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What is a function? 
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A mathematical function takes an input argument and 
provides a unique output argument 

A function may not be defined for all input arguments x 
(e.g. 1/x) 

 
There may not be an x to every output argument y 

(e.g. sine(x) is always <=1) 
 

There may be multiple x for a given output argument y 
(e.g. 22=(-2) 2=4) 

 
But functions to not produce multiple outputs for the 

same input x 
 
 

x and f(x) can mean anything, e.g. space, time, 
money, age etc. 



Discretisation:  
Turning functions into vectors and matrices 

voxel timeseries 
EEG/MEG 

etc. 

The density of sampling determines the accuracy and speed of any further operations 
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Popular functions: Polynomials 

Most common with positive exponents 

But why not try negative exponents: 
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Or rational exponents: 
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Important for regression, power laws, statistics, model fitting etc. 



Examples 
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Popular functions: sine, cosine and cousins 

outputsfunction   theare lines coloured  theof lengths  the, of role  the takes xθ

Important for oscillations, filters, Fourier Transform etc. 

Inverse of sine and cosine: arcsine and arccosine 
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Examples 



( ) xex =log
:logarithm natural""  theis lexponentia  theof inverse The

Popular functions: logarithm and exponential functions 
Important for growth and decay processes, likelihoods, Bayesian estimation etc. 
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But the exponential function is special (more later) 
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Combining functions 
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Functions in multiple dimensions 
(only quickly) 
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Complex Numbers 
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Complex Numbers 



Examples 



Define your own function 

Examples 



Convolution 
Describes many linear systems, physical laws, equations etc. 

Imagine a filter which – whenever the input is just an infinitely short peak 
– outputs a blurred Gaussian bell curve (“point-spread”). 
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More complex functions can be described as a weighted sum of an 
infinite number of infinitely small peaks (“delta functions”): 
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Convolution 
The original function… …described as an infinite sum of delta peaks 

Each peak is blurred by the “convolution kernel” 

The result is the sum of the blurred peaks - 
i.e. the convolution of the original function 

and the kernel 
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Differentiation 

The derivative describes the local rate of change of a function, 
or the slope of a line that best approximates the function in one point 
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Differentiation 

dx 

df(x) 

 
dx

df(x) Slope ≈



Differentiation 

There is a command diff() in Matlab (assumes steps of 1 in x-direction), 
but it’s of course even better to know the derivatives exactly, for example: 

f(x) = exp(x)  
 
f(x) = sin(x) 
 
f(x) = cos(x) 

f’(x) = exp(x)  
 
f’(x) = cos(x) 
 
f’(x) = -sin(x) 

f(x) = 1  
 
f(x) = x 
 
f(x) = x2 
 

f(x) = xa 

f’(x) = 0  
 
f’(x) = 1 
 
f’(x) = 2*x 
 
f’(x) = a*xa-1 

f’(exp(a*x)) = a*exp(a*x)  
 
f’(sin(a*x)) = a*cos(a*x) 
 
f’(cos(a*x)) = -a*sin(a*x) 



Differential Equations 

If we don’t know a function, but we know it’s relationship to its derivate(s), 
then this can be expressed as a differential equation: 
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Lots of physical/engineering problems can be formulated like this. 
The problem then is to find the solution that solves this equation. 



Differential Equations 

Example: 
You have a number of rabbits x.  

They are breeding like you would expect.  
The more rabbits, the more breeding.  

In fact, the rate of increase of x is the number of new rabbit babies per 
time (dx/dt), which is proportional to the number of rabbits x.  

Ergo: 
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a then reflects something like the “productivity” of the rabbit population. 



Integration 
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Differentiation 

 

f(x) 

dx *f(x) Volume≈



Integration 

For most common functions, integration can be done analytically: 
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Integration 

f(x) = exp(x)  
 
f(x) = sin(x) 
 
f(x) = cos(x) 

f’(x) = exp(x)  
 
f’(x) = cos(x) 
 
f’(x) = -sin(x) 

f(x) = 1  
 
f(x) = x 
 
f(x) = x2 
 

f(x) = xa 

f’(x) = 0  
 
f’(x) = 1 
 
f’(x) = 2*x 
 
f’(x) = a*xa-1 
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Examples 
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