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Identifying optimal risk windows for
self-controlled case series studies of
vaccine safety
Stanley Xu,a∗† Lijing Zhang,a Jennifer C. Nelson,b,c Chan Zeng,a
John Mullooly,d David McClurea and Jason Glanza

In vaccine safety studies, subjects are considered at increased risk for adverse events for a period of time
after vaccination known as risk window. To our knowledge, risk windows for vaccine safety studies have
tended to be pre-defined and not to use information from the current study. Inaccurate specification of the
risk window can result in either including the true control period in the risk window or including some
of the risk window in the control period, which can introduce bias. We propose a data-based approach for
identifying the optimal risk windows for self-controlled case series studies of vaccine safety. The approach
involves fitting conditional Poisson regression models to obtain incidence rate ratio estimates for different risk
window lengths. For a specified risk window length (L), the average time at risk, T (L), is calculated. When
the specified risk window is shorter than the true, the incidence rate ratio decreases with 1/T (L) increasing
but there is no explicit relationship. When the specified risk window is longer than the true, the incidence rate
ratio increases linearly with 1/T (L) increasing. Theoretically, the risk window with the maximum incidence
ratio is the optimal risk window. Because of sparse data problem, we recommend using both the maximum
incidence rate ratio and the linear relationship when the specified risk window is longer than the true to
identify the optimal risk windows. Both simulation studies and vaccine safety data applications show that our
proposed approach is effective in identifying medium and long-risk windows. Copyright © 2010 John Wiley
& Sons, Ltd.

Keywords: optimal risk window; self-controlled case series; incidence rate ratio; change point; adverse events
after immunization

1. Introduction

Observational vaccine safety studies are important for determining whether particular adverse events
following immunization (AEFI) are associated with a specific vaccine [1--8]. Large linked clinical
databases have been successfully used to study associations between vaccinations and adverse events.
As an example, the Vaccine Safety Datalink (VSD) project combines eight managed care organizations
in the United States to collect vaccination and other medical data on more than 8.8 million people each
year. Information about AEFIs is derived from billing ICD-9 codes and electronic medical records of
patients. The available electronic data on this large population make it possible to study not only common
AEFIs (e.g. fever, soreness), but also rare AEFIs (e.g. death, seizures, idiopathic thrombocytopenic
purpura (ITP)). In addition, hypotheses can be generated from screening studies of multiple AEFIs
using these data.

One of the challenges in vaccine safety studies is that the vaccinated population can be very
different from the unvaccinated. To address this selection bias, a novel study design called the
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self-controlled case series (SCCS) design was developed to account for measured and unmeasured
confounders [9]. In a typical SCCS vaccine safety study, only subjects with adverse events are
included in the analysis. Subjects are considered at increased risk for adverse events for a period
of time after vaccination called the risk window. To our knowledge, risk windows for most AEFIs
in vaccine safety studies have been pre-defined, partially informed by prior studies, or by prior
hypotheses based on biological understanding of how the vaccines work, but not based on prelim-
inary exploration of data from the current study for the specific AEFIs. This approach can lead to
bias if there is little or no prior information available to characterize the risk window. In partic-
ular, a pre-specified risk window that includes the true control period will underestimate the inci-
dence rate ratio. Conversely, including a portion of the true risk window as the control period will
also underestimate the true risk due to the inflation of incidence rate in the control period. For
these reasons, it is important to define the risk window for vaccine safety studies as accurately as
possible.

This problem can be illustrated using simulated data with a known risk window (Figure 1). We
simulated vaccination and adverse event data with known risk windows (14 and 42 days) and a
known incidence rate ratio (2.0) as in Glanz et al. [10]. Then, we used conditional Poisson regression
models to obtain a set of incidence rate ratios for different risk window lengths. Figure 1 shows that
misspecification of the risk windows leads to biased estimation of the true association between a vaccine
and an adverse event. Thus, given the bias associated with risk window misspecification, it would be
useful to have a data-based statistical approach to aid in identifying the optimal risk window, one that
uses the information about the change point in data like those shown in Figure 1.

Figure 1. Estimated incidence rate ratios for different specified risk window lengths (in days) using simulated
data with a known risk window of 14 (upper panel) and 42 days (lower panel) and a true incidence rate ratio of 2.0.
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There is much work in the literature on estimating an unknown change point as in Figure 1. Methods
range from simple detection of a change in the mean of stationary, Gaussian dependent variables, to
more general approaches covering changes in conditional distributions of non-stationary, non-Gaussian,
and non-linear processes [11--15]. In addition, there is considerable literature on estimation and testing
of change points in hazard rate models [16--22]. However, none of these methods is applicable in
SCCS vaccine safety studies. First, data structure in an SCCS study is unique since only subjects who
experienced adverse events (i.e. cases) are included in the study, whereas in traditional survival analyses
the entire population (with or without adverse events) is included. Second, the underlying distribution
of adverse events in an SCCS study is non-Gaussian, hence the methods used for Gaussian variables
cannot be applied here.

In this paper we propose a data-based statistical method to identify the optimal risk window for an
SCCS study. To determine the optimal risk window for a particular vaccine we use conditional Poisson
regression models to estimate a set of incidence rate ratios by varying the specified length of the risk
window as in Figure 1. We then plot the estimated incidence rate ratios against the reciprocals of the
average time at risk to identify the length of the optimal risk window empirically. The approach is
described in detail in Section 2.

2. Statistical methods

2.1. Self-controlled case series and conditional Poisson regression

The SCCS design is a case-only method in which a subject’s follow-up period is partitioned into
mutually exclusive risk and control periods or windows. Further partitions may be needed to adjust
for time-varying covariates such as age and season. The adverse event incidence rate in the risk period
following vaccination is compared to that in the control period so that each case acts as its own control
[9, 23]. Incidence rate ratios for risk versus control periods in an SCCS study are estimated using
conditional Poisson regression models, which accounts for the within-subject dependence. Conditioning
is used to obtain a likelihood kernel in which only cases need to be sampled. As a result, intercept
parameters characterizing each subject’s baseline risk for the adverse event of interest are not present
in the likelihood kernel. This results in a de f acto adjustment for all time-invariant subject-level
risk factors and confounders (measured or not measured), allowing only within-subject comparisons
of incidence rates between the risk and control periods. This is similar to a stratified analysis with
each subject as a unique stratum. SCCS is particularly useful for controlling for confounding by
indication, where the probability of vaccination is related to the subject-level risk of the adverse
event.

Suppose we have a sample of n subjects with adverse events and that the baseline incidence rate
(I0) of an adverse event is constant over the follow-up period. For simplicity we also assume that
the incidence rate ratio is constant. Let R =exp(�) denote the incidence rate ratio for the vaccination
effect where � is the coefficient of vaccine effect. According to Farrington [9], the conditional Poisson
likelihood kernel is the product of the likelihood kernel across subjects which is of the following form
for the i th subject

Li (�,�1, . . . ,�J )=
J∏

j=1

∏
k=0,1

{
ti jk exp(� j +�k)∑J

c=1
∑

d=0,1 ticd exp(�c +�d)

}yi jk

(1)

where � j , j =1, . . . , J , are age effects, ti jk is the person-time (in days) for subject i in age group j
and risk period k, k =0 for control period and equal to 1 for risk period, and yi jk is the corresponding
number of adverse events which will be binary when the adverse event is rare. Model (1) can be easily
modified to allow for multiple risk levels in the risk window [24].

Given a pre-defined risk window, the maximum likelihood estimates of the �s and � can be obtained
using the SAS NLMIXED procedure [25] by defining the log conditional Poisson likelihood and using
the general(ll) statement. In the model (1), other time-varying covariates (e.g. seasonality) can be
included in the same way as the age effects. Recently, a semi-parametric model was developed to fit
the conditional Poisson model adjusting for age at event [26--28].
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2.2. Relationship between estimated incidence rate ratios (R(L)) and length of specified risk
windows (L)

We now derive the analytic relationship between the length of a specified risk window and the incidence
rate ratio in order to obtain an accurate estimate of the optimal risk window. With only the vaccine
effect, the maximum likelihood estimator for R is the solution of equation (2) [29, p. 36]

n1 =
n∑

i=1

Rti1

Rti1 + ti0
(2)

where n1 is the total number of adverse events in the risk period, ti1 is the person-time in risk period,
and ti0 is the person-time in control period. Note that ti1 and ti0 can be different across subjects due
to different lengths of the subjects’ follow-up periods. Let L0 be the true risk window length in days.
In addition, let L denote a specified length of the risk window from a series of possible risk window
lengths, and t ′1 be the person-time at risk in days based on L . There are three possible scenarios for
the specified risk window, L: (1) L<L0; (2) L>L0; and (3) L = L0 meaning that the specified risk
window is the same as the true risk window. There is no explicit relation between R(L) and L when
L<L0. However, when L>L0, the estimator of R based on L , called it R(L), is the solution to (3)

n′
1 =

n∑
i=1

R(L)t ′i1

R(L)t ′i1 + t ′i0
(3)

For i th subject

I0 R(L)t ′i1 = I0 Rti1 + I0(t ′i1 − ti1) (4)

Summing over the subjects gives

R(L)
n∑

i=1
t ′i1 = R

n∑
i=1

ti1 +
n∑

i=1
(t ′i1 − ti1) (5)

Further

R(L)=1+(R−1)T (L0)
1

T (L)
(6)

where T (L0)= (
∑n

i=1 ti1)/n is the average time at risk given the true risk window, L0, and T (L)=
(
∑n

i=1 t ′i1)/n is the average time at risk when the risk window is specified as L . Thus the relation
between R(L) and 1/T (L) is positive and linear when L>L0.

With both a vaccine effect and age effects � j , j =1, . . . , J , the maximum likelihood estimator for R
is the solution of equation (7) when there is one adverse event per subject [29, p. 236]

n1 =
n∑

i=1

R
∑J

j=1 ti j1 exp(� j )∑J
j=1(Rti j1 + ti j0)exp(� j )

(7)

Given a specified length of the risk window, L , for subject i and age j ,

exp(� j )I0 R(L)t ′i j1 =exp(� j )I0 Rti j1 +exp(� j )I0(t ′i j1 − ti j1) (8)

Summing over subjects and age groups gives

R(L)
n∑

i=1

J∑
j=1

t ′i j1 = R
n∑

i=1

J∑
j=1

ti j1 +
n∑

i=1

J∑
j=1

(t ′i j1 − ti j1) (9)

Further,

R(L)=1+(R−1)T (L0)
1

T (L)
(10)

where T (L0)= (
∑n

i=1
∑J

j=1 ti j1)/n is the average time at risk given the true risk window and T (L)=
(
∑n

i=1
∑J

j=1 t ′i j1)/n is the average time at risk when the risk window is L . Note that equations (10)
and (6) reveal the same relation between R(L) and L (or 1/T (L)).
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2.3. Identification of the optimal risk window

Although there is no explicit relation between R(L) and 1/T (L) when L<L0, R(L) decreases with
1/T (L) increasing because the control period will contain part of the risk period when L<L0. Theoreti-
cally, the optimal risk window is the selected risk window at which the estimated R(L) is the maximum.
However, this will not be always true when data are sparse as often seen in SCCS design of vaccine
safety studies. Thus, we propose to use both R(L) when L>L0 and RM , the maximum incidence rate
ratio, to identify the optimal risk window. We do not use R(L) when L<L0 because there is no explicit
relationship between R(L) and 1/T (L). Additionally, there is more volatility in R(L) estimation when
L<L0 because fewer cases in true risk window are included as supposed in the analysis.

First, fit a series of conditional Poisson regression models with different specified risk window lengths
(L). Time-varying covariates such as age effects can be included. A set of R(L)s is thus obtained in
this step. Usually, one would choose a sufficient number of Ls both shorter and longer than L0 (the
unknown true risk window), so that an accurate optimal risk window length can be identified. Then,
plot R(L) against 1/T (L) and visualize their relation. Next identify the risk window (L M ) with the
maximum incidence rate ratio. If the plot shows an approximate linear relationship between R(L) and
1/T (L) when L>L M , then L M is the optimal empirical risk window. If not, then identify the region
where the estimated incidence rate ratios R(L) and 1/T (L) have a linear relationship and find the
decreasing change point. The value of L at this change point represents the optimal risk window length.
One can then use this identified risk window length to calculate the corresponding R. This change point
may not be one with RM due to the volatility of data, especially when L<L0. Note that T (L) is the
average time at risk. It is the same as L only when censoring occurs after the specified risk window
for all subjects.

3. Simulation study and results

3.1. Simulation

The purpose of our simulation study was to evaluate the accuracy and precision of our proposed
approach for identifying the optimal risk window under a variety of plausible vaccine safety study
settings. We simulated data with true risk windows of 14 and 42 days representing medium (e.g. for
gastritis/duodenitis in influenza vaccine safety studies) and long (e.g. for ITP) post-vaccination risk
windows, respectively. In particular, each subject has a follow-up period of 365 days, which consists
of both risk and control periods. Typically, there are three periods for each subject: the control period
before vaccination, the risk period after vaccination, and the control period after the risk period. With
age effects, the follow-up period will also be partitioned into intervals based on age groups. The
probability of having a case in each of these intervals was calculated based on the probability model
(11) similar to that described by Glanz et al. [10]

Pi jk = ti jk

1+exp(−(�0 +� j +�k))
(11)

where Pi jk is the probability of having a case, �0 is the intercept of the model which is the estimator
of baseline incidence rate (I0), � j is the age effect, � is the vaccine effect and main parameter of
interest, and exp(�) is the corresponding incidence rate ratio, k is an indicator equal to 1 for the risk
period and 0 for the control periods, and ti jk represents the amount of person-time during the interval.
The realization of an adverse event was carried out under a binary distribution assumption with the
probabilities specified in (11). The model (11) implies that the chance that an adverse event occurs in
an interval is proportional to the person-time in that interval. When �0 is small, Pi jk is much smaller
than 1.0 although multiplied by ti jk , and thus the chance for a subject to have more than one adverse
event during the entire follow-up period is extremely low.

To assess the potential application range of our approach, �0 was chosen to be −13, −14, and −15,
which results in the average number of cases ranging from seventy to several hundreds; � was chosen
to be zero for days 1–90 (reference group), 0.3 for days 91–270, and 0.1 for days 271–365; � was
chosen to be 0.69, 1.39, and 1.79, which represents incidence rate ratios of 2, 4, and 6, respectively.
Vaccination times were assumed to follow a normal distribution. However, we believe that the results
apply to the situations where the vaccination in-take may have a different distribution. Adverse event
dates were simulated by assuming a uniform distribution within the interval that the adverse event falls.
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One thousand data sets with a population of 5 00 000 subjects for each data set were simulated for a
variety of settings. Only those subjects with adverse events are used in SCCS analyses to identify the
optimal risk window.

3.2. Evaluation measures

For each simulated data set, we estimated a series of incidence rate ratios using conditional Poisson
regression model as in (1) by varying the length of the risk windows. We then applied the proposed
approach to identify the optimal risk window. In each simulated data set, we call the specified risk
window with the maximum R(L), L M , the optimal risk window because it was not feasible to examine
1000 plots for each combination of simulation parameters. Although this is not as ideal as examining
each plot, we found the average estimated risk windows to be close to the truth in simulations. We
evaluated our proposed statistical method by computing type I error rates, the mean of the estimated
optimal risk windows and its standard deviation from 1000 data sets for each setting, and the percent
bias from the true risk window.

3.2.1. Type I error rates. Under the null (i.e. with no risk window and �=0), the type I error rate
is defined as the proportion of simulated data sets in which we identify (1) a positive linear relation
between R(L) and 1/T (L) when L�L M , where L M is the specified length of risk window with
maximum R(L); and (2) an apparent point at which visually the increasing trend of R(L) changes by
examining the plots of R(L) versus 1/T (L) after a positive linear relation is identified between R(L)
and 1/T (L) when L�L M .

3.2.2. Mean and standard deviation of the estimated optimal risk windows. The mean of the esti-
mated optimal risk windows is calculated as the average of the 1000 estimates of the optimal risk
windows. The standard deviation of the optimal risk windows is the standard deviation of the 1000
estimates of the optimal risk windows. The standard deviation was used to evaluate the precision of the
approach.

3.2.3. Percent bias. The percent bias from the truth was used to evaluate the accuracy of our approach
and was calculated as follows:

Percent bias= mean estimate− true

true
×100

A negative percent bias implies underestimation of the true value and a positive percent bias represents
overestimation. We also provided analogous measures for the incidence rate ratio estimate e�, the main
quantity of interest of a vaccine safety study after an optimal risk window is identified.

3.3. Simulation results

The type I error rates for falsely detecting a risk window when there truly is no elevated risk during
the follow-up period are 4.3, 5.5, and 6.0 per cent for �0 =−13, −14, and −15, respectively. The
average number of cases in our simulations ranges from 70 to 817 (Table I). The total number of cases
is primarily influenced by the value of �0. Table I also shows the estimated risk window lengths and
incidence rate ratios (and their standard deviations) for each simulation setting. For the medium risk
window length (14 days), our approach produced mean percent bias of −5.7 to 5.0 per cent compared
with the true risk window lengths, which represents a one day difference at most. Using the identified
optimal risk window, the mean percent bias of R ranged from −2.5 to 15.0 per cent compared with
the true incidence rate ratios. For the longer risk window length (42 days), our approach produced
mean percent bias of −2.1 to 3.3 per cent, and −5.0 to 10 per cent, respectively, for the risk window
lengths and the incidence rate ratios. For risk windows 14 and 42 days, the standard deviations of
the estimated risk window lengths and relative incidence ratios increased with baseline incidence rates
decreasing. The standard deviations of the risk window length decreased with true relative incidence
ratios increasing.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 742--752
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Table I. Average number of cases (n̄), mean optimal risk window length (standard deviation), and incidence
rate ratios (standard deviation) by different true risk window lengths, intercept (�0), and incidence rate
ratios from 1000 simulated data sets.

True L0 (in days) True R �0 n̄ Estimated L0 (std) Estimated R (std)

14 2.0 −13 517 13.5 (5.5) 2.1 (0.3)
−14 189 13.2 (7.8) 2.2 (0.6)
−15 70 13.4 (8.3) 2.3 (0.9)

4.0 −13 560 13.2 (3.4) 3.9 (0.5)
−14 206 13.9 (4.2) 3.9 (0.8)
−15 72 14.7 (6.2) 4.1 (1.3)

6.0 −13 606 13.3 (2.4) 6.0 (0.6)
−14 223 13.4 (3.3) 5.9 (1.0)
−15 81 14.5 (4.6) 6.0 (1.6)

42 2.0 −13 559 45.4 (8.2) 2.0 (0.2)
−14 205 45.3 (9.5) 2.0 (0.3)
−15 75 43.9 (11.9) 2.2 (0.6)

4.0 −13 688 45.1 (1.6) 3.8 (0.3)
−14 252 44.9 (2.7) 3.9 (0.5)
−15 92 43.1 (5.4) 4.1 (0.9)

6.0 −13 817 42.0 (0.3) 6.0 (0.5)
−14 300 41.8 (1.2) 6.1 (0.8)
−15 110 41.1 (3.4) 6.3 (1.3)

4. Examples

As an example, our proposed approach was applied to identify the optimal risk window length for a
study of the association between measles–mumps–rubella (MMR) vaccination and ITP among children
aged 12–23 months in the United Kingdom (U.K.) by Miller et al. [30]. The data were later updated
in an SCCS tutorial by Whitaker et al. [26]. Thirty-five children were admitted to the hospital for
ITP at least once and six were admitted more than once during the follow-up period. The risk period
was defined to start immediately after MMR vaccination. The control period was defined as the time
period before receipt of MMR plus the period after the specified risk window. In the tutorial, six age
groups were used for a parametric model: 366–426 days, 427–487 days, 488–548 days, 549–609 days,
610–670 days, and 671–730 days. We used the same age groups and increased the length of the risk
window by seven-day increment to obtain a set of incidence rate ratios. The upper panel of Figure 2
shows how the estimated incidence rate ratio for ITP changes in the presence of age effects when
different risk window lengths are specified. The maximum incidence rate ratio is 3.28 (p-value=0.002)
when L =77 days. There is an approximate linear relationship between R(L) and 1/T (L) when L>L M .
Based on our method, it therefore appears that 77 days after vaccination is the empirically optimal risk
window.

Because misspecification of the age groups can produce biased estimation of the association of
ITP with MMR, we also used a semi-parametric model [26--28], in which the age effects were left
unspecified, to obtain a set of incidence rate ratios. A corresponding plot R(L) versus 1/T (L) is
displayed in the lower panel of Figure 2 . Again, a risk window of 77 days after vaccination is suggested.
The corresponding incidence rate ratio is 3.03 (p-value=0.006).

France et al. [31] also examined the association between MMR vaccination and ITP. Among a
U.S. pediatric population and using a 42-day risk window after MMR vaccination, they found an
incidence rate ratio of 7.06 for those vaccinated between 366 and 690 days. They excluded the 42-
day healthy period immediately preceding MMR vaccination. We applied our approach to these U.S.
MMR–ITP data but included all subjects with follow-up 366–730 days regardless of vaccination status
and without excluding the healthy period before MMR vaccination. We used the same parametric and
semi-parametric conditional Poisson regression models as in the prior example to estimate incidence
rate ratios for a set of specified risk window lengths. For the parametric method, the maximum incidence
rate ratio is 7.47 (p-value<0.0001) when L =35 days. However, the incidence rate ratio only changed
slightly (7.41, p-value<0.0001) when L =42 days. From a vaccine safety point view, a risk window
of 42 days is preferred as used by France et al. [31] (Figure 3). For the semi-parametric method, the
maximum incidence rate ratio is 7.16 (p-value<0.0001) when L =42 days and there is an approximate
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Figure 2. Estimated incidence rate ratios (R(L)) for different values of 1/T (L) in the U.K. MMR–ITP data
where R(L)s are estimated using a parametric (upper panel) and semi-parametric (lower panel) model.

linear relationship between R(L) and 1/T (L) when L>L M . We conclude that the optimal risk window
for the U.S. MMR–ITP data is 42 days after MMR vaccination.

5. Discussion

Accurately defining the risk window length is an important step when conducting vaccine safety studies.
Traditionally, risk windows are defined a priori and sometimes using arbitrary criteria. However,
misspecifying the risk window length can lead to bias of vaccine risk estimates. Our data-based method
can effectively identify the optimal lengths for medium and long risk windows. Additionally, time-
varying covariates can be accommodated simply by including them in conditional Poisson regression
models. Our theoretical work and data application also showed that this approach is robust to misspec-
ification of age effects. Because the proposed method relies on choosing L>L0, it does require some
advance knowledge of the order of magnitude of L0, which may be available from previous studies
or biological understanding of how the vaccines work (e.g. 14 days as the risk window for influenza
vaccine studies [6, 7]). In addition to vaccine safety studies, our approach can also be used to identify
the optimal risk window in vaccine effectiveness studies (i.e. when the vaccine effects are protective).
The linear relation between R(L) and 1/T (L) will be similar when L>L0 except that it will be negative
due to the protective effect.

Although theoretically it is true, the risk window with the maximum incidence ratio may not be
optimal due to sparse data problem. We recommend using both the maximum incidence rate ratio
and the linear relationship between the estimated incidence rate ratios and risk window lengths when

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 742--752
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Figure 3. Estimated incidence rate ratios (R(L)) for different values of 1/T (L) in the U.S. MMR–ITP data
where R(L)s are estimated using a parametric (upper panel) and semi-parametric (lower panel) model.

they are longer than the true risk window to identify the optimal empirical risk window length in
the following way. First, plot the estimated incidence rate ratios (R(L), either from parametric or
from non-parametric models) versus 1/T (L). Then use the simple method of identifying the risk
window (L M ) with the maximum incidence rate ratio, RM , which our simulations show performs quite
well in most circumstances. If the plot shows an approximate linear relationship when L>L M , then
L M is the optimal empirical risk window. If not, then use the change-point method (i.e. identify the
region where the estimated incidence rate ratios R(L) and 1/T (L) have a linear relationship and find
the decreasing change point). We recognize that this method provides helpful guidance but may not
find the risk window exactly. In case the two methods suggest different risk windows, one should
consider both risk windows along with biological plausibility and prior knowledge to define the risk
window.

In this paper, we assumed that the risk window began immediately after vaccination. Although most
vaccine safety studies are conducted under that assumption, in reality this may not be true. Our proposed
method can be modified to accommodate risk windows that do not start immediately after vaccination
by taking a two-step approach. First, the end of risk window can be identified under the assumption
that the risk window starts immediately after vaccination. Then by varying the start time, a series of
incidence rate ratios can be obtained. Similarly, the start time may be identified by plotting the R(L)
and 1/T (L).

One may apply smoothing techniques when there is the sawtooth variation as in Figure 2. One
commonly used method involves non-parametric estimation of regression surfaces [32, 33] which is
implemented in the SAS LOESS procedure [25]. The proper level of smoothness can be determined by
assessing the match between the predicted and observed values and examining the scatter plots of the
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fitted residuals versus 1/T (L). However, the optimal risk window length only changed slightly after
we smoothed the plots for the U.K. MMR–ITP example.

Because our approach is data-driven, the identified optimal risk window lengths may be dependent
on the given data. Thus, cross validation with a training and test data set or using a different population
(e.g. different MMR–ITP data sets) is important. However, the approach using a training and test data
set is feasible only when the number of cases is relatively large, which may not be the case for many
vaccine safety studies that involve rare adverse events. The two MMR–ITP data sets that we evaluated
resulted in two very different risk windows (77 and 42 days) and different incidence rate ratios (3.28
and 7.16 for the semi-parametric method). These differences may be due to the underlying difference
between these two populations or sampling variability. In the latter case one may choose to combine
the two populations to ensure that the optimal risk window length and the incidence rate ratio are more
broadly represented.

One limitation of our approach is that it is not suitable for short risk windows (less than seven
days) because the identified risk window lengths tend to be longer than the true risk window (data not
shown). Another limitation is that our approach gives a single incidence rate ratio for an adverse event
for the entire risk period and is not designed to identify multiple risk windows after vaccination. In
simulation studies, we only considered constant incidence rate ratio and did not study the robustness
of this approach to multiple levels of risks. However, the MMR–ITP data applications show that the
estimated optimal risk window lengths are very consistent with the visual perception. Although Miller
et al. [30] showed that the incidence rate ratios differed for 0–14, 15–28, and 29–42 days after MMR
vaccination in the U.K. data, it is also desirable to have an overall incidence rate ratio estimate and our
approach permits this. The future research should focus on how to examine the existence of multiple
risk levels within the identified optimal risk window and how to discretize and estimate the risk levels
within the identified optimal risk window.

In summary, despite some limitations, our proposed method can provide vaccine safety researchers
a useful tool to define appropriate risk windows while considering biological understanding of how
the vaccines work or information from prior studies. In addition to vaccine, our method also has the
potential to be used in safety studies of other medical products [34].
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