## **Normal Regression**

 $f(\gamma_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\frac{(\gamma_i-\mu)^2}{\sigma^2}}$ 

distribution of  $y_i$  and are willing to assume constant mean and

As written, this distribution says that each observation, y<sub>i</sub> is drawn from a normal distribution with constant mean, u and

This is only useful if all we care to model is the marginal

Let's begin with the idea that our dependent variable is normally distributed. That implies it is continuous and

## Maximum Likelihood Estimation

Charles H. Franklin franklin@polisci.wisc.edu

University of Wisconsin - Madison

Lecture 5 Normal Regression Last Modified: June 13, 2005



Maximum Likelihood Estimation - p.2/27

## **Normal Regression**

- But for a regression model, we explicitly reject this assumption. We assume that the mean of y<sub>i</sub> varies, and we wish to model this variation in the mean.
- Assume  $y_i$  is distributed normally:

$$f(\boldsymbol{y}_i|\boldsymbol{\mu}_i,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{1}{2}\frac{(\boldsymbol{y}_i-\boldsymbol{\mu}_i)^2}{\sigma^2}}$$

- The only notational change is to add a subscript *i* to  $\mu$ . But substantively, this changes everything. Now each observation is drawn from a *different* normal distribution with a common variance but with a unique mean,  $\mu_i$ .
- It may not be obvious, but the elemental substance has just impacted the rotating blade.

## **Identification**

What is the problem with this model?

unbounded.

variance.

W

constant variance.  $\sigma^2$ .

- There are now N + 1 parameters to be estimated from N observations!
- So if we draw  $y_1 = 200$  and  $y_2 = -50$ , we cannot know if this is because both draws are from a distribution with mean 75 and standard deviation 125, which would make both observations pretty likely, OR if  $y_1$  comes from a distribution with mean 199 and standard deviation 1, while  $y_2$  is drawn from a normal with mean -49 and standard deviation 1.



Maximum Likelihood Estimation - p.1/27

#### Reparameterization Identification Things are even worse for estimating the variance. Since $\mu_i$ If it is substantively reasonable to do so, we can ٩ reparameterize $\mu_i$ in terms of a small number of new varies from observation to observation, the sample variance parameters and some observed exogenous variables. confounds variation in $\mu_i$ with the common variance of the distributions, $\sigma^2$ . There is no way to disentangle these For example, $\mu_i = x_i\beta$ , where $x_i$ is a $1 \times k$ vector and $\beta$ is sources of variation. $k \times 1$ . While $\mu_i$ may be identified (trivially), as $\mu_i = y_i$ , it is not In this way, we reduce the *n* parameters of $\mu_i$ into a mere k possible to identify the variance parameter, $\sigma^2$ . parameters in $\beta$ . Yet the alternative to this specification, claiming that all observations have a common mean, is equally unappealing for it homogenizes everything, allowing for no meaningful differences, only chance variation. Maximum Likelihood Estimation - p.5/27 Maximum Likelihood Estimation - p.6/27 Reparameterization Reparameterization **J** The trick, of course, is in replacing unexplained variation in $\mu_i$ The invariance property of ML estimators makes this possible. with observed exogenous variables and a small number of If we estimate $\hat{\beta}$ and from this $\hat{\mu}_i = x_i \hat{\beta}$ then $\hat{\mu}_i$ is also the ML parameters. estimator of $\mu_i$ by the invariance property. By observing variation in $x_i$ , and by linking this variation to Does this reparameterization make substantive sense? variation in $\mu_i$ , we are able to allow each observation to be Because the mean of a normal is unbounded and continuous. drawn from a distribution with a unique mean. the linear function of $x_i$ is appropriate. Unlike before, however, now we can explain this variation in If $\mu_i$ were a priori known to be positive, then this would not be terms of other, observable, characteristics. a very good choice of parameterization, since for a sufficiently negative value of $x_i$ , the function $x_i\beta$ would also be negative, implying a value of $\mu_i$ outside its a priori range. If the normal distribution makes sense, then there is little . reason to believe that $\mu_i$ should have a restricted range. Hence the reparameterization makes sense.





## **Normal Regression**

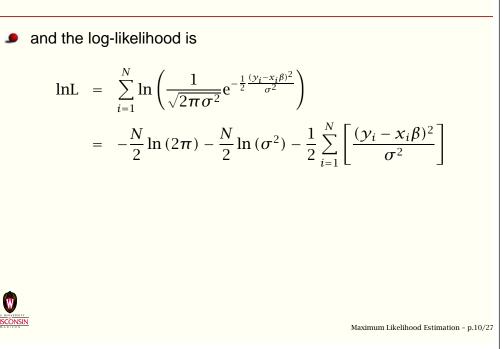
The distribution for each case now becomes:

$$\mathcal{Y}_i \sim \frac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-\frac{1}{2} \frac{(\mathcal{Y}_i - x_i\beta)^2}{\sigma^2}}$$

The likelihood for the sample is

$$L(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\beta},\sigma^2) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} \frac{(\boldsymbol{y}_i - \boldsymbol{x}_i \boldsymbol{\beta})^2}{\sigma^2}}$$

# **Normal Regression**



# Finding the ML Estimator

- In this case, we can find a closed form solution for the parameters ( $\beta$ ,  $\sigma^2$ ).
- First, rewrite the sum of the log-likelihood in matrix form:

$$\begin{aligned} \ln \mathcal{L}(\boldsymbol{y} | \boldsymbol{x}, \boldsymbol{\beta}, \boldsymbol{\sigma}^2) &= -\frac{N}{2} \ln \left( 2\pi \right) - \frac{N}{2} \ln \left( \boldsymbol{\sigma}^2 \right) \\ &- \frac{1}{2} \left[ \frac{(\mathbf{y} - \mathbf{x} \boldsymbol{\beta})' (\mathbf{y} - \mathbf{x} \boldsymbol{\beta})}{\boldsymbol{\sigma}^2} \right] \end{aligned}$$

where  $\mathbf{y}$  is an  $N \times 1$  vector and  $\mathbf{x}$  is a  $N \times k$  matrix.

 (You should study this formula until you convince yourself that this actually is the expression for the sum of the log-likelihood.)

# Finding the ML Estimator

• Expanding the numerator of the last term, and moving the scalar  $\sigma^2$  out front gives

$$nL(\boldsymbol{y}|\boldsymbol{x},\boldsymbol{\beta},\sigma^{2}) = -\frac{N}{2}\ln(2\pi) - \frac{N}{2}\ln(\sigma^{2}) \\ -\frac{1}{2\sigma^{2}}[\boldsymbol{y}'\boldsymbol{y} - 2\boldsymbol{\beta}'\boldsymbol{x}'\boldsymbol{y} + \boldsymbol{\beta}'\boldsymbol{x}'\boldsymbol{x}\boldsymbol{\beta}]$$

Now take the derivative of this sum of the log-likelihood to get

$$\frac{\partial \ln \mathbf{L}}{\partial \beta} = -\frac{1}{2\sigma^2} \left[ \frac{\partial [\mathbf{y}'\mathbf{y} - 2\beta'\mathbf{x}'\mathbf{y} + \beta'\mathbf{x}'\mathbf{x}\beta]}{\partial \beta} \right]$$



Maximum Likelihood Estimation - p.9/27



# Finding the ML Estimator

• Remember that  $\beta$  is a vector, and apply the rules for matrix differentiation to get

$$\frac{\partial \ln \mathbf{L}}{\partial \boldsymbol{\beta}} = -\frac{1}{2\sigma^2} \left[ -2\mathbf{x}'\mathbf{y} + 2\mathbf{x}'\mathbf{x}\boldsymbol{\beta} \right]$$

After factoring the -2 and cancelling, we have

$$\frac{\partial \ln \mathbf{L}}{\partial \boldsymbol{\beta}} = \frac{1}{\sigma^2} \left[ \mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \boldsymbol{\beta} \right]$$

# Finding the ML Estimator

Set this equal to zero, and the rest is easy:

 $\frac{1}{\sigma^2}$ 

$$\frac{1}{2} [\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \boldsymbol{\beta}] = 0$$
$$\mathbf{x}' \mathbf{x} \boldsymbol{\beta} = \mathbf{x}' \mathbf{y}$$
$$\hat{\boldsymbol{\beta}} = (\mathbf{x}' \mathbf{x})^{-1} \mathbf{x}' \mathbf{y}$$

And this is, of course, the familiar formula for an OLS coefficient vector. As I promised, OLS and ML give the same estimator for the coefficients.

# Finding the ML Estimator

What about the variance,  $\sigma^2$ ? Take the derivative of the log-likelihood wrt  $\sigma^2$ :

$$\frac{\partial \ln \mathbf{L}}{\partial \sigma^2} = -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \left[ (\mathbf{y} - \mathbf{x}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{x}\boldsymbol{\beta}) \right]$$

Setting this to zero and carrying out the algebra gives:

$$\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \left[ (\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta) \right] = 0$$
$$\frac{1}{2\sigma^4} \left[ (\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta) \right] = \frac{N}{2\sigma^2}$$
$$\frac{1}{\sigma^2} \left[ (\mathbf{y} - \mathbf{x}\beta)'(\mathbf{y} - \mathbf{x}\beta) \right] = N$$

## Finding the ML Estimator

Since we've solved for  $\hat{\beta}$  we can solve this for  $\sigma^2$  by replacing  $\beta$  with its estimate:

$$\frac{1}{\sigma^2} \left[ (\mathbf{y} - \mathbf{x}\hat{\beta})'(\mathbf{y} - \mathbf{x}\hat{\beta}) \right] = N$$
$$\frac{1}{\sigma^2} \left[ (\mathbf{y} - \hat{\mathbf{y}})'(\mathbf{y} - \hat{\mathbf{y}}) \right] = N$$
$$\frac{1}{\sigma^2} \left[ \mathbf{e}' \mathbf{e} \right] = N$$
$$\hat{\sigma}^2 = \frac{\mathbf{e}' \mathbf{e}}{N}$$

• Which is NOT the OLS solution, but which is clearly asymptotically equivalent  $(\hat{\sigma}_{ols}^2 = \frac{\mathbf{e'e}}{N-k})$ .

Maximum Likelihood Estimation - p.13/27

Maximum Likelihood Estimation - p.14/27

### Variance-Covariance Matrix

• We can also find the Hessian for this model by taking second derivatives. Let  $\theta' = [\beta' \sigma^2]$ . Then

$$\frac{\partial \ln \mathbf{L}}{\partial \theta} = \begin{bmatrix} \frac{1}{\sigma^2} \left[ \mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \boldsymbol{\beta} \right] \\ -\frac{N}{2\sigma^2} + \frac{1}{2\sigma^4} \left[ \left( \mathbf{y} - \mathbf{x} \boldsymbol{\beta} \right)' \left( \mathbf{y} - \mathbf{x} \boldsymbol{\beta} \right) \right] \end{bmatrix}$$

is a  $(k+1) \times 1$  vector.

• We now want the derivative of this vector, wrt  $\theta'$ , which will produce a  $(k + 1) \times (k + 1)$  matrix, namely the Hessian.

# Variance-Covariance Matrix

٩

$$\frac{\partial^2 \ln \mathbf{L}}{\partial \theta \partial \theta'} = \begin{bmatrix} -\frac{1}{\sigma^2} \mathbf{x}' \mathbf{x} & -\frac{1}{\sigma^4} [\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \beta] \\ -\frac{1}{\sigma^4} [\mathbf{x}' \mathbf{y} - \mathbf{x}' \mathbf{x} \beta] & \frac{N}{2\sigma^4} - \frac{1}{\sigma^6} [(\mathbf{y} - \mathbf{x} \beta)' (\mathbf{y} - \mathbf{x} \beta)] \end{bmatrix}$$

- Check the dimensions of each submatrix and be sure you understand why they are as they are.
- The last row and last column are less familiar, representing the covariance of  $\sigma^2$  with each element in  $\beta$  and the variance of the estimate of  $\sigma^2$ .

Maximum Likelihood Estimation - p.17/27

# The Information Matrix

• The information matrix is the negative of the expected value of the Hessian. Taking x as fixed and using the fact that  $E(y) = x\beta$  so  $E(x'y - x'x\beta) = 0$ , we can find the expected value:

$$I(\theta) = -E[H(\theta)]$$
  
=  $-\begin{bmatrix} -\frac{1}{\sigma^2}\mathbf{x}'\mathbf{x} & 0\\ 0 & -\frac{N}{2\sigma^4} \end{bmatrix}$ 

## The Information Matrix

The inverse of the information matrix is the variance covariance matrix of the ML parameter estimates, which in this case is simply

$$I(\theta)^{-1} = \begin{bmatrix} \sigma^2(\mathbf{x}'\mathbf{x})^{-1} & 0\\ 0 & \frac{2\sigma^4}{N} \end{bmatrix}$$





Maximum Likelihood Estimation - p.18/27

| Recap                                                                                                                                                                                                                                                                      | Recap                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>We can write the normal regression model, which we usually estimate via OLS, as a ML model.</li> <li>Write down the log-likelihood</li> <li>Take derivatives wrt the parameters</li> <li>Set the derivatives to zero</li> <li>Solve for the parameters</li> </ul> | <ul> <li>We get an estimator of the coefficient vector which is identical to that from OLS.</li> <li>The ML estimator of the variance, however, is different from the least squares estimator. The reason for the difference is that the OLS estimator of the variance is unbiased, while the ML estimator is biased but consistent. In large samples, as assumed by ML, the difference is insignificant.</li> </ul> |
| Maximum Likelihood Estimation - p.21/27                                                                                                                                                                                                                                    | Maximum Likelihood Estimation - p.22/27                                                                                                                                                                                                                                                                                                                                                                              |
| Recap                                                                                                                                                                                                                                                                      | Inference                                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Finally, we can apply the formula for the information matrix to get the variance-covariance matrix of the ML parameters.</li> <li>This turns out to give the familiar formula for the</li> </ul>                                                                  | <ul> <li>Since the parameter estimates are all MLEs, they are all asymptotically normally distributed.</li> <li>The square root of the diagonal elements of the inverse of the</li> </ul>                                                                                                                                                                                                                            |
| variance-covariance matrix of the parameters, $\sigma^2(\mathbf{x}'\mathbf{x})^{-1}$                                                                                                                                                                                       | information matrix gives us estimates of the standard errors of the parameter estimates.                                                                                                                                                                                                                                                                                                                             |
| In and a simple, if unfamiliar expression for the variance of $\hat{\sigma}^2$ .                                                                                                                                                                                           | We can construct a simple z-score to test the null hypothesis concerning any individual parameter, just as in OLS, but using the normal instead of the t-distribution.                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                    |





## Inference

- Though we have not yet developed it, we can also construct a likelihood ratio test for the null hypothesis that all elements of  $\beta$  except the first are zero.
- This corresponds to the F-test in a least squares model, a test that none of the independent variables have an effect on y.

# Using the ML Normal Regression

- So should you now use this to estimate normal regression models?
- No, of course not!
- Because OLS is unbiased regardless of sample size.
- There is an enormous amount of software available to do OLS.
- Since the ML and OLS estimates are asymptotically identical, there is no gain in switching to ML for this standard problem.



Maximum Likelihood Estimation - p.25/27

## Not a waste of time!

- Now seen a fully worked, non-trivial, application of ML to a model you are already familiar with.
- But there is a much better reason to understand the ML model for normal regression:
- Once the usual assumptions no longer hold, ML is easily adapted to the new case, something that cannot be said of OLS.

