000000 2.000000 
8  1044C     1ST     3     1     4     3     4     2 3.000000 2.000000 
9  1044C     2ND     3     3     3     3     3     3 2.000000 2.000000 
10 1044C     2ND     2     2     2     3     2     3 2.000000 2.000000 
11 1044C     2ND     1     1     1     3     3     3 2.000000 2.000000 

With the aggregate and merge functions, one has the tools necessary to manipulate data 
and prepare it for subsequent multilevel analyses (excluding growth modeling which I consider 
later).  Note that I have illustrated a relatively complex situation where there are two levels of 
nesting (Unit and Platoon).  In cases where there is only one grouping variable (for example, 
UNIT) the commands for aggregate and merge contain the name of a single grouping 
variable.  For instance, 

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T) 

 

3.3 Within-Group Agreement and Reliability 

The data used in this section are taken from Bliese, Halverson & Rothberg (2000).  The 
examples are based upon the bhr2000 data set from the multilevel package.  Thus, the first step 
is to examine the bhr2000 data set and make it available for analysis. 

 
> help(bhr2000) 
> data(bhr2000,package="multilevel")#puts data in working environment 
> names(bhr2000) 
 [1] "GRP"   "AF06"  "AF07"  "AP12"  "AP17"  "AP33"  "AP34"  
 "AS14"  "AS15" "AS16"  "AS17"  "AS28"  "HRS"   "RELIG" 
> nrow(bhr2000) 
[1] 5400 
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The names function tells us that there are 14 variables.  The first one, GRP, is the group 
identifier. The variables in columns 2 through 12 are individual responses on 11 items that make 
up a leadership scale.  HRS represents individuals’ reports of work hours, and RELIG represents 
individuals’ reports of the degree to which religion is a useful coping mechanism.  The nrow 
command indicates that there are 5400 observations.  To find out how many groups there are we 
can use the length command in conjunction with the unique command 

> length(unique(bhr2000$GRP)) 

[1] 99 

There are several functions in the multilevel library that are useful for estimating and 
interpreting agreement indices.  These functions are rwg, rwg.j, rwg.sim, rwg.j.sim, 
rwg.j.lindell, ad.m, ad.m.sim and rgr.agree.   The rwg function estimates the 
James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function estimates the 
James et al. (1984) rwg(j) for multi-item scales.  The rwg.j.lindell function estimates r*wg(j) 
(Lindell,  & Brandt, 1997; 1999).  The ad.m function estimates average deviation (AD) values 
for the mean or median (Burke, Finkelstein & Dusig, 1999).  A series of functions with “sim” in 
the name (rwg.sim, rwg.j.sim and ad.m.sim) allow one to simulate agreement values 
from a random uniform distribution to test for statistical significance agreement.  The simulation 
functions are based on work by Dunlap, Burke and Smith-Crowe (2003); Cohen, Doveh and Eich 
(2001) and Cohen, Doveh and Nuham-Shani (in press).  Finally, the rgr.agree function 
performs a Random Group Resampling (RGR) agreement test (see Bliese, et al., 2000). 

In addition to the agreement measures, there are two multilevel reliability measures, ICC1 
and ICC2 than can be used on ANOVA models.  As Bliese (2000) and others (e.g., Kozlowski 
& Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1) 
and ICC(2) are fundamentally different from agreement measures; nonetheless, they often 
provide complementary information to agreement measures, so in this section, we illustrate the 
use of each of these functions with the dataframe bhr2000.  

3.3.1 Agreement: rwg, rwg(j), and r*wg(j) 

Both the rwg and rwg.j functions are based upon the formulations described in James et al. 
(1984).  Both functions require the user to specify three pieces of information.  The first piece of 
information is the variable of interest (x), the second is the grouping variable (grpid), and third 
is the estimate of the expected random variance (ranvar).  The default estimate of ranvar is 
2, which is the expected random variance based upon the rectangular distribution for a 5-point 
item (i.e., σEU

2). See help(rwg), James et al., (1984), or Bliese et al., (2000) for details on 
selecting appropriate ranvar values. 

To use the rwg function to estimate agreement for the comfort from religion item (RELIG in 
the bhr2000 dataframe) one would issue the following commands. 

 
> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2) 
> RWG.RELIG[1:10,]  #examine first 10 rows of data 
   grpid        rwg gsize 
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1      1 0.11046172    59 
2      2 0.26363636    45 
3      3 0.21818983    83 
4      4 0.31923077    26 
5      5 0.22064137    82 
6      6 0.41875000    16 
7      7 0.05882353    18 
8      8 0.38333333    21 
9      9 0.14838710    31 
10    10 0.13865546    35 

This returns a dataframe with three columns.  The first column contains the group names 
(grpid), the second column contains the 99 rwg estimates – one for each group.  The third 
column contains the group size.  To calculate the mean rwg value use the summary command: 

 
> summary(RWG.RELIG) 
     grpid             rwg             gsize        
 1      : 1       Min.   :0.0000   Min.   :  8.00   
 10     : 1       1st Qu.:0.1046   1st Qu.: 29.50   
 11     : 1       Median :0.1899   Median : 45.00   
 12     : 1       Mean   :0.1864   Mean   : 54.55   
 13     : 1       3rd Qu.:0.2630   3rd Qu.: 72.50   
 14     : 1       Max.   :0.4328   Max.   :188.00   
 (Other):93  

The summary command informs us that the average rwg value is .186 and the range is from 0 
to 0.433.  By convention, values at or above 0.70 are considered good agreement, so there 
appears to be low agreement among individuals with regard to religion.  The summary 
command also provides information about the group sizes. 

 Other useful options might include sorting the values or examining the values in a histogram.  
Recall that the notation [,2] selects all rows and the second column of the RWG.RELIG object 
– the column with the rwg results. 

> sort(RWG.RELIG[,2]) 

> hist(RWG.RELIG[,2])   

To estimate rwg for work hours, we need to change the expected random variance (EV).  Work 
hours was asked using an 11-point item, so EV based on the rectangular distribution (σEU

2) is 
10.00 (σEU

2=(112-1)/12) – see the rwg help file for details).  

 
> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00) 
> mean(RWG.HRS[,2]) 
[1] 0.7353417 
 



Multilevel Models in R  31 

There is apparently much higher agreement about work hours than there was about whether 
group members received comfort from religion in this sample.  By convention, this mean value 
would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide 
evidence of agreement. 

The use of the rwg.j function is nearly identical to the use of the rwg function except that 
the first argument to rwg.j is a matrix instead of a vector.  In the matrix, each column 
represents one item in the multi-item scale, and each row represents an individual response.  For 
instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale.  The 
items were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the 
expected random variance is 2. 

 
> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2) 
> summary(RWGJ.LEAD) 
     grpid            rwg.j            gsize        
 1      : 1       Min.   :0.7859   Min.   :  8.00   
 10     : 1       1st Qu.:0.8708   1st Qu.: 29.50   
 11     : 1       Median :0.8925   Median : 45.00   
 12     : 1       Mean   :0.8876   Mean   : 54.55   
 13     : 1       3rd Qu.:0.9088   3rd Qu.: 72.50   
 14     : 1       Max.   :0.9440   Max.   :188.00   
 (Other):93                                                           

 

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt & 
Whitney, 1999) have raised important concerns about the mathematical underpinnings of the 
rwg(j) formula.  Specifically, they note that this formula is based upon the Spearman-Brown 
reliability estimator.  Generalizability theory provides a basis to believe that reliability should 
increase as the number of measurements increase, so the Spearman-Brown formula is defensible 
for measures of reliability.  There may be no theoretical grounds, however, to believe that 
generalizability theory applies to measures of agreement.  That is, there may be no reason to 
believe that agreement should increase as the number of measurements increase (but also see 
LeBreton, James & Lindell, 2005). 

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the 
r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into 
the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group 
Variance/Expected Random Variance).  Note that Lindell and colleagues also recommend 
against truncating the Observed Group Variance value so that it matches the Expected Random 
Variance value in cases where the observed variance is larger than the expected variance.  This 
results in a case where r*wg(j) values can take on negative values.  We can use the function 
rwg.j.lindell to estimate the r*wg(j) values for leadership. 

 
> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12], 
bhr2000$GRP,ranvar=2) 
> summary(RWGJ.LEAD.LIN) 
     grpid         rwg.lindell         gsize        
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 1      : 1       Min.   :0.2502   Min.   :  8.00   
 10     : 1       1st Qu.:0.3799   1st Qu.: 29.50   
 11     : 1       Median :0.4300   Median : 45.00   
 12     : 1       Mean   :0.4289   Mean   : 54.55   
 13     : 1       3rd Qu.:0.4753   3rd Qu.: 72.50   
 14     : 1       Max.   :0.6049   Max.   :188.00   
 (Other):93  
 

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed 
earlier. 

3.3.2 Significance testing of rwg and rwg(j) using rwg.sim and rwg.j.sim 

As noted in section 3.3.1, rwg and rwg(j) values at or above .70 are conventionally considered 
providing evidence of within-group agreement.  A series of studies by Charnes and Schriesheim 
(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen, 
Doveh and Nahum-Shani (in press) lay the groundwork for establishing tests of statistical 
significance for rwg and rwg(j).  The basic idea behind these simulations is to draw observations 
from a known distribution (generally a uniform random null), and repeatedly estimate rwg or 
rwg(j).  Because the observations are drawn from a uniform random null, rwg or rwg(j) estimates will 
frequently be zero.  Occasionally, however, the rwg or rwg(j) values will be larger than zero 
because of the pattern of random numbers drawn.  Repeatedly drawing random numbers and 
estimating rwg and rwg(j) provides a way to calculate expected values and confidence intervals. 

The simulations conducted by Cohen et al., (2001) varied a number of parameters, but the two 
found to be most important for the expected value of the rwg(j) were (a) group size and (b) the 
number of items.  Indeed, Cohen et al., (2001) found that expected rwg(j) values vary considerably 
as a function of group size and number of items.  This implies that the conventional value of .70 
may be a reasonable cut-off value for significance with some configurations of group sizes and 
items, but may not be reasonable for others.  Thus, they recommended researchers simulate 
parameters based on the specific characteristics of the researchers' samples when determining 
whether rwg(j) values are significant. 

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg 
using the idea of simulating null distributions.  Their work showed that the 95% confidence 
interval for the single item measure varied as a function of (a) group size and (b) the number of 
response options.  In the case of 5 response options (e.g., strongly disagree, disagree, neither, 
agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3 
to 0.12 for a group of 150.  That is, one would need an rwg estimate of 1.00 with groups of size 
three to be 95% certain the groups agreed more than chance levels, but with groups of size 150 
any value equal to or greater than 0.12 would represent significant agreement. 

The function rwg.sim provides a way to replicate the results presented by Dunlap and 
colleagues.  For instance, to estimate the 95% confidence interval for a group of size 10 on an 
item with 5 response options one would provide the following parameters to the rwg.sim 
function: 

 
> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000) 
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> summary(RWG.OUT) 
$rwg 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
 0.0000  0.0000  0.0000  0.1221  0.2167  0.8667  
 
$gsize 
[1] 10 
$nresp 
[1] 5 
$nitems 
[1] 1 
$rwg.95 
[1] 0.5277778 

The results in the preceding example are based on 10,000 simulation runs.  In contrast, 
Dunlap et al., (2003) used 100,000 simulation runs.  Nonetheless, both Table 2 from Dunlap et 
al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a 
group of size 10 with five response options.  Note that a replication of these results may produce 
slightly different values. 

Because the estimation of  rwg in the simulations produces a limited number of possible 
responses, the typical methods for establishing confidence intervals (e.g., the generic function 
quantile) cannot be used.  Thus, the multilevel package provides a quantile method for 
the objects of class agree.sim created using rwg.sim.  To obtain 90%, 95% and 99% 
confidence interval estimates (or any other values) one would issue the following command: 

 
> quantile(RWG.OUT,c(.90,.95,.99)) 
  quantile.values confint.estimate 
1            0.90        0.4222222 
2            0.95        0.5277778 
3            0.99        0.6666667 

 

Cohen et al. (in press) expanded upon the work of Dunlap et al., (2003) and the early work by 
Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to 
multiple item scales in the case of rwg(j) values.  The function rwg.j.sim is based upon the 
work of Cohen et al., (in press) and simulates rwg(j) values from a uniform null distribution for 
user supplied values of (a) group size, (b) number of items in the scale, and (c) number of 
response options on the items.  The user also provides the number of simulation runs 
(repetitions) upon which to base the estimates.  In most cases, the number of simulation runs will 
be 10,000 or more although the examples illustrated here will be limited to 1,000.  The final 
optional argument to rwg.j.sim is itemcors.   If this argument is omitted, the simulated 
items used to comprise the scale are assumed to be independent (non-correlated).  If the 
argument is provided, the items comprising the scale are simulated to reflect a given 
correlational structure.   Cohen et al., (2001) showed that results based on independent (non-
correlated) items were similar to results based on correlated items; nonetheless, the model with 
correlated items is more realistic and thereby preferable (see Cohen et al., in press).  Estimating 
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models with a correlational structure requires the MASS package in addition to the 
multilevel package. 

For an example of using rwg.j.sim with non-correlated items, consider a case where a 
researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where 
group size was 15 using a 7-item scale with 5 response options for the items (A=5).   The call to 
rwg.j.sim would be: 

 
> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000) 
> summary(RWG.J.OUT) 
$rwg.j 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
0.000000 0.000000 0.009447 0.161800 0.333900 0.713700  
$gsize 
[1] 15 
$nresp 
[1] 5 
$nitems 
[1] 7 
$rwg.j.95 
[1] 0.5559117 

In this example, the upper expected 95% confidence interval is 0.56.  This is lower than 0.70, 
and suggests that in this case the value of 0.70 might be too stringent.  Based on this simulation, 
one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).    
Note that if one replicates this example one will get slightly different results because each run is 
based on slightly different combinations of randomly generated numbers. Using the simulation, 
one can show that as group size increases and the number of items increase, the criteria for what 
constitutes significant agreement decreases. 

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will 
examine whether group members agreed about three questions specific to mission importance in 
the lq2002 data set.  This data set was also analyzed in Cohen et al., in press.  We first begin 
by estimating the mean rwg(j) for the 49 groups in the sample.  Notice that the mean estimate for 
rwg(j) is .58.  This value is below the .70 conventional criteria and suggests a lack of agreement.   

 
> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")], 
  lq2002$COMPID,ranvar=2) 
> summary(RWG.J) 
     grpid        rwg.j            gsize       
 10     : 1   Min.   :0.0000   Min.   :10.00   
 13     : 1   1st Qu.:0.5099   1st Qu.:18.00   
 14     : 1   Median :0.6066   Median :30.00   
 15     : 1   Mean   :0.5847   Mean   :41.67   
 16     : 1   3rd Qu.:0.7091   3rd Qu.:68.00   
 17     : 1   Max.   :0.8195   Max.   :99.00   
 (Other):43  
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To determine whether the value of .58 is significant, one can use the rwg.j.sim function 
using item correlations and average group size (41.67 rounded to 42).  In this case, notice the 
simulation suggests that a value of .35 is significant suggesting significant agreement.  For 
illustrations of how the simulations might be used in a group-by-group basis see Cohen et al., (in 
press). 

 
> library(MASS) 
> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5, 
   itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]), 
   nrep=1000) 
> summary(RWG.J.OUT) 
$rwg.j 
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
0.000000 0.000000 0.007224 0.088520 0.162500 0.548600  
$gsize 
[1] 42 
$nresp 
[1] 5 
$nitems 
[1] 3 
$rwg.j.95 
[1] 0.346875  

3.3.3 Average Deviation (AD) Agreement using ad.m 

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as 
measures of within-group agreement.  Cohen et al., in press note that AD indices are also 
referred to as Mean or Median Average Deviation or MAD.  AD indices are calculated by first 
computing the absolute deviation of each observation from the mean or median.  Second, these 
absolute deviations are averaged to produce a single AD estimate for each group.  The formula 
for AD calculation on a single item is: 

AD = Σ|xij - Xj|/N 

where xij represents an individual observation (i) in group j; Xj represents the group mean or 
median, and N represents the group size.  When AD is calculated on a scale, the AD formula 
above is estimated for each item on the scale, and each item's AD value is averaged to compute 
the scale AD score. 

AD values are considered practically significant when the values are less than A/6 where A 
represents the number of response options on the item.  For instance, A is 5 when items are asked 
on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format. 

The function ad.m is used to compute the average deviation of the mean or median.  The 
function requires the two arguments, x and grpid.  The x argument represents the item or scale 
upon which one wants to estimate the AD value.  The ad.m function determines whether x is a 
vector (single item) or multiple item matrix or data frame (multiple item scale), and performs the 
AD calculation appropriate for the type of variable.  The second function, grpid, is a vector 
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containing the group ids of the x argument.  The third argument is optional.  The default value is 
to compute the Average Deviation of the mean.  The other option is to change the type 
argument to "median" and compute the Average Deviation of the median. 

  For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a 
leadership scale.  The items were assessed using 5-point response options (Strongly Disagree to 
Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.833.  The AD 
estimates based on the mean for the first five groups and the overall sample in the bhr2000 
data set are provided below: 

 
> data(bhr2000) 
> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP) 
> AD.VAL[1:5,] 
  grpid      AD.M gsize 
1     1 0.8481366    59 
2     2 0.8261279    45 
3     3 0.8809829    83 
4     4 0.8227542    26 
5     5 0.8341355    82 
> mean(AD.VAL[,2:3]) 
      AD.M      gsize  
 0.8690723 54.5454545 

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about 
ratings of leadership.  The overall AD estimate is 0.87, which is also higher than 0.83 and 
suggests a general lack of agreement. 

The AD value estimated using the median instead of the mean, in contrast, suggests 
practically significant agreement for the sample as a whole. 

 
> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median") 
> mean(AD.VAL[,2:3]) 
      AD.M      gsize  
 0.8297882 54.5454545 

To use the ad.m function for single item variables such as the work hours (HRS) variable in 
the bhr2000 data set it is only necessary to provide a vector instead of a matrix as the first 
argument to the ad.m function.  Recall the work hours variable is asked on an 11-point response 
format scale so practical significance is 11/6 or 1.83.  The average observed value of 1.25 
suggests agreement about work hours. 

 
> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP) 
> mean(AD.VAL.HRS[,2:3]) 
     AD.M     gsize  
 1.249275 54.545455 
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3.3.4 Significance testing of AD using ad.m.sim 

The function ad.m.sim is used simulate AD values and test for significance of various 
combinations of group size, number of response options and number of items in multiple-item 
scales.  The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to 
test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg, 
the ad.m.sim function works with both single items and multiple-item scales. 

The ad.m.sim function is based upon the work of Cohen et al. (in press) and of Dunlap et 
al., (2003).  The function simulates AD values from a uniform null distribution for user supplied 
values of (a) group size, (b) number of items in the scale, and (c) number of response options on 
the items.  Based on Cohen et al. (in press), the final optional parameter allows one to include 
correlations among items when simulating multiple-item scales.  The user also provides the 
number of simulation runs (repetitions) upon which to base the estimates.  In most cases, the 
number of simulation runs will be 10,000 or more although the examples illustrated here will be 
limited to 1,000.   

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000 
dataframe.  Recall the AD value based on the mean suggested that groups failed to agree about 
leadership.  In contrast, the AD value based on the median suggested that groups agreed.  To 
determine whether the overall AD value based on the mean is statistically significant, one can 
simulate data matching the characteristics of the bhr2000 sample: 

 
> library(MASS) 
> AD.SIM<-

ad.m.sim(gsize=55,nresp=5,itemcors=cor(bhr2000[,2:12]), 
+ type="mean",nrep=1000) 
> summary(AD.SIM) 
$ad.m 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.087   1.182   1.208   1.209   1.236   1.340  
 
$gsize 
[1] 55 
 
$nresp 
[1] 5 
 
$nitems 
[1] 11 
 
$ad.m.05 
[1] 1.138212 
 
$pract.sig 
[1] 0.8333333 
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The simulation suggests that any AD mean value less than or equal to 1.14 is statistically 
significant.  Thus, while the AD value for the leadership items (0.87) may not meet the criteria 
for practical significance, it does for statistical significance.   As with the rwg simulation 
functions, the ad.m.sim function has a specifically associated quantile function to identify 
different cut-off points.  The example below illustrates how to identify values corresponding to 
the .90 (.10), .95 (.05) and .99 (.01) significance levels.  That is, to be 99% certain that a value 
was significant, it would need to be smaller than or equal to 1.114.  

 
> quantile(AD.SIM,c(.10,.05,.01)) 
  quantile.values confint.estimate 
1            0.10         1.155763 
2            0.05         1.138212 
3            0.01         1.114170 

3.3.5 Agreement:  Random Group Resampling 

The final agreement related function in the multilevel library is rgr.agree.  In some ways 
this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to 
draw inferences about agreement.  The difference is that the rgr.agree function uses the 
actual group data, while the rwg.j.sim function simulates from an expected distribution (the 
uniform null). 

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and 
calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of 
significance to determine whether actual group and pseudo group variances differ.  To use 
rgr.agree, one must provide three variables.  The first is a vector representing the variable 
upon which one wishes to estimate agreement.  The second is group membership (grpid).  The 
third parameter is the number of pseudo groups that one wants to create. 

The third parameter requires a little explanation, because in many cases the number of pseudo 
groups returned in the output will not exactly match the third parameter.  For instance, in our 
example, we will request 1000 pseudo groups, but the output will return only 990.  This is 
because the rgr.agree algorithm creates pseudo groups that are identical in size 
characteristics to the actual groups.  In so doing, however, the algorithm creates sets of pseudo 
groups in “chunks.”   The size of each chunk is based upon the size of the number of actual 
groups.  So, for instance, if there are 99 actual groups, then the total number of pseudo groups 
must be evenly divisible by 99.  Nine-hundred-and-ninety is evenly divisible by 99, while 1000 
is not.   Rather than have the user determine what is evenly divisible by the number of groups, 
rgr.agree will do this automatically.  Below is an example of using rgr.agree on the 
work hours variable. 

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000) 

The first step is to create an RGR Agreement object named RGR.HRS.   The object contains a 
number of components.  In most cases, however, users will be interested in the estimated z-value 
indicating whether the within-group variances from the actual groups are smaller than the 
variances from the pseudo groups.  A useful way to get this information is to use the summary 
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command.  When summary is applied to the RGR agreement object it provides standard 
deviations, variance estimates, an estimate of the z-value, and upper and lower confidence 
intervals. 

 
> summary(RGR.HRS) 
$"Summary Statistics for Random and Real Groups" 
  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 
1       990      3.322772      0.762333       2.646583 -8.82554 
 
$"Lower Confidence Intervals (one-tailed)" 
    0.5%       1%     2.5%       5%      10%  
1.648162 1.795134 1.974839 2.168830 2.407337  
 
$"Upper Confidence Intervals (one-Tailed)" 
     90%      95%    97.5%      99%    99.5%  
4.251676 4.545078 4.832813 5.642410 5.845143 
 

The first section of the summary provides key statistics for contrasting within-group variances 
from real group with within-group variances from random groups.  The second and third sections 
provide lower and upper confidence intervals. Keep in mind that if one replicates this example 
one is likely to get slightly different results.  This is because the rgr.agree function uses a 
random number generator to create pseudo groups; thus, the results are partially a product of the 
specific numbers used in the random number generator.  While the exact numbers may differ, the 
conclusions drawn should be nearly identical. 

Notice in the first section that although we requested 1000 random groups, we got 990 (for 
reasons described previously).   The first section also reveals that the average within-group 
variance for the random groups was 3.32 with a Standard Deviation of 0.76.  In contrast, the 
average within-group variance for the real groups was considerably smaller at 2.65.  The 
estimated z-value suggests that, overall, the within-group variances in ratings of work hours from 
real groups were significantly smaller than the within-group variances from the random groups.  
This suggests that group members agree about work hours.  Recall that a z-value greater than or 
less than 1.96 signifies significance at p<.05, two-tailed. 

The upper and lower confidence interval information allows one to estimate whether specific 
groups do or do not display agreement.   For instance, only 5% of the pseudo groups had a 
variance less than 2.17.  Thus, if we observed a real group with a variance smaller than 2.17, we 
could be 95% confident this group variance was smaller than the variances from the pseudo 
groups.   Likewise, if we want to be 90% confident we were selecting groups showing 
agreement, we could identify real groups with variances less than 2.41.   

To see which groups meet this criterion, use the tapply function in conjunction with the 
sort function.   The tapply function partitions the first variable by the level of the second 
variable performs the specified function much like the aggregate function (see section 3.2.2).  
Thus, tapply(HRS,GRP,var) partitions HRS into separate Groups (GRP), and calculates 
the variance for each group (var).  Using sort in front of this command simply makes the 
output easier to read.   
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> sort(tapply(bhr2000$HRS,bhr2000$GRP,var)) 

       33        43        38        19         6        39        69        17  

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282  

       20        99        98        44         4        53        61        63  

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430  

       66        14        76        71        21        18        59        50  

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667  

       48        60        83         8        22         2        75        11  

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947  

       96        23        54        47        55        26        74        57  

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858  

       45        97        64        35        32        41         1        24  

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678  

       82        37        81        68        42        73        34        25  

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000  

       93        62        92        12        40        88         5        29  

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616  

       85        70        77        51         3        13        79        87  

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569  

        7        95        78        84        46        27        36        15  

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287  

       89        16        58        49         9        31        90        72  

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714  

       91        80        86        10        94        28        30        56  

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707  

       65        52        67  

4.7537594 5.2252964 5.3168148  

If we starting counting from group 33 (the group with the lowest variance of 0.82) we find 46 
groups with variances smaller than 2.41.  That is, we find 46 groups that have smaller than 
expected variance using the 90% confidence estimate. 

It may also be interesting to see what a “large” variance is when defined in terms of pseudo 
group variances.  This information is found in the third part of the summary of the RGR.HRS 
object.  A variance of 4.55 is in the upper 95% of all random group variances.  Given this 
criterion, we have five groups that meet or exceed this standard.  In an applied setting, one might 
be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.  
That is, one might be interested in determining what drives certain groups to have very large 
differences in how individuals perceive work hours. 

Finally, for confidence intervals not given in the summary, one can use the quantile 
function with the random variances (RGRVARS) in the RGR.HRS object.  For instance to get the 
lower .20 confidence interval: 
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> quantile(RGR.HRS$RGRVARS, c(.20)) 
     20%  
2.695619 

Note that rgr.agree only works on vectors.  Consequently, to use rgr.agree with the 
leadership scale we would need to create a leadership scale score.  We can do this using the 
rowMeans function.  We will create a leadership scale (LEAD) and put it in the bhr2000 
dataframe, so the specific command we issue is: 

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12]) 

Now that we have created a leadership scale score, we can perform the RGR agreement 
analysis on the variable. 

 
> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000)) 
 
$"Summary Statistics for Random and Real Groups" 
  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 
1       990     0.6011976     0.1317229      0.5156757 -6.46002 
 
$"Lower Confidence Intervals (one-tailed)" 
     0.5%        1%      2.5%        5%       10%  
0.2701002 0.3081618 0.3605966 0.3939504 0.4432335  
 
$"Upper Confidence Intervals (one-Tailed)" 
      90%       95%     97.5%       99%     99.5%  
0.7727185 0.8284755 0.8969857 0.9651415 1.0331922 

 

The results indicate that the variance in actual groups about leadership ratings is significantly 
smaller than the variance in randomly created groups (i.e., individuals agree about leadership).  
For interesting cases examining situations where group members do not agree see Bliese & 
Halverson (1998a) and Bliese and Britt (2001). 

3.3.6 Reliability:  ICC(1) and ICC(2) 

The multilevel package also contains the reliability functions, ICC1 and ICC2.  These two 
functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as 
described by Bartko, (1976), James (1982), and Bliese (2000).  To use these functions, one first 
performs a one-way analysis of variance on the variable of interest.  For instance, to calculate a 
one-way analysis of variance on work hours, we issue the aov (ANOVA) function from the R 
base package.  Note that in using the aov function, we use the as.factor function on GRP.  
The as.factor function tells aov that GRP (which is numeric in this dataframe) is to be 
treated as a categorical variable; consequently, R creates N-1 dummy codes in the model matrix 
(the exact form of the effects coding can be controlled, but will not be discussed in detail here).  
In the present example, there are 99 groups, so the as.factor function results in the creation 
of 98 dummy coded categories (98 df).  Interested readers who estimate the model without the 
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as.factor option will see that GRP erroneously only accounts for 1 df if the as.factor 
command is omitted. 

 

> data(bhr2000) 

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000) 

> summary(hrs.mod) 
                 Df  Sum Sq Mean Sq F value    Pr(>F)     
as.factor(GRP)   98  3371.4    34.4  12.498 < 2.2e-16 *** 
Residuals      5301 14591.4     2.8                       
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 

The ICC1 and ICC2 functions are then applied to the aov object. 
> ICC1(hrs.mod) 

[1] 0.1741008 

> ICC2(hrs.mod) 
[1] 0.9199889 

Bliese (2000) provides a thorough interpretation of these values, but briefly, the ICC(1) value 
of .17 indicates that 17% of the variance in individual perceptions of work hours can be 
“explained” by group membership.  The ICC(2) value of .92 indicates that groups can be reliably 
differentiated in terms of average work hours. 

3.3.7 Visualizing an ICC(1) with graph.ran.mean 

It is often valuable to visually examine the group-level properties of data to see the exact form 
of the group-level effects.  For instance, Levine (1967) notes that a high ICC(1) value can be the 
product of one or two highly aberrant groups rather than indicating generally shared group 
properties among the entire sample. 

One way to examine the group-level properties of the data is to contrast the observed group 
means with group means that are the result of randomly assigning individuals to pseudo groups.  
If the actual group means and the pseudo-group means are identical, there is no evidence of 
group effects.  If one or two groups are clearly different from the pseudo-group distribution it 
suggests the ICC(1) value is simply caused by a few aberrant observations.  If a number of 
groups have higher than expected means, and a number have lower than expected means, it 
suggests fairly well-distributed group-level properties. 

The graph.ran.mean function allows one to visually contrast actual group means with 
pseudo group means.  The function requires three parameters.  The first is the variable on which 
one is interested in examining.  The second is the group designator, and the third is a smoothing 
parameter (nreps) determining how many sets of pseudo groups should be created to create the 
pseudo group curve.  Low numbers (<10) for this last parameter create a choppy line while high 
numbers (>25) create smooth lines.  In cases where the parameter bootci is TRUE (see 
optional parameters), nreps should equal 1000 or more. 
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  Three optional parameters control the y axis limits (limits); whether a plot is created 
(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence 
intervals are estimated and plotted (bootci=TRUE).  The default for limits is to use the 
lower 10% and upper 90% values of the raw data.  The default for graph is to produce a plot, 
but returning a dataframe can be useful for exporting results to other graphing software.  Finally, 
the default for bootci is to return a plot or a dataframe without bootstrap confidence interval 
estimates. 

In the following example, we plot the observed and pseudo group distribution of the work 
hours variable from the data set bhr2000.  Recall, the ICC(1) value for this variable was .17 (see 
section 3.3.6). 

> data(bhr2000) 

> graph.ran.mean(bhr2000$HRS, bhr2000$GRP, nreps=1000, 

limits=c(8,14),bootci=TRUE) 

The command produced the resulting plot where the bar chart represents each groups' average 
rating of work hours sorted from highest to lowest, and the line represents a random distribution 
where 99 pseudo groups (with exact size characteristics of the actual groups) were created 100 
times and the sorted values were averaged across the 1000 iterations.  The dotted lines represent 
the upper and lower 95% confidence interval estimates.  In short, the line represents the expected 
distribution if there were no group-level properties associated with these data.  The graph 
suggests fairly evenly distributed group-level properties associated with the data.  That is, the 
ICC(1) value of .17 does not seem to be caused by one or two aberrant groups. 
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3.4 Regression and Contextual OLS Models 

Prior to the introduction of multilevel random coefficient models, OLS regression models 
were widely used to detect contextual effects.  Firebaugh (1978) provides a good methodological 
discussion of these types of contextual models as does Kreft and DeLeeuw (1998) and James and 
Williams (2000). 

The basic logic behind these models is that an aggregated group mean can explain unique 
variance over and above an individual variable of the same name.  So, for instance, Bliese (2002) 
found that average group work hours explained unique variance in individual well-being over-
and-above individual reports of work hours.  This occurs because there is no mathematical 
reason why the group-level relationship between means must be the same as the individual-level 
relationship between raw variables.  When the slope of the group-mean relationship differs from 
the slope of the individual-level relationship, a contextual effect is present (Firebaugh, 1978). 

To estimate contextual regression models in R, one uses the OLS regression function lm  to 
simultaneously test the significance of the individual and group mean variable.  If the group-
mean variable is significant it indicates the individual-level and group-level slopes are 
significantly different, and one has evidence of a contextual effect (Firebaugh, 1978; Snijders & 
Bosker, 1999).  As discussed in the next section, there is an important caveat.  Specifically, the 
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standard error associated with the group-level effect is almost always too small producing tests 
that are too liberal.  For this reason random coefficient models (RCM) are a preferred way to 
identify contextual effects. 

3.4.1 Contextual Effect Example 

  In this example we use the bh1996 dataframe to illustrate the estimation of a contextual 
model.  The bh1996 dataframe has group mean variables included; however, we will pretend 
that it does not so we can illustrate the use of the aggregate and merge functions. 

 
> data(bh1996) 
> names(bh1996) 
 [1] "GRP"      "COHES"    "G.COHES"  "W.COHES"  "LEAD"     "G.LEAD"   
 [7] "W.LEAD"   "HRS"      "G.HRS"    "W.HRS"    "WBEING"   "G.WBEING" 
[13] "W.WBEING" 
> TDAT<-bh1996[,c(1,8,11)]  # a dataframe with GRP, HRS and WBEING 
> names(TDAT) 
[1] "GRP"    "HRS"    "WBEING" 
> TEMP<-aggregate(TDAT$HRS,list(TDAT$GRP),mean,na.rm=T)  
> names(TEMP) 
[1] "Group.1" "x"       
> names(TEMP)<-c("GRP","G.HRS") 
> TBH1996<-merge(TDAT,TEMP,by="GRP")  #merge group and individual data 
> names(TBH1996) 
[1] "GRP"    "HRS"    "WBEING" "G.HRS"  
> tmod<-lm(WBEING~HRS+G.HRS,data=TBH1996) #estimate the linear model 
> summary(tmod,cor=F) 
Call: 
lm(formula = WBEING ~ HRS + G.HRS, data = TBH1996) 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.87657 -0.57737  0.03755  0.64453  2.37267  
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.783105   0.136395  35.068   <2e-16 *** 
HRS         -0.046461   0.004927  -9.431   <2e-16 *** 
G.HRS       -0.130836   0.013006 -10.060   <2e-16 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 0.8902 on 7379 degrees of freedom 
Multiple R-Squared: 0.0398,     Adjusted R-squared: 0.03954  
F-statistic: 152.9 on 2 and 7379 DF,  p-value:     0  

Notice that G.HRS is significant with a t-value of –10.060.  This provides evidence of 
significant contextual effects.  If we want to examine the form of the relationship, we can plot 
the regression slopes for the two models using the following commands: 

 
> plot(TBH1996$HRS,TBH1996$WBEING,xlab="Work Hours",ylab="Well-

Being",type="n") #type = n omits the points which is important since 
we have 7,382 observations 

> abline(lm(WBEING~HRS,data=TBH1996)) # plots the individual-
level slope 

> abline(lm(WBEING~G.HRS,data=TBH1996),lty=2) #group-level slope 
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This produces the plot provided below.  Notice that the group-mean slope (the dotted line) is 
considerably steeper than the individual slope (the solid line). 
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While contextual models are valuable, a major limitation with them is that they do not 

account for the fact that individuals are nested within groups.  In essence, the models “pretend” 
that individual observations are independent instead of acknowledging that responses from 
individuals might be more similar than would be expected by chance.  For instance, individual 
responses on well-being are somewhat influenced by group membership (as we will show later).  
This has the effect of biasing the standard errors, and making one a little too likely to detect 
contextual effects.  Specifically, it is likely that the standard error of 0.013 associated with 
G.HRS is too small.  This in turn makes the t-value too large.  Better models, such as random 
coefficient models, account for this non-independence.  We will illustrate the estimation of these 
in section 3.6.  For more details on the effects of non-independence see Bliese (2002); Bliese and 
Hanges (2004); Kenny and Judd, (1986) and Snijders and Bosker, (1999). 

3.5 Correlation Decomposition and the Covariance Theorem 

OLS contextual models provide a way of determining whether or not regression slopes based 
on group means differ from regression slopes of individual-level variables.  The covariance 
theorem provides a way of doing a similar thing for correlations nested in a two-level structure.   
Essentially, the covariance theorem allows one to break down a raw correlation into two separate 
components – the portion of the raw correlation attributable to within-group (individual) 
processes, and the portion of the correlation attributable to between-group (group-level) 
processes. 

Robinson (1950) was one of the first researchers to propose the covariance theorem, but 
Dansereau and colleagues increased the visibility of the theorem by incorporating it into an 
analysis system they labeled WABA for Within-And-Between-Analyses (Dansereau, Alutto  & 
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Yammarino, 1984).  WABA is actually two integrated procedures, WABA I and WABA II.   
WABA I uses a set of decision tools based on eta values to inform decisions about the individual 
or group-level nature of the data.  Eta values, however, are highly influenced by group size, but 
WABA I makes no group size adjustments; consequently, there is little value in WABA I unless 
one is working with dyads (see Bliese, 2000; Bliese & Halverson, 1998b).  Arguably a more 
useful way of drawing inferences from eta-values is to contrast eta-values from actual groups to 
eta-values from pseudo groups.  We will illustrate this in a Random Group Resampling extension 
of the covariance theorem decomposition (see section 3.5.2). 

3.5.1 The waba and cordif functions 

Dansereau et al.’s (1984) WABA II revolves around the estimation of the covariance theorem 
components, and the waba function in the multilevel library provides the covariance theorem 
components for the relationship between two variables.  For example, to decompose the 
correlation between work hours and well-being into the between-group and within-group 
component we would issue the following command.  Note that for comparative purposes we use 
the same data as we did in OLS contextual model example (section 3.4.1). 
 
> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP) 
$Cov.Theorem 
     RawCorr     EtaBX     EtaBY      CorrB     EtaWX     EtaWY      CorrW 
1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 
$n.obs 
[1] 7382 
$n.grps 
[1] 99 

The waba function returns a list with three elements.  The first element is the covariance 
theorem with all its components.  The second element is the number of observations used in the 
estimate of the covariance theorem.  The third element is the number of groups.  The latter two 
elements should routinely be examined because the waba function, by default, performs listwise 
deletion of missing values. 

This formula shows that the raw correlation of -.163=(EtaBX*EtaBY*CorrB) + 
(EtaWX*EtaWY*CorrW) or (.379*.236*-.712)+(.925*.972*-.111).  Everything in the first set of 
parentheses represents the between-group component of the correlation, and everything in the 
second set of parentheses represents the within-group component of the correlation. 

The group-mean correlation of -.71 definitely looks larger than the within-group correlation of 
-.11.  Furthermore, since these two correlations are independent, we can contrast them using the 
cordif function.  This function performs an r to z' transformation of the two correlations (see 
also the rtoz function) and then tests for differences between the two z' values using the 
formula provided in Cohen and Cohen (1983, p. 54).  There are four arguments that must be 
provided to cordif.  These are (1) the first correlation of interest, (2) the second correlation of 
interest, (3) the N on which the first correlation is based, and (4) the N on which the second 
correlation is based.  In our example, we already have the two correlations of interest (-.13 and -
.66); to get the N for the between-group correlation, we need to know the number of groups.  We 
can get this N by determining how many unique elements there are in GRP. 
> length(unique(bh1996$GRP)) 
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[1] 99 

The N for the within-group correlation is slightly more complicated.  It is calculated as the 
total N minus the number of groups (see Dansereau, et al., 1984).  In our example, we already 
know that the total N is 7,382 from the waba function output.  We also know that the number of 
groups is 99.  Thus, the N for the within-group correlation is 7,382-99 or 7,283.  For illustrative 
purposes, however, we will use the nrow function to get the number of observations. 
> nrow(bh1996)-99 
[1] 7283 

With this information, we have all the necessary components for the cordif function. 
> cordif(-.1107,-.7122,7283,99) 
$"z value" 
[1] 7.597172 

The z-value is larger than 1.96, so we conclude that the two correlations are significantly 
different for each other.  That is, the between-group correlation is significantly larger than the 
within-group correlation.  This finding mirrors what we found in our contextual analysis.  Note 
that the within-group correlation is based on X and Y deviation scores.  These deviation scores 
are estimated by subtracting the group mean of X from X, and the group mean of Y from Y.  In 
random coefficient modeling, these deviation scores are also called group-mean centered scores.   

3.5.2 Random Group Resampling of Covariance Theorem (rgr.waba) 

As noted above, it may be interesting to see how the eta-between, eta-within, between group 
and within-group correlations vary as a function of the group-level properties of the data.  To do 
this, one can use the rgr.waba function.  Essentially, the rgr.waba function allows one to 
answer questions such as "is my eta-between value for x larger than would be expected by 
chance?"  The rgr.waba routine randomly assigns individuals into pseudo groups having the 
exact size characteristics as the actual groups, and then calculates the covariance theorem 
parameters. By repeatedly assigning individuals to pseudo groups and re-estimating the 
covariance theorem components, one can create sampling distributions of the covariance theorem 
components to see if actual group results differ from pseudo group results (see Bliese & 
Halverson, 2002).    Below I illustrate the use of rgr.waba.  Note that this is a very 
computationally intensive routine, so it may take some time to complete.  For comparative 
purposes, I begin by re-estimating the covariance theorem components using the first 1000 
observations.   

 
> TDAT<-bh1996[1:1000,c(1,8,11)] 
> waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP) #Model for first 1000 obs 
     RawCorr     EtaBX    EtaBY      CorrB     EtaWX     EtaWY      CorrW 
1 -0.1500598 0.4136304 0.192642 -0.6302504 0.9104449 0.9812691 -0.1117537 
 
> RGR.WABA<-rgr.waba(TDAT$HRS,TDAT$WBEING,TDAT$GRP,1000) 
> round(summary(RGR.WABA),dig=4) 
       RawCorr     EtaBX     EtaBY     CorrB     EtaWX    EtaWY     CorrW 
NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1.00e+03 1000.0000 
Mean   -0.1501    0.1236    0.1241   -0.1409    0.9921 9.92e-01   -0.1501 
SD      0.0000    0.0209    0.0217    0.2463    0.0026 2.80e-03    0.0040 
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The summary of the rgr.waba object produces a table giving the number of random 
repetitions, the means and the standard deviations from analysis.  Notice the raw correlation has 
a standard deviation of zero because it does not change.  In contrast, the between-group 
correlation has the highest standard deviation (.25) indicating that it varied across pseudo group 
runs.  It is apparent that all of covariance theorem components in the actual groups significantly 
vary from their counterparts in the pseudo group analysis.  This is obvious because most actual 
group components are close to two standard deviations different from the pseudo group means.  
To test for significant differences in this resampling design, however, one can simply look at the 
sampling distribution of the random runs, and use the 2.5% and 97.5% sorted values to 
approximate 95% confidence intervals.  Any values outside of this range would be considered 
significantly different from their pseudo group counterparts.  To estimate the 95% confidence 
intervals we can use the quantile function. 

 
> quantile(RGR.WABA,c(.025,.975)) 
           EtaBX      EtaBY      CorrB     EtaWX     EtaWY      CorrW 
2.5%  0.08340649 0.08288485 -0.6048007 0.9861588 0.9857920 -0.1585368 
97.5% 0.16580367 0.16797054  0.3613034 0.9965156 0.9965591 -0.1417005 

  Notice that all of the covariance theorem values based on the actual groups are outside of the 
95% confidence interval estimates.  That is, all of the actual group results are significantly 
different than would be expected by chance (p<.05).  If we estimate the 99% confidence intervals 
we find that the between-group correlation is no longer outside of the 99% confidence interval, 
but the other values are. 

 
> quantile(RGR.WABA,c(.005,.995)) 
           EtaBX      EtaBY      CorrB     EtaWX     EtaWY      CorrW 
0.5%  0.07280037 0.07128845 -0.7216473 0.9843644 0.9831655 -0.1608020 
99.5% 0.17614418 0.18271719  0.4825655 0.9973465 0.9974557 -0.1386436 

Keep in mind in estimating the rgr.waba models that one's results are likely to differ 
slightly from those presented here because of the random generation process underlying random 
group sampling. 

 

3.6 Multilevel Random Coefficient modeling  

In this section, I illustrate the estimation of multilevel random coefficient (MRC) models 
using the nlme package (Pinhiero & Bates, 2000).  Most of the examples described in this 
section are taken from Bliese (2002) and use the Bliese and Halverson (1996) data set (bh1996) 
included in the multilevel library.   In describing the models, I use the notation from Bryk & 
Raudenbush (1992). 

While a complete description of MRC modeling is beyond the scope of document, I will 
provide a short overview.  For more detailed discussions see Bliese, (2002); Bryk and 
Raudenbush, (1992); Hofmann, (1997); Hox (2002); Kreft and De leeuw, (1998) and Snidjers 
and Bosker (1999). 
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One can think of MRC models as ordinary regression models that have additional variance 
terms for handling group membership effects.  The key to understanding MRC models is 
understanding how group membership can lead to additional sources of variance in ones model. 

The first variance term that distinguishes a MRC model from a regression model is a term that 
allows groups to differ in their mean values (intercepts) on the dependent variable.  When this 
variance term, τ00, is non-zero, it suggests that groups differ on the dependent variable.  When 
groups differ by more than chance levels one can potentially model why some groups have high 
average DV values while other groups have low average DV values.  One predicts group-mean 
differences with group-level variables.  These are variables that differ across groups, but do not 
differ within-groups.  Group-level variables are often called “level-2” variables.  For example, a 
cohesion measure that is the same across all members of the same group would be a level-2 
variable, and a level-2 cohesion variable might be related to the average level of well-being in a 
group. 

The second variance term (or really class of terms) that distinguishes a MRC model from a 
typical regression model is the term that allows slopes between independent and dependent 
variables to differ across groups (τ11).  Single-level regression models generally assume that the 
relationship between the independent and dependent variable is constant across groups.  In 
contrast, MRC models allow the slope to vary from one group to another.  If slopes randomly 
vary, one can attempt to explain this slope variation as a function of group differences – again, 
one uses level-2 variables such as cohesion to explain why the slopes within some groups are 
stronger than the slopes within other groups.  

A third variance term is common to both MRC and regression models.  This variance term, 
σ2, reflects the degree to which an individual score differs from its predicted value within a 
specific group.  One can think of σ2 as an estimate of within-group variance.  One uses 
individual-level or level-1 variables to predict within-group variance, σ2.  Level-1 variables 
differ among members of the same group.  For instance, a level-1 variable such as self-efficacy 
would vary among members of the same group. 

In summary, in a complete MRC analysis, one wants to know (1) what level-1 factors are 
related to the within-group variance σ2?; (2) what group-level factors are related to the between-
group variation in intercepts τ00?; and (3) what group-level factors are related to within-group 
slope differences, τ11?  In the next sections, I re-analyze portions of the Bliese and Halverson 
data set to illustrate a typical sequence of steps that one might use in multilevel modeling.  

3.6.1 Steps in multilevel modeling 

Step 1.  Because multilevel modeling involves predicting variance at different levels, one 
typically begins a multilevel analysis by determining the levels at which significant variation 
exists.  In the case of the two-level model (the only models that I will consider here), one 
generally assumes that there is significant variation in σ2 – that is, one assumes that within-group 
variation is present.  One does not necessarily assume, however, that there will be significant 
intercept variation (τ00) or between-group slope variation (τ11).  Therefore, one typically begins 
by examining intercept variability (see Bryk & Raudenbush, 1992; Hofmann, 1997).  If τ00 does 
not differ by more than chance levels, there may be little reason to use random coefficient 
modeling since simpler OLS modeling will suffice.  Note that if slopes randomly vary even if 
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intercepts do not, there may still be reason to estimate random coefficient models (see Snijders & 
Bosker, 1999). 

In Step 1 of a MRCM analysis, one explores the group-level properties of the outcome 
variable to determine three things:  First, what is the ICC(1) (commonly referred to simply as the 
ICC in random coefficient models) associated with the outcome variable.  That is, how much of 
the variance in the outcome can be explained by group membership.  Second, one examines 
whether the group means of the outcome variable are reliable.  By convention, one would like 
the group mean reliability to be around .70 because this indicates that groups can be reliably 
differentiated (see Bliese, 2000).  Third, one wants to know whether the variance of the intercept 
(τ00) is significantly larger than zero. 

These three aspects of the outcome variable are examined by estimating an unconditional 
means model.  An unconditional means model does not contain any predictors, but includes a 
random intercept variance term for groups.  This model essentially looks at how much variability 
there is in mean Y values (i.e., how much variability there is in the intercept) relative to the total 
variability.  In the two stage HLM notation, the model is: 

Yij = β0j+rij        
β0j = γ00 + u0j        

In combined form, the model is:  Yij =γ00 + u0j+rij.  This model states that the dependent 
variable is a function of a common intercept γ00, and two error terms: the between-group error 
term, u0j, and the within-group error term, rij.  The model essentially states that any Y value can 
be described in terms of an overall mean plus some error associated with group membership and 
some individual error.  In the null model, one gets two estimates of variance; τ00 for how much 
each groups’ intercept varies from the overall intercept (γ00), and σ2 for how much each 
individuals’ score differs from the group mean.  Bryk and Raudenbush (1992) note that this 
model is directly equivalent to a one-way random effects ANOVA – an ANOVA model where 
one predicts the dependent variable as a function of group membership. 

The unconditional means model and all other random coefficient models that we will consider 
are estimated using the lme (for linear mixed effects) function in the nlme package (see 
Pinheiro & Bates, 2000).  There are two formulas that must be specified in any lme call:  a fixed 
effects formula and a random effects formula. 

  In the unconditional means model, the fixed portion of the model is γ00 (an intercept term) 
and the random component is u0j+rij.  The random portion of the model states that intercepts will 
be allowed to vary among groups.  We begin the analysis by attaching the multilevel package 
(which also loads the nlme package) and making the bh1996 data set in the multilevel package 
available for analysis. 

 
> library(multilevel) 
> library(nlme) 
> data(bh1996) 
> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996) 

In the model, the fixed formula is WBEING~1.  This states that the only predictor of well-being 
is an intercept term.  The random formula is random=~1|GRP.  This specifies that the intercept 
can vary as a function of group membership.  This is the simplest random formula that one will 
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encounter, and in many situations a random intercept model may be all that is required to 
adequately account for the nested nature of the grouped data.   

Estimating ICC.  The unconditional means model provides between-group and within-group 
variance estimates in the form of τ00 and σ2, respectively.  As with the ANOVA model, it is often 
valuable to determine how much of the total variance is between-group variance.  This can be 
accomplished by calculating the Intraclass Correlation Coefficient (ICC) using the formula:  ICC 
= τ00/(τ00 + σ2) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes 
that the ICC is equivalent to Bartko’s ICC(1) formula  (Bartko, 1976)  and to Shrout and Fleiss’s 
ICC(1,1) formula (Shrout & Fleiss, 1979).  To get the estimates of variance for an lme object, 
one uses the VarCorr function. 
 
> VarCorr(Null.Model) 
GRP = pdSymm(1)  
            Variance   StdDev    
(Intercept) 0.03580079 0.1892110 
Residual    0.78949727 0.8885366 
> 0.03580079/(0.03580079+0.78949727) 
[1] 0.04337922 

The estimate of τ00 (between-group variance or Intercept) is 0.036, and the estimate of σ2 
(within-group variance or Residual) is 0.789.  The ICC estimate (τ00/(τ00 + σ2)) is .04. 

To verify that the ICC results from the random coefficient modeling are similar to those from 
an ANOVA model and the ICC1 function (see section 0) one can perform an ANOVA analysis 
on the same data. 

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC1(tmod) 

[1] 0.04336905 

The ICC value from the random coefficient model and the ICC(1) from the ANOVA model are 
basically identical.  

Estimating Group-Mean Reliability. When exploring the properties of the outcome variable, it 
can also be of interest to examine the reliability of the group mean.  The reliability of group 
means often affects one’s ability to detect emergent phenomena.  In other words, a prerequisite 
for detecting emergent relationships at the aggregate level is to have reliable group means (Bliese 
1998).  By convention, one strives to have group mean reliability estimates around .70.  Group 
mean reliability estimates are a function of the ICC and group size (see Bliese, 2000; Bryk & 
Raudenbush, 1992).  The GmeanRel function from the multilevel package calculates the ICC, 
the group size, and the group mean reliability for each group. 

When we apply the GmeanRel function to our Null.Model based on the 99 groups in the 
bh1996 data set, we are interested in two things.  First, we are interested in the average 
reliability of the 99 groups.  Second, we are interested in determining whether or not there are 
specific groups that have particularly low reliability. 

 
> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996) 
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> GREL.DAT<-GmeanRel(Null.Model) 
> names(GREL.DAT) 
[1] "ICC"      "Group"    "GrpSize"  "MeanRel" 
> GREL.DAT$ICC  #ICC estimate 
[1] 0.04337922 
> GREL.DAT$MeanRel 
 [1] 0.7704119 0.7407189 0.8131975 0.6557120 0.8222325 
 [6] 0.5594125 0.5680426 0.6065741 0.6387944 0.7466758 
[11] 0.6387944 0.6201282 0.7996183 0.8099782 0.7860071 
[16] 0.6759486 0.8116016 0.7860071 0.6557120 0.7437319 
[21] 0.8066460 0.6661367 0.7839102 0.8131975 0.5920169 
[26] 0.7210397 0.8222325 0.6065741 0.7245244 0.6134699 
[31] 0.6557120 0.6852003 0.5843267 0.8178269 0.8066460 
[36] 0.7940029 0.6896308 0.7174657 0.6610045 0.8131975 
[41] 0.7376341 0.6610045 0.8193195 0.7061723 0.7727775 
[46] 0.8207878 0.6557120 0.7407189 0.7795906 0.5680426 
[51] 0.6201282 0.6265610 0.5994277 0.7407189 0.7137989 
[56] 0.7750949 0.8163095 0.7437319 0.7959093 0.8099782 
[61] 0.7022044 0.8207878 0.6939384 0.7022044 0.7704119 
[66] 0.7376341 0.8099782 0.6661367 0.5994277 0.8193195 
[71] 0.7860071 0.4048309 0.6502517 0.7604355 0.7279232 
[76] 0.7959093 0.6852003 0.7523651 0.7210397 0.6939384 
[81] 0.8964926 0.7210397 0.9110974 0.8795291 0.8788673 
[86] 0.9088937 0.8863580 0.7860071 0.8277854 0.9100090 
[91] 0.8083266 0.8379118 0.8886532 0.8330020 0.8250530 
[96] 0.6661367 0.7551150 0.4204716 0.5504306 
> mean(GREL.DAT$MeanRel)  #Average group-mean reliability 
[1] 0.7335212 

Notice that the overall group-mean reliability is acceptable at .73, but that several groups have 
quite low reliability estimates.  Specifically, group 71 and group 98 have reliability estimates 
below .50.   

We can show that the group-mean reliability from the random coefficient model is equivalent 
to the ICC(2) from the ANOVA model by using the bh1996 data to estimate the ICC(2) in an 
ANOVA framework (see section 0.). 

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC2(tmod) 

[1] 0.7717129 

In this case the ICC(2) estimate from the ANOVA model is slightly higher than the group-
mean reliability estimate from the random coefficient model.  This occurs because group sizes 
are unequal.  If all the groups were the same size, then the two measures would be nearly 
identical. 

With reference to ICC(2) values and group-mean reliability, note that there are alternate ways 
of estimating group-mean reliability.  Snijders and Bosker (1999) show, for example, that one 
can estimate overall group-mean reliability by determining what percentage of the total group 
variance is made up by τ00.   
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Finally, keep in mind that the estimates of within-group and between-group variance from the 
random coefficient model will be nearly identical to those from the ANOVA model as long as 
restricted maximum likelihood estimation (REML) is used in the random coefficient modeling 
(this is the default in the lme routine of the nlme package).  If full maximum likelihood is used, 
the variance estimates may differ somewhat from the ANOVA estimates particularly in small 
sample situations.  In our running example, the use of REML versus full maximum likelihood 
makes little difference. Interested readers may calculate ICC values from an lme model with 
maximum likelihood to verify this result. 

 
> mod.ml<-lme(WBEING~1,random=~1|GRP,data=bh1996,method="ML") 
> VarCorr(mod.ml) 
GRP = pdLogChol(1)  
            Variance   StdDev    
(Intercept) 0.03531699 0.1879282 
Residual    0.78949525 0.8885354 

The maximum likelihood estimate of the ICC is 0.042, and is very similar to the 0.043 REML 
estimate. 

Determining whether τ00 is significant.  Returning to our original analysis involving well-
being from the bh1996 data set, we might be interested in knowing whether the intercept 
variance (i.e.,τ00) estimate of 0.036 is significantly different from zero.  To do this we compare –
2 log likelihood values between (1) a model with a random intercept, and (2) a model without a 
random intercept. 

A model without a random intercept is estimated using the gls function in the nlme 
package.  The –2 log likelihood values for an lme or gls object are obtained using the logLik 
function and multiplying this value by –2.  If the –2 log likelihood value for the model with 
random intercept is significantly larger than the model without the random intercept (based on a 
Chi-square distribution), then one concludes that the model with the random intercept fits the 
data significantly “better” than does the model without the random intercept.  In the nlme 
package, model contrasts via –2 log likelihood values are facilitated by using the anova 
function. 

 
> Null.Model.2<-gls(WBEING~1,data=bh1996) 
> logLik(Null.Model.2)*-2 
`log Lik.' 19536.17 (df=2) 
> logLik(Null.Model)*-2 
`log Lik.' 19347.34 (df=3) 
> 19536.17-19347.34 
[1] 188.83 
> anova(Null.Model,Null.Model.2) 
             Model df      AIC      BIC    logLik   Test  L.Ratio p-value 
Null.Model       1  3 19353.34 19374.06 -9673.669                         
Null.Model.2     2  2 19540.17 19553.98 -9768.084 1 vs 2 188.8303  <.0001 

The –2 log likelihood value for the gls model without the random intercept is 19536.17.  The 
–2 log likelihood value for the model with the random intercept is 19347.34.  The difference of 
188.8 is significant on a Chi-Squared distribution with one degree of freedom (one model 
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estimated a random intercept, the other did not, and this results in the one df difference).  These 
results suggest that there is significant intercept variation. 

In summary, we would conclude that there is significant intercept variation in terms of general 
well-being scores across the 99 Army companies in our sample.  We also estimate that 4% of the 
variation in individuals’ well-being score is a function of the group to which he or she belongs.  
Thus, a model that allows for random variation in well-being among Army companies is better 
than a model that does not allow for this random variation. 

Step 2.  At this point in our example we have two sources of variation that we can attempt to 
explain in subsequent modeling – within-group variation (σ2) and between-group intercept (i.e., 
mean) variation (τ00). In many cases, these may be the only two sources of variation we are 
interested in explaining so let us begin by building a model that predicts these two sources of 
variation. 

To make things interesting, let us assume that individual well-being is related to individual 
reports of work hours.  We expect that individuals who report high work hours will report low 
well-being.  At the same time, however, let us assume that average work hours in an Army 
Company are related to the average well-being of the Company over-and-above the individual-
level work-hours and well-being relationship.  Using Hofmann and Gavin’s (1998) terminology, 
this means that we are testing an incremental model where the level-2 variable predicts unique 
variance after controlling for level-1 variables.  This is also directly equivalent to the contextual 
model that we estimated in section 3.4.1. 

The form of the model using Bryk and Raudenbush’s (1992) notation is: 
  WBEINGij = β0j + β1j(HRSij)+rij      

         β0j = γ00 + γ01(G.HRSj) + u0j     
β1j = γ10       

Let us consider each row of the notation.  The first row states that individual well-being is a 
function of the groups’ intercept plus a component that reflects the linear effect of individual 
reports of work hours plus some random error.  The second line states that each groups’ intercept 
is a function of some common intercept (γ00) plus a component that reflects the linear effect of 
average group work hours plus some random between-group error.  The third line states that the 
slope between individual work hours and well-being is fixed—it is not allowed to randomly vary 
across groups.  Stated another way, we assume that the relationship between work hours and 
well-being is identical in each group. 

When we combine the three rows into a single equation we get an equation that looks like a 
common regression equation with an extra error term (u0j).  This error term indicates that 
WBEING intercepts (i.e., means) can randomly differ across groups.  The combined model is: 

 WBEINGij = γ00 + γ10(HRSij) + γ01(G.HRSj) + u0j + rij     

This model is specified in lme as: 
> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996) 
 
> summary(Model.1) 
Linear mixed-effects model fit by REML 
 Data: bh1996  
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       AIC      BIC   logLik 
  19222.28 19256.81 -9606.14 
 
Random effects: 
 Formula: ~1 | GRP 
        (Intercept)  Residual 
StdDev:   0.1163900 0.8832353 
 
Fixed effects: WBEING ~ HRS + G.HRS  
                Value  Std.Error   DF   t-value p-value 
(Intercept)  4.740829 0.21368746 7282 22.185808  <.0001 
HRS         -0.046461 0.00488798 7282 -9.505056  <.0001 
G.HRS       -0.126926 0.01940357   97 -6.541368  <.0001 
 Correlation:  
      (Intr) HRS    
HRS    0.000        
G.HRS -0.965 -0.252 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-3.35320562 -0.65024982  0.03760797  0.71319835  2.70917777  
 
Number of Observations: 7382 

  Number of Groups: 99  

Notice that work hours are significantly negatively related to individual well-being.  
Furthermore after controlling the individual-level relationship, average work hours (G.HRS) are 
related to the average well-being in a group. 

At this point one can also estimate how much of the variance was explained by these two 
predictors.  Because individual work hours were significantly related to well-being, we expect 
that it will have “explained” some of the within-group variance σ2.  Similarly, since average 
work hours were related to the group well-being intercept we expect that it will have “explained” 
some of intercept variance, τ00.  Recall that in the null model, the variance estimate for the 
within-group residuals, σ2, was 0.789; and the variance estimate for the intercept, τ00, was 0.036. 
The VarCorr function on the Model.1 object reveals that each variance component has 
changed slightly. 

> VarCorr(Model.1) 
GRP = pdSymm(1)  
            Variance   StdDev    
(Intercept) 0.01354663 0.1163900 

  Residual    0.78010466 0.8832353 

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.   
That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the 
variance of the between-group intercepts decreased from 0.036 to 0.014.  We can calculate the 
percent of variance explained by using the following formula: 

 Variance Explained = 1 – (Var with Predictor/Var without Predictor) 
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To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%) 
of the within-group variance in σ2, and group-mean work hours explained 1 – (0.014/0.036) or 
0.611 (61%) of the between-group intercept variance τ00.  While the logic behind variance 
estimates appears pretty straightforward (at least in models without random slopes), the variance 
estimates should be treated with some degree of caution because they are partially dependent 
upon how one specifies the models.  Interested readers are directed to Snijders and Bosker (1994; 
1999) for an in-depth discussion of variance estimates. 

Step 3.  Let us continue our analysis by trying to explain the third source of variation, namely, 
variation in our slopes (τ11, τ12, etc.).  To do this, let us examine another variable from the Bliese 
and Halverson (1996) data set.  This variable represents Army Company members’ ratings of 
leadership consideration (LEAD).  Generally individual soldiers’ ratings of leadership are related 
to well-being.  In this analysis, however, we will consider the possibility that the strength of the 
relationship between individual ratings of leadership consideration and well-being varies among 
groups. 

We begin by examining slope variation among the first 25 groups.  Visually we can do this 
using xyplot from the lattice package. 

 
> library(lattice) 
> trellis.device(device="windows",theme="col.whitebg") 
> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,], 
  type=c("p","g","r"),col="dark blue",col.line="black", 
  xlab="Leadership Consideration", 
  ylab="Well-Being") 
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From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some 
slope variation.  The plot, however, does not tell us whether or not this variation is significant.  
Thus, the first thing to do is to determine whether the slope variation differs by more than chance 
levels. 

Is slope variation significant? We begin our formal analysis of slope variability by adding 
leadership consideration to our model and testing whether or not there is significant variation in 
the leadership consideration and well-being slopes across groups.  The model that we test is: 

    WBEINGij =  β0j + β1j(HRSij)+ β2j(LEADij) + rij     
                 β0j = γ00 + γ01(G.HRSj) + u0j     

                     β1j = γ10 

                              β2j = γ20 + u2j 

The last line of the model includes the error term u2j.  This term indicates that the leadership 
consideration and well-being slope is permitted to randomly vary across groups.  The variance 
term associated with u2j is τ12.  It is this variance term that interests us in the cross-level 
interaction hypothesis.  Note that we have not permitted the slope between individual work hours 
and individual well-being to randomly vary across groups. 

In combined form the model is:  WBEINGij = γ00 + γ10(HRSij) + γ20(LEADij) + γ01(G.HRSj) +  
u0j + u2j * LEADij + rij.   In R this model is designated as: 
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> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996) 
> summary(Model.2) 

Linear mixed-effects model fit by REML 
 Data: bh1996  
       AIC      BIC   logLik 
  17838.58 17893.83 -8911.29 
 
Random effects: 
 Formula: ~LEAD | GRP 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev    Corr   
(Intercept) 0.3794891 (Intr) 
LEAD        0.1021935 -0.97  
Residual    0.8008079        
 
Fixed effects: WBEING ~ HRS + LEAD + G.HRS  
                 Value  Std.Error   DF   t-value p-value 
(Intercept)  2.4631348 0.20832607 7281 11.823459  <.0001 
HRS         -0.0284776 0.00446795 7281 -6.373764  <.0001 
LEAD         0.4946550 0.01680846 7281 29.428928  <.0001 
G.HRS       -0.0705047 0.01789284   97 -3.940387   2e-04 
... 
 

Number of Observations: 7382 
Number of Groups: 99  

In line with our expectations, leadership consideration is significantly related to well-being.  
What we are interested in from this model, however, is whether τ12, the slope between leadership 
consideration and well-being significantly varies across groups.   To determine whether the slope 
is significant, we test the –2 log likelihood ratios between a model with and a model without a 
random slope for leadership consideration and well-being.  We have already estimated a model 
with a random slope.  To estimate a model without a random slope we use update on 
Model.2 and change the random statement so that is only includes a random intercept. 
> Model.2a<-update(Model.2,random=~1|GRP) 

> anova(Model.2,Model.2a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Model.2      1  8 17838.58 17893.83 -8911.290                         

Model.2a     2  6 17862.68 17904.12 -8925.341 1 vs 2 28.10254  <.0001 

The difference of 28.10 is significant on two degrees of freedom.  Note that there are two 
degrees of freedom because the model with the random slope also estimates a covariance term 
for the slope-intercept relationship.  The log likelihood results indicate that model with the 
random effect for the leadership consideration and well-being slope is significantly better than 
the model without this random effect.  This indicates significant slope variation. 

Now we know we have significant variation in the leadership and well-being slope, we can 
attempt to see what group-level properties are related to this variation.  In this example, we 
hypothesize that when groups are under a lot of strain from work requirements, the relationship 
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between leadership consideration and well-being will be relatively strong.  In contrast, when 
groups are under little strain, we expect a relatively weak relationship between leadership 
consideration and well-being.  We expect these relationships because we believe that leadership 
is relatively unimportant in terms of individual well-being when groups are under little stress, but 
that the importance of leadership consideration increases when groups are under high stress.  We 
are, in essence, proposing a contextual effect in an occupational stress model (see Bliese & Jex, 
2002). 

A proposition such as the one that we presented in the previous paragraph represents a cross-
level interaction.  Specifically, it proposes that the slope between leadership consideration and 
well-being within groups varies as a function of a level-2 variable, namely group work demands.  
In random coefficient modeling, we test this hypothesis by examining whether a level-2 variable 
explains a significant amount of the level-1 slope variation among groups. In our example, we 
will specifically be testing whether average work hours in the group “explains” group-by-group 
variation in the relationship between leadership consideration and well-being.  In Bryk and 
Raudenbush’s (1992) notation, the model that we are testing is: 

 
  WBEINGij = β0j + β1j(HRSij)+ β2j(LEADij) + rij      

           β0j = γ00 + γ01(G.HRSj) + u0j     
                 β1j = γ10 

           β2j = γ20 +γ21(G.HRSj) + u2j     

In combined form the model is: 

WBEINGij = γ00 + γ10(HRSij) + γ20(LEADij) + γ01(G.HRSj) + γ21(LEADij * G.HRSj)  + u0j + u2j 
*LEADij + rij. 

In lme we specify the cross-level interaction by adding an interaction term between 
leadership (LEAD) and average group work hours (G.HRS).  Specifically, the model is: 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 
random=~LEAD|GRP,data=bh1996) 
> round(summary(Final.Model)$tTable,dig=3) 
             Value Std.Error   DF t-value p-value 
(Intercept)  3.654     0.726 7280   5.032   0.000 
HRS         -0.029     0.004 7280  -6.391   0.000 
LEAD         0.126     0.217 7280   0.578   0.564 
G.HRS       -0.175     0.064   97  -2.751   0.007 
LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

The tTable results from the final model indicate there is a significant cross-level interaction 
(the last row using a liberal p-value of less than .10).  This result indicates that average work 
hours “explained” a significant portion of the variation in τ12 – the vertical cohesion and well-
being slope. 

We can examine the form of our interaction by predicting four points – high and low group 
work hours and high and low leadership consideration.   We start by selecting values for G.HRS 
and LEAD that are one standard deviation above the mean and one standard deviation below the 
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mean.  By using the Group Work Hours variable in the original data set, we have means and 
standard deviation values weighted by group size. 

 > mean(bh1996$G.HRS) 
[1] 11.2987 
> sd(bh1996$G.HRS) 
[1] 0.8608297 
> 11.30-.86; 11.30+.86 
[1] 10.44 
[1] 12.16 
 
> mean(bh1996$LEAD) 
[1] 2.890665 
> sd(bh1996$LEAD) 
[1] 0.771938 
> 2.89-.77; 2.89+.77 
[1] 2.12 
[1] 3.66 

Once we have the high and low values we create a small data set (TDAT) with high and low 
values for the interactive variables, and mean values for the non-interactive variables (individual 
work hours in this case).  We then use the predict function to get estimates of the outcome 
given the values of the variables. 

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 
                 LEAD=c(2.12,2.12,3.66,3.66), 
                 G.HRS=c(10.44, 12.16, 10.44, 12.16), 
                 GRP=c(1,1,1,1)) 
> predict(Final.Model,TDAT,level=1) 
       1        1        1        1  
2.380610 2.198103 3.217337 3.120810 

The predicted values in this case are specifically for GRP 1.  Each group in the sample will 
have different predicted values because the slopes and intercepts randomly vary among groups.  
In many cases, one will not be specifically interested in the predicted values for specific groups, 
but interested in the patterns for the sample as a whole.  If one is interested in estimating overall 
values, one can change the level of prediction to level=0. 
> predict(Final.Model,TDAT,level=0) 
[1] 2.489508 2.307001 3.204766 3.108239 
attr(,"label") 
[1] "Predicted values" 

Notice that the values for the sample as a whole differ from those for GRP 1. 

When the values are plotted, the form of the interaction supports our proposition; however, to 
make the effect more dramatic I selected group work hour values of 7 and 12 to represent low 
and high average work hours and have plotted the predictions from these values.  Note this plot 
was generated in PowerPoint. 

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 
+                   LEAD=c(2.12,2.12,3.66,3.66), 
+                   G.HRS=c(7, 12, 7, 12), 
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+                   GRP=c(1,1,1,1)) 
> predict(Final.Model,TDAT,level=0) 
[1] 2.854523 2.323978 3.397820 3.117218 
attr(,"label") 
[1] "Predicted values" 
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Soldiers’ perceptions of leadership consideration are positively related to their well-being 

regardless of the number of hours that the group, on average, works; however, the relationship 
between leadership consideration and well-being is stronger (steeper slope) in groups with high 
work hours than in groups with low work hours.  Another way to think about the interaction is to 
note that well-being really drops (in relative terms) when one perceives that leadership is low in 
consideration and one is a member of a group with high work hours.  This supports our 
proposition that considerate leadership is relatively more important in a high work demand 
context. 

In this model one can also estimate how much of the variation in the slopes is “explained” by 
the group work hours.  The estimate of the between group slope variance, τ12, in the model with 
a random slope for the relationship between leadership and well-being (Model.2) is 0.0104. 
> VarCorr(Model.2) 
GRP = pdLogChol(LEAD)  
            Variance   StdDev    Corr   
(Intercept) 0.14401197 0.3794891 (Intr) 
LEAD        0.01044352 0.1021935 -0.97  
Residual    0.64129330 0.8008079 

  The estimate after average work hours has “explained” some of the slope variance 
(Final.Model) is 0.0095. 
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> VarCorr(Final.Model) 
GRP = pdLogChol(LEAD)  
            Variance    StdDev     Corr   
(Intercept) 0.131260632 0.36229909 (Intr) 
LEAD        0.009545556 0.09770136 -0.965 
Residual    0.641404947 0.80087761  

  Thus, average group work hours accounts for 1 – (0.0095/0.0104) or 8.6% of the slope 
variance.  Once again, I emphasize that this is a rough estimate, and I direct readers to Snijders 
and Bosker (1994; 1999) for additional information on estimating effect sizes. 

3.6.2 Some Notes on Centering 

In multilevel modeling, one will eventually have to contend with centering issues.  In our 
examples, we have simply used raw, untransformed variables as predictors.  In some cases, 
though, there may be good reasons to consider centering the variables.  Basically, there are two 
centering options with level-1 variables. 

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.  
Grand-mean centering is often worth considering because doing so helps reduce multicollinearity 
among predictors and random effect terms.  In cases where interactive terms are included, grand-
mean centering can be particularly helpful in reducing correlations between main-effect and 
interactive terms.  Hofmann and Gavin (1998) and others have shown that grand-mean centered 
and raw variable models are basically identical; however, grand-mean centered models will often 
converge in situations where a model based on raw variables will not.  The computational 
efficiency of grand-mean centered models is due entirely to reductions in multicollinearity 
because the computer algorithms tend have trouble converging when correlations among 
variables become too high. 

Grand-mean centering can be accomplished in one of two ways.  The explicit way is to 
subtract the overall mean from the raw variable.  The less obvious way is to use the scale 
function.  The scale function is typically used to standardize (mean=0, sd=1) variables, but can 
also be used to grand-mean center.  Below I create grand-mean centered variables for leadership 
both ways. 

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD) 

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=F) 

In the first example a single scalar element (the mean of leadership) is recycled and subtracted 
from each element in the vector of leadership scores to create a new variable.  In the second 
example, the use of the option scale=F instructs scale to provide a grand-mean centered 
variable. 

Group-mean centering is another centering option with level-1 variables.  In group-mean 
centering, one subtracts the group mean from each individual score.  The new variable reflects 
how much an individual differs from his or her group average.  It is important to keep in mind 
that group-mean centering represents a completely different parameterization of the model than 
does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 2002; Snijders & 
Bosker, 1999).  Most authors recommend that one use group-mean centering only if there is a 
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strong theoretical reason to believe that a respondent's relative position within the group is more 
important than the absolute rating (Hox, 2002; Snijders & Bosker, 1999).  For instance, one 
might use group-mean centering if one believed that the key predictive aspect of work hours was 
whether an individual worked more or less than his or her group members. 

There may also be value in using group-mean centering when testing a cross-level interaction. 
Hofmann and Gavin (1998) contend that group-mean provides the “purest” estimate of the 
within-group slope in these situations.  That is, slope estimates based on raw variables and 
grand-mean centered variables can be partially influenced by between-group factors.  In contrast, 
group-mean centered variables have any between-group effects removed.  Bryk and Raudenbush 
(1992) show that group-level interactions can some times pose as cross-level interactions, so a 
logical strategy is to use raw or grand-mean centered variables to test for cross-level interactions, 
but verify the final results with group-mean centered variables. 

Group-mean centered variables are created by subtracting the group-mean from the raw 
variable.  Thus they are identical to the within-group scores calculated in WABA (see section 
3.5.1).  To create group-mean centered variables in R, one needs two columns in the dataframe – 
the raw variable and the group-mean.  In section 3.2 the aggregate and merge functions 
were illustrated as ways of creating a group-mean variable (via aggregate) and merging the 
group means back with the raw data (via merge). Below these functions are used to help create 
a group-centered leadership variable.   

 
> TDAT<-bh1996[,c("GRP","LEAD")] 
> TEMP<-aggregate(TDAT$LEAD,list(TDAT$GRP),mean) 
> names(TEMP)<-c("GRP","G.LEAD") 
> TDAT<-merge(TDAT,TEMP,by="GRP") 
> names(TDAT) 
[1] "GRP"    "LEAD"   "G.LEAD" 
> TDAT$GRP.CENT.LEAD<-TDAT$LEAD-TDAT$G.LEAD 
> names(TDAT) 
[1] "GRP"           "LEAD"          "G.LEAD"        "GRP.CENT.LEAD"  

One would typically choose a shorter name for the group-mean centered variables, but this 
name was chosen to be explicit. 

The bh1996 dataframe has group-mean centered variables for all the predictors.  The group-
mean centered variables begin with a "W" for "within-group".  For comparison, the model below 
uses the group-mean centered leadership variable in lieu of the raw leadership variable used in 
the final model in the preceding section. 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 
+ random=~LEAD|GRP,data=bh1996) 
> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS, 
+ random=~LEAD|GRP,data=bh1996) 
> round(summary(Final.Model.R)$tTable,dig=3) 
              Value Std.Error   DF t-value p-value 
(Intercept)   4.705     0.211 7280  22.250   0.000 
HRS          -0.028     0.004 7280  -6.264   0.000 
W.LEAD        0.044     0.222 7280   0.197   0.844 
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G.HRS        -0.142     0.019   97  -7.421   0.000 
W.LEAD:G.HRS  0.040     0.019 7280   2.064   0.039 

Notice that the cross-level interaction is now significant with a t-value of 2.064.  In contrast, 
recall that the cross-level interaction in the model with the non-centered leadership variable had a 
t-value of 1.703 (p<.10).  Thus, there are some minor differences between the two model 
specifications. 

4 Growth Modeling 

Growth models are an extremely useful variation of multilevel models (see section 3.6).  In 
growth modeling, however, repeated observations from an individual represent the level-1 
variables, and the attributes of the individual represent the level-2 variables.  The fact that the 
level-1 variables are repeated over time poses some additional analytic considerations; however, 
the steps used to analyze the basic growth model and the steps used to analyze a multilevel 
model share many key similarities. 

In this chapter, I begin by briefly reviewing some of the methodological challenges associated 
with growth modeling.  Following this, I illustrate how data must be configured in order to 
conduct growth modeling.  Finally, I illustrate a complete growth modeling analysis using the 
nlme package.  Much of this material is taken from Bliese and Ployhart (2002). 

4.1 Methodological challenges 

In general, the methodological challenges associated with longitudinal analyses of any kind 
can be daunting.  For instance, since longitudinal data is collected from single entities (usually 
persons) over multiple times, it is likely that there will be some degree of non-independence in 
the responses.  Multiple responses from an individual will tend to be related by virtue of being 
provided by the same person, and this non-independence violates the statistical assumption of 
independence underlying many common data analytic techniques (Kenny & Judd, 1986).  The 
issue of non-independence should be familiar to individuals who have worked with multilevel 
modeling since non-independence due to group membership is key characteristic of multilevel 
models.  That is, multilevel models are fundamentally about modeling the non-independence that 
occurs when individual responses are affected by group membership. 

In longitudinal designs, however, there are additional complications associated with the level-
1 responses.  First, it is likely that responses temporally close to each other (e.g., responses 1 and 
2) will be more strongly related than responses temporally far apart (e.g., responses 1 and 4).  
This pattern is defined as a simplex pattern or lag 1 autocorrelation.  Second, it is likely that 
responses will tend to become either more variable over time or less variable over time.  For 
instance, individuals starting jobs may initially have a high degree of variability in performance, 
but over time the variance in job performance may diminish.  In statistical terms, outcome 
variables in longitudinal data are likely to display heteroscedasticity.  To obtain correct standard 
errors and to draw the correct statistical inferences, autocorrelation and heteroscedasticity both 
need to be incorporated into the statistical model. 

The need to test for both autocorrelation and heteroscedasticity in growth models arises 
because the level-1 variables (repeated measures from an individual) are ordered by time.  One 
of the main difference between growth models and multilevel models revolves around 
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understanding how to properly account for time in both the statistical models and in the data 
structures. 

In R, growth modeling is conducted using the nlme package (Pinhiero & Bates, 2000) and 
the lme function in particular.  These are, of course, the same functions used in multilevel 
modeling (see section 3.6).  It will become apparent, however, that the nlme package has a wide 
variety of options available for handling autocorrelation and heteroscedasticity in growth models. 

Prior to conducting a growth modeling analysis, one has to create a data set that explicitly 
includes time as a variable.  This data transformation is referred to as changing a data set from 
multivariate to univariate form or “stacking” data set.  In the next section, we show how to create 
a dataframe for growth modeling. 

4.2 Data Structure and the make.univ Function 

The first step in conducting a growth modeling analysis is to create a data set that is amenable 
to analysis.  Often data is stored in a format where each row represents observations from one 
individual.  For instance, an individual might provide three measures of job satisfaction in a 
longitudinal study, and the data might be arranged such that column 1 is the subject number; 
column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 4 is job 
satisfaction at time 3, etc. 

The univbct dataframe in the multilevel library allows us to illustrate this arrangement. 
This data set contains three measures taken six-months apart on three variables – job satisfaction, 
commitment, and readiness.  It also contains some stable individual characteristics such as 
respondent gender, marital status and age at the initial data collection time.  These latter 
variables are treated as level-2 predictors in subsequent modeling. 

For convenience, the univbct dataframe has already been converted into univariate or 
stacked form.  Thus, it is ready to be analyzed in a growth model; however, for the purposes of 
illustration, we will select a subset of the entire univbct dataframe and transform it back into 
multivariate form.  With this subset we will illustrate how to convert a typical multivariate 
dataframe into the format necessary for growth modeling. 

 
> library(multilevel) 
> data(univbct) 
> names(univbct) 
 [1] "BTN"     "COMPANY" "MARITAL" "GENDER"  "HOWLONG" "RANK"    "EDUCATE" 
 [8] "AGE"     "JOBSAT1" "COMMIT1" "READY1"  "JOBSAT2" "COMMIT2" "READY2"  
[15] "JOBSAT3" "COMMIT3" "READY3"  "TIME"    "JSAT"    "COMMIT"  "READY"   
[22] "SUBNUM"  
> nrow(univbct) 
[1] 1485 

> length(unique(univbct$SUBNUM)) 

[1] 495 

These commands tell us that there are 1495 rows in the data set, and that there are data from 
495 individuals.  Thus each individual provides three rows of data.  To create a multivariate data 
set out of the univbct dataframe, we can select every third row of the univbct dataframe.  In 
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this illustration we restrict our analyses to the three job satisfaction scores and to respondent age 
at the initial data collection period. 

 
> GROWDAT<-univbct[3*(1:495),c(22,8,9,12,15)]  #selects every third row 
> GROWDAT[1:3,] 
  SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 
3      1  20 1.666667       1       3 
6      2  24 3.666667       4       4 
9      3  24 4.000000       4       4 

The dataframe GROWDAT now contains data from 495 individuals.  The first individual was 
20 years old at the first data collection time.  At time 1, the first individual’s job satisfaction 
score was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0. 

Because of the nature of the univbct dataframe in the multilevel package, we have added 
additional steps by converting a univariate dataframe to a multivariate dataframe; nonetheless, 
from a practical standpoint the important issue is that the GROWDAT dataframe represents a 
typical multivariate data set containing repeated measures.  Specifically, the GROWDAT 
dataframe contains one row of information for each subject, and the repeated measures (job 
satisfaction) are represented by three different variables. 

From a growth modeling perspective, the key problem with multivariate dataframes like 
GROWDAT is that they do not contain a variable that indexes time.  That is, we know time is an 
attribute of this data because we have three different measures of job satisfaction; however, 
analytically we have no way of explicitly modeling time.  Thus, it is critical to create a new 
variable that explicitly indexes time.  Thus requires transforming the data to univariate or a 
stacked format. 

The make.univ function from the multilevel package provides a simple way to perform this 
transformation.  Two arguments are required (x and dvs), and two are optional (tname and 
outname).  The first required argument is the dataframe in multivariate or wide format.  The 
second required argument is a subset of the entire dataframe identifying the columns containing 
the repeated measures.  The second required argument must be time-sorted -- column 1 must be 
time 1, column 2 must be time 2, and so on.  The two optional arguments control the names of 
the two created variables:  tname defaults to "TIME" and outname defaults to "MULTDV". 

  For instance, to convert GROWDAT into univariate form we issue the following command: 

 
> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5]) 
> UNIV.GROW[1:9,] 
    SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 TIME   MULTDV 
X3       1  20 1.666667       1       3    0 1.666667 
X31      1  20 1.666667       1       3    1 1.000000 
X32      1  20 1.666667       1       3    2 3.000000 
X6       2  24 3.666667       4       4    0 3.666667 
X63      2  24 3.666667       4       4    1 4.000000 
X64      2  24 3.666667       4       4    2 4.000000 
X9       3  24 4.000000       4       4    0 4.000000 
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X95      3  24 4.000000       4       4    1 4.000000 
X96      3  24 4.000000       4       4    2 4.000000   

Note that each individual now has three rows of data indexed by the variable “TIME”.   Time 
ranges from 0 to 2.  To facilitate model interpretation, the first time is coded as 0 instead of as 1.  
Doing so allows one to interpret the intercept as the level of job satisfaction at the initial data 
collection time. Second, notice that the make.univ function has created a variable called 
“MULTDV”.  This variable represents the multivariate dependent variable.  The variable 
“TIME” and the variable “MULTDV” are two of the primary variables used in growth modeling.  
Finally, notice that AGE, SUBNUM and the values for the three job satisfaction variables were 
repeated three times for each individual.  By repeating the individual variables, the make.univ 
function has essentially created a dataframe with level-2 variables in the proper format.  For 
instance, subject age can now be used as a level-2 predictor in subsequent modeling. 

4.3 Growth Modeling Illustration 

With the data in univariate form, we can begin to visually examine whether or not we see 
patterns between time and the outcome.  For instance, the commands below use the lattice 
package to produce a plot of the first 30 individuals: 

 
>trellis.device(device="windows",theme="col.whitebg") 
> xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,], 
 type=c("p","r","g"),col="blue",col.line="black", 
 xlab="Time",ylab="Job Satisfaction") 
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From this plot, it appears as though there is considerable variability both in overall levels of 

job satisfaction and in how job satisfaction changes over time.  The goal in growth modeling is to 
determine whether or not we can find consistent patterns in the relationship between time and job 
satisfaction.  Thus, we are now ready to illustrate growth modeling in a step-by-step approach.  
In this illustration, we follow the model comparison approach outlined by Bliese and Ployhart 
(2002) and in also discussed in Ployhart, Holtz and Bliese (2002). 

As an overview of the steps, the basic procedure is to start by examining the nature of the 
outcome.  Much as we did in multilevel modeling, we are interested in estimating the ICC and 
determining whether the outcome (job satisfaction) randomly varies among individuals.  Second, 
we are interested in examining the form of the relationship between time and the outcome.  In 
essence, we want to know whether the outcome generally increases, decreases, or shows some 
other type of relationship with time.  The plot of the first 30 individuals shows no clear pattern in 
how job satisfaction is changing over time, but the analysis might identify an overall trend 
among the 495 respondents.  Third, we attempt to determine whether the relationship between 
time and the outcome is constant among individuals or whether it varies on an individual-by-
individual basis.  Fourth, we model in more complicated error structures such as autocorrelation, 
and finally we add level-2 predictors of intercept and slope variances. 
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4.3.1 Step 1:  Examine the DV 

  The first step in growth modeling is to examine the properties of the dependent variable.  As 
in multilevel modeling, one begins by estimating a null model and calculating the ICC. 

 
> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW, 
na.action=na.omit) 
> VarCorr(null.model) 
SUBNUM = pdLogChol(1)  
            Variance  StdDev    
(Intercept) 0.4337729 0.6586144 
Residual    0.4319055 0.6571952 
> 0.4337729/(0.4337729+0.4319055) 
[1] 0.5010786 

In our example using the UNIV.GROW dataframe, the ICC associated with job satisfaction is 
.50.  This indicates that 50% of the variance in any individual report of job satisfaction can be 
explained by the properties of the individual who provided the rating.  Another way to think 
about this is to note that individuals tend to remain fairly constant in ratings over time, and that 
there are differences among individuals.  This observation is reflected in the graph of the first 30 
respondents. 

4.3.2 Step 2: Model Time    

Step two involves modeling the fixed relationship between time and the dependent variable. 
In almost all cases, one will begin by modeling a linear relationship and progressively add more 
complicated relationships such as quadratic, cubic, etc.  To test whether there is a linear 
relationship between time and job satisfaction, we regress job satisfaction on time in a model 
with a random intercept. 

 
> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW, 
na.action=na.omit) 
> summary(model.2)$tTable 
                 Value  Std.Error  DF   t-value    p-value 
(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000 
TIME        0.05176461 0.02168024 903  2.387640 0.01716169  

An examination of the fixed effects indicates that there is a significant linear relationship 
between time and job satisfaction such that job satisfaction increases by .05 each time period.  
Note that since the first time period was coded as 0, the intercept value in this model represents 
the average level of job satisfaction at the first time period.  Specifically, at the first time period 
the average job satisfaction was 3.22. 

More complicated time functions can be included in one of two ways – either through raising 
the time variable to various powers, or by converting time into power polynomials.  Below both 
techniques are illustrated. 

 
> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM, 
data=UNIV.GROW,na.action=na.omit) 
> summary(model.2b)$tTable 
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                  Value  Std.Error  DF    t-value   p-value 
(Intercept)  3.23308157 0.04262697 902 75.8459120 0.0000000 
TIME        -0.03373846 0.07816572 902 -0.4316273 0.6661154 
I(TIME^2)    0.04276425 0.03756137 902  1.1385167 0.2552071 
 
> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM, 
data=UNIV.GROW,na.action=na.omit) 
> summary(model.2c)$tTable 
                   Value Std.Error  DF   t-value    p-value 
(Intercept)    3.2704416 0.0346156 902 94.478836 0.00000000 
poly(TIME, 2)1 1.5778835 0.6613714 902  2.385775 0.01724863 
poly(TIME, 2)2 0.7530736 0.6614515 902  1.138517 0.25520707  

Both models clearly show that there is no significant quadratic trend.  Note that a key 
advantage of the power polynomials is that the linear and quadratic effects are orthogonal.  Thus, 
in the second model the linear effect of time is still significant even with the quadratic effect in 
the model.  In either case, however, we conclude that time only has a linear relationship with job 
satisfaction. 

4.3.3 Step 3:  Model Slope Variability 

A potential limitation with model 2 is that it assumes that the relationship between time and 
job satisfaction is constant for all individuals.  Specifically, it assumes that each individual 
increases job satisfaction by .05 points at each time period.   An alternative model that needs to 
be tested is one that allows slopes to randomly vary.  Given the degree of variability in the graph 
of the first 30 respondents, a random slope model seems quite plausible with the current data.  
The random slope model is tested by adding the linear effect for time as a random effect.  In the 
running example, we can simply update model.2 by adding a different random effect 
component and contrast model 2 and model 3. 

 
> model.3<-update(model.2,random=~TIME|SUBNUM) 
> anova(model.2,model.3) 
        Model df      AIC      BIC    logLik   Test  L.Ratio p-value 
model.2     1  4 3461.234 3482.194 -1726.617                         
model.3     2  6 3434.132 3465.571 -1711.066 1 vs 2 31.10262  <.0001 

The results clearly indicate that a model that allows the slope between time and job 
satisfaction to randomly vary fits the data better than a model that fixes the slope to a constant 
value for all individuals.  

In cases where higher-level trends were also significant, one would also be interested in 
determining whether allowing the slopes of the higher-level variables to randomly vary also 
improved model fit.   For instance, one might find that a quadratic relationship varied in strength 
among individuals. 

4.3.4 Step 4:  Modeling Error Structures 

The fourth step in developing the level-1 model involves assessing the error structure of the 
model.  It is important to carefully scrutinize the level-1 error structure because significance tests 
may be dramatically affected if error structures are not properly specified.  The goal of step 4 is 
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to determine whether one’s model fit improves by incorporating (a) an autoregressive structure 
with serial correlations and (b) heterogeneity in the error structures. 

Tests for autoregressive structure (autocorrelation) are conducted by including the 
correlation option in lme.  For instance, we can update model.3 and include lag 1 
autocorrelation as follows: 

 
> model.4a<-update(model.3,correlation=corAR1()) 
> anova(model.3,model.4a) 
         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 
model.3      1  6 3434.132 3465.571 -1711.066                         
model.4a     2  7 3429.771 3466.451 -1707.886 1 vs 2 6.360465  0.0117 

A model that allows for autocorrelation fits the data better than does a model that assumes no 
autocorrelation.  A summary of model 4a reveals that the autocorrelation estimate is .367 (see the 
Phi coefficient). 

 
> summary(model.4a) 
Linear mixed-effects model fit by REML 
 Data: UNIV.GROW  
       AIC      BIC    logLik 
  3429.771 3466.451 -1707.886 
..... 
Correlation Structure: AR(1) 
 Formula: ~1 | SUBNUM  
 Parameter estimate(s): 
      Phi  
0.3676831  

Finally, we can examine the degree to which the variance of the responses changes over time.  
A simple preliminary test of variance homogeneity can be conducted by examining the variance 
of job satisfaction at each time point using the tapply command. 

 
> tapply(UNIV.GROW$MULTDV,UNIV.GROW$TIME,var,na.rm=T) 
        0         1         2  
0.9681912 0.8831397 0.7313358 

The analysis suggests the variance of job satisfaction is decreasing over time.  To model 
decreasing variance one can use the varExp option.  In cases where variance increases can use 
the varFixed option (see Pinheiro & Bates, 2000 for details). 

 
> model.4b<-update(model.4a,weights=varExp(form=~TIME)) 
> anova(model.4a,model.4b) 
         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 
model.4a     1  7 3429.771 3466.451 -1707.886                         
model.4b     2  8 3428.390 3470.309 -1706.195 1 vs 2 3.381686  0.0659 

The model that includes both autocorrelation and allows for decreases in variance fits the data 
marginally better (using a liberal p-value) than does the model that only includes autocorrelation.  
In subsequent analyses, however, model.4b ran into convergence problems.  Consequently, we 
elect to use model.4a as our final level-1 model. 
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With the completion of step 4, we have exhaustively examined the form of the level-1 
relationship between time and job satisfaction.  This analysis has revealed that (a) individuals 
randomly vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not 
quadratic, relationship between time and job satisfaction, (c) the strength of the linear 
relationships randomly varies among individuals, and (d) there is a fair amount of autocorrelation 
in the data.  At this point, we are ready to add level-2 variables to try and explain the random 
variation in intercepts (i.e., mean job satisfaction) and in the time-job satisfaction slope. 

4.3.5 Step 5:  Predicting Intercept Variation 

Step 5 in growth modeling is to examine factors that can potentially explain intercept 
variation.  Specifically, in our case we are interested in examining factors that explain why some 
individuals have high job satisfaction while other individuals have low job satisfaction.  In this 
example, we explore the idea that age is related to intercept variation. 

To model this relationship, the individual-level characteristic, age, is used as a predictor of the 
job satisfaction intercept. The model that we will test is represented below using the Bryk and 
Raudenbush (1992) notation.  

      Yij = π0j + π1j(Timeij) + rij       

       π0j = β00 + β01(Agej) + u0j      

π1j = β10 + u1j 

This equation states that respondent j’s initial job satisfaction (π0j) can be modeled as a function 
of two things.  One is the mean level of job satisfaction (β00) for all respondents.  The second is a 
coefficient associated with the individual’s age (β01).  Note that the error term for the intercept 
(u0j) now represents the difference between an individuals’ intercept and the overall intercept 
after accounting for age.  In lme the model is specified as: 
 
> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM, 
  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW) 
 
> round(summary(model.5)$tTable,dig=3) 
            Value Std.Error  DF t-value p-value 
(Intercept) 2.347     0.146 897  16.086   0.000 
TIME        0.053     0.024 897   2.205   0.028 
AGE         0.034     0.005 486   6.241   0.000 

Model 5 differs only from Model 4a in that Model 5 includes a new fixed effect, AGE.  
Notice that age is positively related to initial levels of job satisfaction.  Also notice that there are 
fewer degrees of freedom for age than for time since age is an individual (level-2) attribute. 

In interpreting the coefficients from model 5, we conclude that in cases where age is 0 and 
where time is 0, the expected level of job satisfaction is 2.347.  In some ways, this interpretation 
is strange because age will never actually be 0 in this population.  Consequently, it may be useful 
to reparameterize age by grand-mean centering the variable (see Singer, 1998).   Grand mean 
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centering involves subtracting the overall mean from each observation (see section 3.6.2).   A 
model using a grand-mean centered version of age (AGE2) is presented below. 
 
> UNIV.GROW$AGE2<-UNIV.GROW$AGE-mean(UNIV.GROW$AGE,na.rm=T) 
> model.5b<-lme(MULTDV~TIME+AGE2,random=~TIME|SUBNUM, 
  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW) 
> round(summary(model.5b)$tTable,dig=3) 
            Value Std.Error  DF t-value p-value 
(Intercept) 3.216     0.043 897  74.564   0.000 
TIME        0.053     0.024 897   2.205   0.028 
AGE2        0.034     0.005 486   6.241   0.000 

With age grand-mean centered, the intercept estimate of 3.216 now represents the initial job 
satisfaction value for a respondent of average age (25.7 years old).  Notice that the t-values for 
time and age did not change between this and the previous model.  While we will continue our 
analyses using the untransformed age variable, readers should keep in mind that grand-mean 
centering is often valuable in terms of both enhancing the interpretability of models. 

4.3.6 Step 6:  Predicting Slope Variation 

The final aspect of growth modeling involves attempting to determine attributes of individual 
respondents that are related to slope variability.  In this section, we attempt to determine whether 
respondent age can explain some of the variation in the time-job satisfaction slope.  The model 
that we test is presented below: 

Yij = π0j + π1j(Timeij) + rij      

            π0j = β00 + β01(Agej) + u0j       

            π1j = β10 + β11(Agej) +  u1j      

This model is similar to the model specified in step 5 except that we now test the assumption 
that the slope between time and job satisfaction for an individual (π1j) is a function of an overall 
slope (β10), individual age (β11), and an error term (u1j).  In lme, the model is specified as: 

 
> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM, 
correlation=corAR1(),na.action=na.omit,data=UNIV.GROW) 

Note that the only difference between model 5 and model 6 is that we include an interaction 
term for time and age.  A summary of model 6 reveals that there is a significant interaction 
between time and age. 

 
> round(summary(model.6)$tTable,dig=3) 
             Value Std.Error  DF t-value p-value 
(Intercept)  2.098     0.186 896  11.264   0.000 
TIME         0.271     0.104 896   2.608   0.009 
AGE          0.043     0.007 486   6.180   0.000 
TIME:AGE    -0.008     0.004 896  -2.153   0.032 
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In section 3.6.1 we illustrated how to use the predict command to generate points that could 
be used to plot out interactions.  An alternative approach is to use the overall coefficients from 
the final model in conjunction with high and low values for the predictors to generate points for 
plots.  Notice in the example that follows that the first row in the TDAT dataframe is a row of 1s 
for the intercept, while the other rows contain high and low values for time, age and the time*age 
interaction. 

 
> TDAT<-data.frame(COEFS=(summary(model.6)$tTable)[,1], 
CASE1=c(1,0,21,0),CASE1=c(1,0,31,0), 
CASE3=c(1,2,21,42),CASE4=c(1,2,31,62)) 
> TDAT 
                   COEFS CASE1 CASE1 CASE3 CASE4 
(Intercept)  2.097720117     1     1     1     1 
TIME         0.271036716     0     0     2     2 
AGE          0.043449071    21    31    21    31 
TIME:AGE    -0.008432157     0     0    42    62 
> sum(TDAT[,1]*TDAT[,2]) 
[1] 3.010151 
> sum(TDAT[,1]*TDAT[,3]) 
[1] 3.444641 
> sum(TDAT[,1]*TDAT[,4]) 
[1] 3.198073 
> sum(TDAT[,1]*TDAT[,5]) 
[1] 3.463921 

These points are used in the plot of the interaction.  Notice that older individuals reported 
higher job satisfaction initially, and tended to show a very slight increase over time.  In contrast, 
younger respondents tended to report lower initial job satisfaction, but showed a more 
pronounced increase in job satisfaction over time. 
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5 Miscellaneous Functions 
The multilevel package has a number of other functions that have either been 

referenced in appendices of published papers, or are of basic utility to applied organizational 
researchers.  This section briefly describes these functions.  Complete help files are available in 
the multilevel package for each of the functions discussed. 

5.1 Scale reliability: cronbach and item.total 
Two functions that are can be particularly useful in estimating the reliability of multi-item 

scales are the cronbach and the item.total functions.  Both functions take a single 
argument, a dataframe with multiple columns where each column represents one item in a multi-
item scale. 

5.2 Random Group Resampling for OLS Regression Models 
The function rgr.OLS allows one to contrast a group-level hierarchical regression model 

with an identically specified model where group identifiers are randomly generated.  This type of 
model was estimated in Bliese and Halverson (2002). 

5.3 Estimate multiple ICC values:  mult.icc 
The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a 

given data set.  For instance, to estimate the ICC(1) and ICC(2) values for work hours, 
leadership, cohesion and well-being in the bh1996 data set one provides a dataframe with the 



Multilevel Models in R  77 

variables of interest as the first argument in the mult.icc function, and a grouping variable as 
the second argument.  The mult.icc function uses the nlme package, so it is important to 
have this package loaded. 

 
> library(nlme) 
> mult.icc(bh1996[,c("HRS","LEAD","COHES","WBEING")],bh1996$GRP) 
  Variable       ICC1      ICC2 
1      HRS 0.12923696 0.9171286 
2     LEAD 0.14746131 0.9280442 
3    COHES 0.04804840 0.7900745 
4   WBEING 0.04337922 0.7717561  

5.4 Estimating bias in nested regression models:  simbias 
Bliese and Hanges (2004) showed that a failure to model the nested properties of data in 

ordinary least squares regression could lead to a loss of power in terms of detecting effects.  The 
article provided the simbias function to help estimate the degree of power loss in complex 
situations. 

5.5 Detecting mediation effects: sobel and sobel.lme 
MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the 

mediation tests used in psychology tend to have low power.  One test that had reasonable power 
was Sobel's (1982) indirect test for mediation.  The sobel function provides a simple way to 
run Sobel's (1982) test for mediation.  A second function, sobel.lme, is a variant that allows 
one to include a single level of nesting by adding a group identifier.  In sobel.lme, the three 
models used in the mediation test are estimated using a two-level linear mixed effects (lme) 
model.  Using the lme model in the case of nested data helps provide accurate standard error 
estimates (Bliese & Hanges, 2004).   Details on the use of the  sobel and the sobel.lme 
functions are available in the help files. 

6 Conclusion 

This document has provided an overview of how R can be used in a wide variety of multilevel 
models.  It should be apparent that R is a very powerful language that is well-suited to multilevel 
analyses.  Clearly, in learning to use any new program, there is some degree of effort.  I am 
convinced, however, that the benefits associated with learning R will be well worth the effort for 
scientists whose work revolves around making senses of data.  Hopefully, the numerous 
examples in this document will go a long way towards helping researchers use R for their own 
multilevel problems, and for any number of other statistical procedures. 
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