Meta-analysis of diagnostic studies

Khalid Ashfaq

Technical Analyst, NICE

Outline

- Diagnostic studies basics
- Formulating diagnostic questions
- Diagnostic outcome measures
- When meta-analysis can be done
- Plots and figures
- Advanced techniques

Diagnostic studies – re-cap

- Effective medical treatment usually depends on accurately diagnosing a patient's condition
 - Tests can take many forms
- The purpose of a diagnostic test is to perform a specific <u>function</u>, in a specific <u>population</u> that is believed to have a specific <u>condition</u>

Uses of diagnostic tests

- Diagnostic tests subserve one of 5 functions
 - Screening test
 - Routine test
 - Test used to establish a diagnosis
 - Staging test
 - Monitoring test

Formulating diagnostic questions

- Similar to the well known PICO model
 - Population
 - Index test
 - Reference test
 - Outcome

The 2 x 2 table

For each study:

	Reference test +ve (disease/condition present)	Reference test –ve (disease or condition absent)
Index test +ve	True positive (TP)	False positive (FP)
Index test -ve	False negative (FN)	True negative (TN)

True positives = known patients
False negatives = 'stealth' patients

False positives = stigmatised people
True negatives = relieved people

Summary measures

- Paired (and related) measures
 - Sensitivity & specificity
 - PPV & NPV
 - Likelihood ratios (for positive & negative test)
- Single measures
 - Diagnostic odd ratios (DORs)
 - Area under the curve (AUC) of summary Receiver
 Operating Characteristics (sROC) plots

Summary measures (contd)

	Reference test +ve	Reference test -ve	Total	
Index test +ve	TP	FP	TP + FP 🛑	PPV = TP/TP + FP
Index test -ve	FN	TN	FN + TN 🛑	NPV = TN/FN + TN
Total	TP + FN	FP + TN	TP+FP+FN+TN	
	Sensitivity TP/TP + FN	Specificity TN/FP + TN		

LR for positive test result = [TP/(TP+FN)]/[FP/(FP+TN)] = sensitivity/(1-specificity)

LR for negative test result = [FN/(FN+TP)]/[TN/(TN+FP)] = (1-sensitivity)/specificity

What do they really mean?

For example, sensitivity = 95% and Specificity = 99%.

Sensitivity of 95% means that of those with disease, 95% tested positive and 5% tested negative (i.e. 5% had a false negative result).

Specificity of 99% means that of those without disease, 99% tested negative and 1% tested positive (i.e. 1% had a false positive result).

For example, PPV = 93% and NPV = 90%

PPV of 83% means that 83% of those with a positive test have the disease/condition

NPV of 90% means that 90% of those with a negative test result do not have disease

- Note that
 - A sensitive test is a good 'rule out' test (Snout)
 i.e. a negative result of a sensitive test is likely to indicate no disease (low FN rate)
 - A specific test is a good 'rule in' test (Spin)
 i.e. a positive test result of a specific test is likely to indicate disease (low FP rate)
 - predictive values vary highly with disease prevalence therefore should not be pooled in a meta-analysis

Likelihood ratios

- Positive and negative likelihood ratios describe the discriminatory properties of positive and negative tests
- How much more likely particular test results are in patients with disease than in those without disease

```
LR+ >10 and LR- <0.1</li>
```

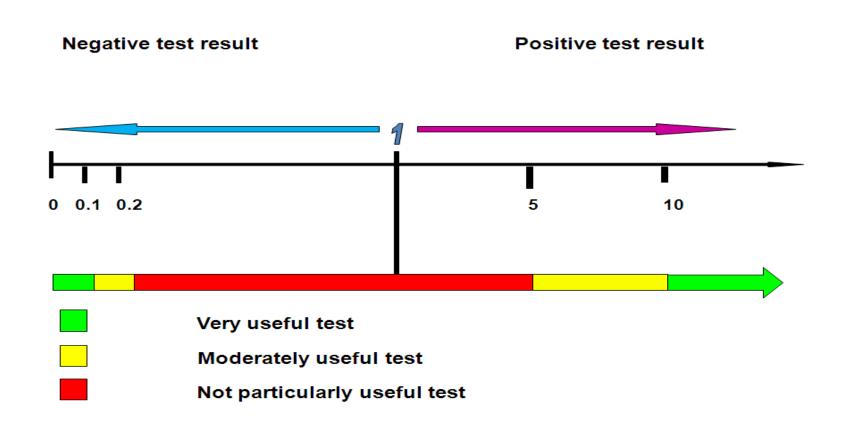
LR+ 5-10 and LR- 0.1-0.2

LR+ 2-5 and LR- 0.2-0.5

– LR+ 1-2 and LR- 0.5-1

conclusive evidence

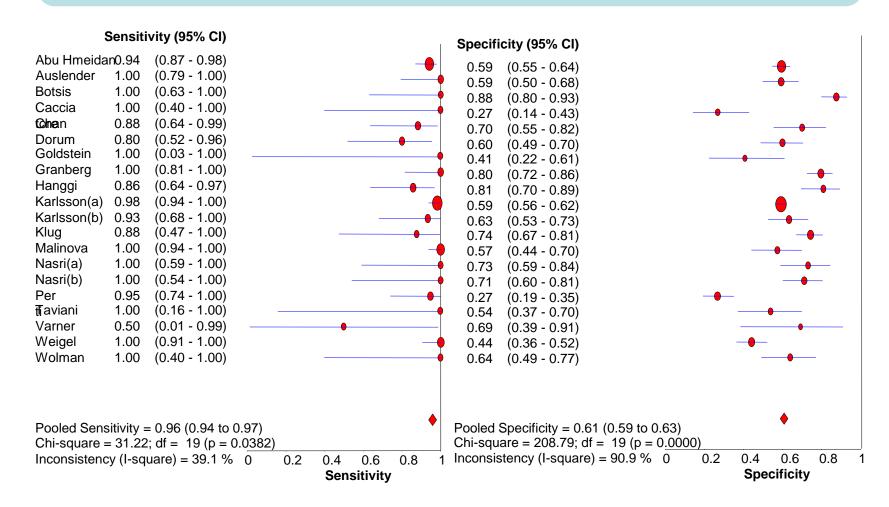
strong diagnostic evidence


weak diagnostic evidence

negligible evidence

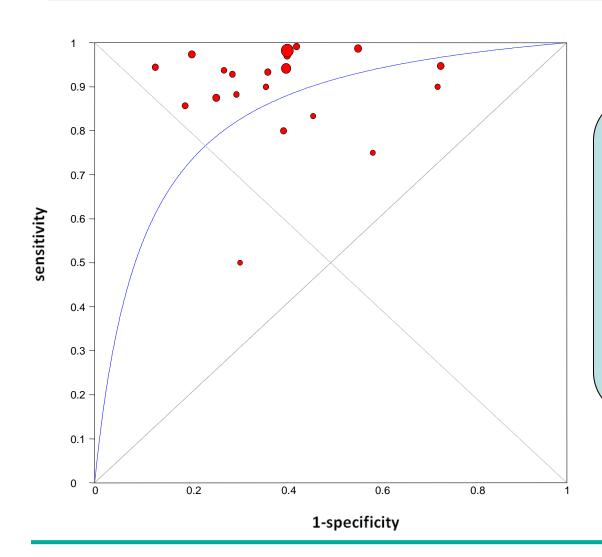
(Jaeschke 1994)

Interpreting Likelihood ratios


Meta-analysis?

- 2 or more clinically similar studies
 - spectrum
 - thresholds
- Fixed effects model vs random effects model
 - FEM all studies detect the underlying common effect
 - REM heterogeneity between studies
 - If presence of clinical or statistical heterogeneity use REM
 - If in doubt use REM

Forest plot



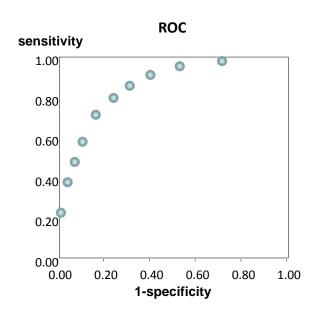
Heterogeneity

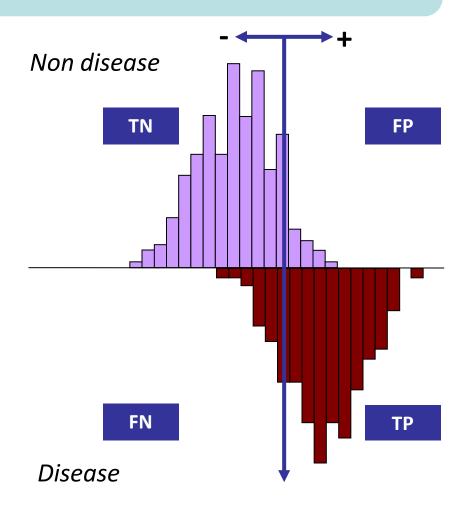
- Heterogeneity is present if:
 - Chi square p <0.05
 - $l^2 > 33\%$
- I² >66% = significant heterogeneity
- Sources of heterogeneity:
 - Study design and conduct
 - Population spectrum
 - Test technology/execution
 - Chance

ROC Curve

Area Under the Curve (AUC)

Ranges between 0.5 - 1


The greater the better

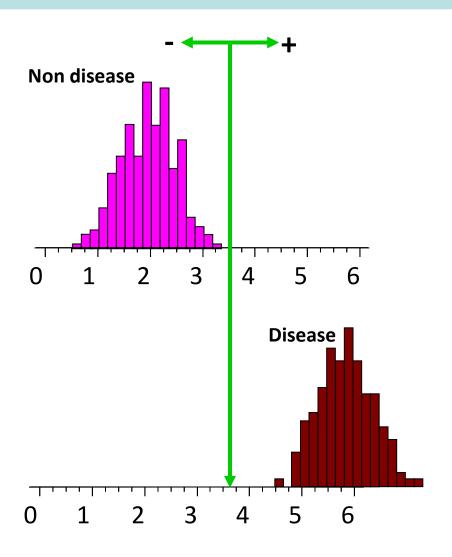

Unuseful test AUC = 0.5

Perfect test AUC = 1

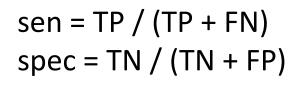
Summary ROC plot

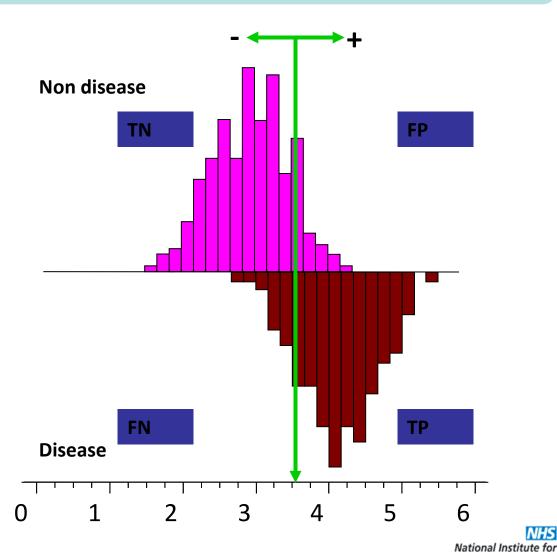
Statistical packages

- Simple to use and freely available
 - Meta-DiSc
 - RevMan
 - Meta-Analyst
- Packages requiring more skills
 - -R
 - SAS
 - STATA
 - Win-bugs


Pooling sensitivity and specificity

- Sensitivity and specificity are
 - related to each other
 - affected by spectrum, but not by prevalence
- Pooling should only be done in the absence of the threshold effect
 - ROC plot
 - Tests of heterogeneity
 - Spearman correlation
- Independent pooling of sensitivity and specificity may underestimate accuracy (Shapiro 1995)


Threshold effect: What does it mean?



Threshold effect: What does it mean?

$$\downarrow$$
 sen = TP / (TP + FN)

$$\uparrow$$
 spec = **TN** / (TN + FP)

Health and Clinical Excellence

Advanced techniques

- Bivariate random effects meta-analysis
- Hierarchical summary ROC curves (HSROC)
 - allow for the relationship between sensitivity and specificity
 - recommended in by Cochrane
 - Can be performed in R, SAS, Stata, Win-bugs
 - Bivariate output from these programs can be input into RevMan to produce summary statistics and figures

In summary

- Carry-out meta-analysis with 2 or more clinically similar diagnostic studies (population and test)
- Decide on summary measures to be pooled usually sensitivity & specificity, also LRs
- Be aware of sources of heterogeneity investigate and consider subgroup analysis
- Consider bivariate meta-analysis

If choosing one summary statistic rather than another can even occasionally affect the clinical judgement of physicians reading a published article, then scrupulous attention must be paid to the use of summary statistics in the medical literature

Furrow, Taylor & Arnold 1992

Thanks for listening

Questions/discussion

