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Data Sampling in Space and Time 
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Example: EEG data 



voxel timeseries 

Data Sampling in Time 

Example: fMRI data 



Data Sampling in Space 

Example: Pictures 



What is Data Sampling? 

- We are often interested in a continuous signal that we would like to capture and 
analyse (brain activation in time and space, 2D image, 3D object etc.) 
 

- Digital signal processing can only handle discrete numbers, i.e. vectors, matrices 
etc. 
 

- Therefore, we need to represent the continuous signal by means of representative 
samples. This is sometimes called “discretisation”. 
 

- Sampling should provide the information necessary for the intended analysis, 
while at the same time allow for efficient processing 



Basic Concepts 

- It is usually most convenient to sample equidistantly, i.e. neighbouring samples have 
the same distance to each no matter at what point of the sample they are  
 

- Sampling Rate/Frequency: How densely do we take samples? For example:  
 100 samples per second -> 100 samples/s -> 100 Hz 
 10 samples per centimetre -> 10 samples/cm 
 100 samples (“pixels”) per square centimetre -> 100 samples/cm2 

 
- Sampling Interval/Distance: How far apart are the samples (in time, space etc.)? 
 100 Hz -> (1/100)*1s = 0.01 s = 10 ms 
 10 samples/cm -> (1/10)*1 cm = 0.1 cm = 1mm 
 100 samples/cm2 = (1/100)*1 cm2 = 0.01 cm2 = (0.1*0.1) cm2 = 1 mm2 

 
- Sampling depth (quantisation): For one particular sample, how many different values 

can we separate in digital representation? 
- “2 bit”: Either 1 or 0, we can only separate 2 values (e.g. Black/White) 
- “8 bit”: 1     2    4   8   16  32  64  128  => 256 different values 
            [1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0] 

 
- Sampling range: What are the maximum/minimum values we can sample? 

 
- Resolution/precision: Range divided by depth 

For example: Range +/- 10 μV, 8 bit sampling depth => 20/256 ≈ 0.08 μV 
 



Example 



Downsampling Can Lead to “Aliasing” 
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Downsampling Can Lead to “Aliasing” 



Nyquist(-Shannon) Sampling Theorem 

If you sample a signal with a sampling rate of X Hz, make sure it does not contain 
frequencies above X/2 Hz. 
 
X/2 is the “Nyquist Frequency” (half of the sampling frequency).  
 
The largest frequency in your signal should be smaller than the Nyquist Frequency. 
 
Good software takes care of this during acquisition or analysis, by applying 
appropriate filters.  
Often data are filtered with a cut-off frequency well below the Nyquist frequency 
(e.g. X/3), to account for other sources of inaccuracies. 
 
 
But note:  
If you sample with frequency X, you cannot get information about signals with 
frequencies above X/2. 
 

 



Examples for Sampling Theorem 

fMRI:  
 

We typically sample every 2 seconds  
(0.5 Hz with TR=2s). 

 
=> Nyquist Frequency 0.25 Hz 

 

EEG/MEG:  
 

A typical sampling rate is 500 Hz 
(sampling distance 2 ms) 

 
=> Nyquist Frequency 250 Hz 

 

Note: Artefacts should be sufficiently sampled too, in order to deal with them later 
(e.g. important for combined EEG+fMRI) 

 



Missing Data: Interpolation 

Missing data points can only be “corrected” if we have some model for our data 
(e.g. about its smoothness) 

 
One possibility is: Leave missing data points out of your analysis 

(often not practical) 
 

Interpolation: Replace missing data points by the best guess 
 
 

Note:  
Interpolation does not add information to your data.  

 
 



Missing Data: Interpolation 

Faulty electrodes Faulty scans 
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Data Quality: Signal-to-Noise Ratio (SNR) 

Signal-to-Noise ratio:  
Compare the level of your “signal” to the level of your “noise” 

(define “signal” and “noise” first) 
 

Common definition for SNR: 
Divide power (variance) of signal by power (variance) of noise 

 
Other definitions possible: 

Divide amplitude of signal by standard deviation of noise 
Divide root-mean-square (RMS) of signal by RMS of noise 
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Example 



Noise and Error Propagation 

Noise can take on many forms, for example: 
• Inaccuracies of measurement equipment 
• Interference from artefact sources 
• Modelling errors 

 
Any transformation of your data will be affected by noise, and may amplify it 
 
For example: Subtracting/Adding data sets with equal variance doubles the variance 
 
 
If the operation is more complex, the effect of noise will probably be more complex, 
possibly with disastrous consequences (“error propagation”): 
 



Noise and Error Propagation 

 
Example:  

• You can only measure x, but you want y=1/x 

• Noise in x fluctuates around 0 (let’s say between -0.5 and 0.5) 

• If you measure x=10, then y can be between 1/(9.5)=0.105 and 1/(10.5)=0.095 

• If you measure x=0.5, then y can be between 1/0=Inf and 1/1=1 
 



Noise and Error Propagation 

http://i.imgur.com/IAude.png 



Example 



Data Smoothing 

Because of noise and error propagation, it’s usually a good idea to remove noise and 
artefacts as early as possible during data processing – but don’t throw out the child with the 
bathwater 
 
First processing steps are usually smoothing or filtering 
 
The ideal filtering depends on properties of your data – which you may know or not 
 
Filtering may produce awkward effects at the edges of your data – visualisation is important 

 



Example 
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