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Normal Regression

Let’s begin with the idea that our dependent variable is
normally distributed. That implies it is continuous and
unbounded.

f(yi|µ,σ 2) = 1√
2πσ 2

e
− 1

2

(yi−µ)2
σ2

As written, this distribution says that each observation, yi is
drawn from a normal distribution with constant mean, µ and
constant variance, σ 2.

This is only useful if all we care to model is the marginal
distribution of yi and are willing to assume constant mean and
variance.
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Normal Regression

But for a regression model, we explicitly reject this
assumption. We assume that the mean of yi varies, and we
wish to model this variation in the mean.

Assume yi is distributed normally:

f(yi|µi, σ 2) = 1√
2πσ 2

e
− 1

2

(yi−µi)2
σ2

The only notational change is to add a subscript i to µ. But
substantively, this changes everything. Now each observation
is drawn from a different normal distribution with a common
variance but with a unique mean, µi.

It may not be obvious, but the elemental substance has just
impacted the rotating blade.
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Identification

What is the problem with this model?

There are now N + 1 parameters to be estimated from N
observations!

So if we draw y1 = 200 and y2 = −50, we cannot know if this
is because both draws are from a distribution with mean 75
and standard deviation 125, which would make both
observations pretty likely, OR if y1 comes from a distribution
with mean 199 and standard deviation 1, while y2 is drawn
from a normal with mean −49 and standard deviation 1.
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Identification

Things are even worse for estimating the variance. Since µi
varies from observation to observation, the sample variance
confounds variation in µi with the common variance of the
distributions, σ 2. There is no way to disentangle these
sources of variation.

While µi may be identified (trivially), as µi = yi, it is not
possible to identify the variance parameter, σ 2.

Yet the alternative to this specification, claiming that all
observations have a common mean, is equally unappealing for
it homogenizes everything, allowing for no meaningful
differences, only chance variation.
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Reparameterization

If it is substantively reasonable to do so, we can
reparameterize µi in terms of a small number of new
parameters and some observed exogenous variables.

For example, µi = xiβ, where xi is a 1× k vector and β is
k× 1.

In this way, we reduce the n parameters of µi into a mere k
parameters in β.
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Reparameterization

The trick, of course, is in replacing unexplained variation in µi
with observed exogenous variables and a small number of
parameters.

By observing variation in xi, and by linking this variation to
variation in µi, we are able to allow each observation to be
drawn from a distribution with a unique mean.

Unlike before, however, now we can explain this variation in
terms of other, observable, characteristics.
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Reparameterization

The invariance property of ML estimators makes this possible.
If we estimate β̂ and from this µ̂i = xiβ̂ then µ̂i is also the ML
estimator of µi by the invariance property.

Does this reparameterization make substantive sense?
Because the mean of a normal is unbounded and continuous,
the linear function of xi is appropriate.

If µi were a priori known to be positive, then this would not be
a very good choice of parameterization, since for a sufficiently
negative value of xi, the function xiβ would also be negative,
implying a value of µi outside its a priori range.

If the normal distribution makes sense, then there is little
reason to believe that µi should have a restricted range.
Hence the reparameterization makes sense.
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Normal Regression

The distribution for each case now becomes:

yi ∼ 1√
2πσ 2

e
− 1

2

(yi−xiβ)2
σ2

The likelihood for the sample is

L(y|x,β,σ 2) =
N∏
i=1

1√
2πσ 2

e
− 1

2

(yi−xiβ)2
σ2
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Normal Regression

and the log-likelihood is

lnL =
N∑
i=1

ln

(
1√

2πσ 2
e
− 1

2

(yi−xiβ)2
σ2

)

= −N
2

ln (2π)− N
2

ln (σ 2)− 1

2

N∑
i=1

[
(yi − xiβ)2

σ 2

]
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Finding the ML Estimator

In this case, we can find a closed form solution for the
parameters (β,σ 2).

First, rewrite the sum of the log-likelihood in matrix form:

lnL(y|x,β,σ 2) = −N
2

ln (2π)− N
2

ln (σ 2)

−1

2

[
(y− xβ)′(y− xβ)

σ 2

]

where y is an N × 1 vector and x is a N × k matrix.

(You should study this formula until you convince yourself that
this actually is the expression for the sum of the log-likelihood.)
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Finding the ML Estimator

Expanding the numerator of the last term, and moving the
scalar σ 2 out front gives

lnL(y|x,β,σ 2) = −N
2

ln (2π)− N
2

ln (σ 2)

− 1

2σ 2
[y′y− 2β′x′y+ β′x′xβ]

Now take the derivative of this sum of the log-likelihood to get

∂lnL

∂β
= − 1

2σ 2

[
∂[y′y− 2β′x′y+ β′x′xβ]

∂β

]
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Finding the ML Estimator

Remember that β is a vector, and apply the rules for matrix
differentiation to get

∂lnL

∂β
= − 1

2σ 2
[−2x′y+ 2x′xβ]

After factoring the −2 and cancelling, we have

∂lnL

∂β
= 1

σ 2
[x′y− x′xβ]
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Finding the ML Estimator

Set this equal to zero, and the rest is easy:

1

σ 2
[x′y− x′xβ] = 0

x′xβ = x′y

β̂ = (x′x)−1x′y

And this is, of course, the familiar formula for an OLS
coefficient vector. As I promised, OLS and ML give the same
estimator for the coefficients.

Maximum Likelihood Estimation – p.14/27

Finding the ML Estimator

What about the variance, σ 2? Take the derivative of the
log-likelihood wrt σ 2:

∂lnL

∂σ 2
= − N

2σ 2
+ 1

2σ 4
[(y− xβ)′(y− xβ)]

Setting this to zero and carrying out the algebra gives:

− N

2σ 2
+ 1

2σ 4
[(y− xβ)′(y− xβ)] = 0

1

2σ 4
[(y− xβ)′(y− xβ)] = N

2σ 2

1

σ 2
[(y− xβ)′(y− xβ)] = N
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Finding the ML Estimator

Since we’ve solved for β̂ we can solve this for σ 2 by replacing
β with its estimate:

1

σ 2

[
(y− xβ̂)′(y− xβ̂)

]
= N

1

σ 2
[(y− ŷ)′(y− ŷ)] = N

1

σ 2
[e′e] = N

σ̂ 2 = e′e
N

Which is NOT the OLS solution, but which is clearly
asymptotically equivalent (σ̂ 2

ols = e′e
N−k ).
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Variance-Covariance Matrix

We can also find the Hessian for this model by taking second
derivatives. Let θ′ = [β′ σ 2]. Then

∂lnL

∂θ
=
[

1

σ2 [x
′y− x′xβ]

− N
2σ2 + 1

2σ4 [(y− xβ)′(y− xβ)]

]

is a (k+ 1)× 1 vector.

We now want the derivative of this vector, wrt θ′, which will
produce a (k+ 1)× (k+ 1) matrix, namely the Hessian.

Maximum Likelihood Estimation – p.17/27

Variance-Covariance Matrix

∂2lnL

∂θ∂θ′
=
[

− 1

σ2 x′x − 1

σ4 [x
′y− x′xβ]

− 1

σ4 [x
′y− x′xβ] N

2σ4 − 1

σ6 [(y− xβ)′(y− xβ)]

]

Check the dimensions of each submatrix and be sure you
understand why they are as they are.

The last row and last column are less familiar, representing the
covariance of σ 2 with each element in β and the variance of
the estimate of σ 2.
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The Information Matrix

The information matrix is the negative of the expected value of
the Hessian. Taking x as fixed and using the fact that
E (y) = xβ so E (x′y− x′xβ) = 0, we can find the expected
value:

I(θ) = −E[H(θ)]

= −
[
− 1

σ2 x′x 0

0 − N
2σ4

]

Maximum Likelihood Estimation – p.19/27

The Information Matrix

The inverse of the information matrix is the variance
covariance matrix of the ML parameter estimates, which in this
case is simply

I(θ)−1 =
[
σ 2(x′x)−1 0

0
2σ4

N

]
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Recap

We can write the normal regression model, which we usually
estimate via OLS, as a ML model.

Write down the log-likelihood

Take derivatives wrt the parameters

Set the derivatives to zero

Solve for the parameters
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Recap

We get an estimator of the coefficient vector which is identical
to that from OLS.

The ML estimator of the variance, however, is different from
the least squares estimator. The reason for the difference is
that the OLS estimator of the variance is unbiased, while the
ML estimator is biased but consistent. In large samples, as
assumed by ML, the difference is insignificant.
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Recap

Finally, we can apply the formula for the information matrix to
get the variance-covariance matrix of the ML parameters.

This turns out to give the familiar formula for the
variance-covariance matrix of the parameters, σ 2(x′x)−1

and a simple, if unfamiliar expression for the variance of σ̂ 2.
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Inference

Since the parameter estimates are all MLEs, they are all
asymptotically normally distributed.

The square root of the diagonal elements of the inverse of the
information matrix gives us estimates of the standard errors of
the parameter estimates.

We can construct a simple z-score to test the null hypothesis
concerning any individual parameter, just as in OLS, but using
the normal instead of the t-distribution.

Maximum Likelihood Estimation – p.24/27



Inference

Though we have not yet developed it, we can also construct a
likelihood ratio test for the null hypothesis that all elements of β
except the first are zero .

This corresponds to the F-test in a least squares model, a test
that none of the independent variables have an effect on y.
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Using the ML Normal Regression

So should you now use this to estimate normal regression
models?

No, of course not!

Because OLS is unbiased regardless of sample size.

There is an enormous amount of software available to do OLS.

Since the ML and OLS estimates are asymptotically identical,
there is no gain in switching to ML for this standard problem.
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Not a waste of time!

Now seen a fully worked, non-trivial, application of ML to a
model you are already familiar with.

But there is a much better reason to understand the ML model
for normal regression:

Once the usual assumptions no longer hold, ML is easily
adapted to the new case, something that cannot be said of
OLS.
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