圈图 UNIVERSITY OF

Introduction to signal analysis in Matlab: GLM I

Ed Sohoglu
MRC Cognition and Brain Sciences Unit

$13^{\text {th }}$ November 2018

General Linear Model (GLM)

- Important statistical tool used in psychology and neuroscience for analysing behavioural data, EEG, MEG, fMRI etc.
- It is "general" because it can accommodate many different types of statistical tests all in the same framework (e.g. t-tests, regression, correlation, ANOVA etc.)

General Linear Model

$$
Y=\beta 1 X 1+\beta 2 X 2+\ldots
$$

- Y is the observed data (e.g. reaction time, BOLD activity)
- X is our 'design matrix' containing all our explanatory variables/regressors (e.g. condition, group or continuous covariates like age)
- $\quad \beta 1$ captures how much X 1 explains the data in Y (and so on for $\beta 2$ etc.)
- Usually we know Y and X so we try to solve for β

Solving for β : Numerical example

- Simple scenario: $Y=\beta 1 X 1$
- If $Y=10$ and $X=2$, what is β ?
- Use what we know from linear algebra
- Y / X1 = $\beta 1 \mathrm{X} 1 / \mathrm{X} 1$
- $\operatorname{Or} \beta 1=Y / X 1$
- $\operatorname{Or} \beta 1=\mathrm{YX1}^{-1}$
- Try in Matlab: $\mathbf{Y}=\mathbf{1 0} ; \mathbf{X}=\mathbf{2}$;
$B=Y$ * $\operatorname{inv}(X)$;

Solving for β : Extension to matrices

- Usually our data do not consist of a single number $(Y=10)$ but rather several numbers ($\mathrm{Y}=10562$ 1), one number for each trial or subject (N)
- Our design matrix X will also contain several numbers, arranged as a rectangular array (i.e. matrix) of N subjects (rows) by M variables/regressors (columns)
- This means we need the matrix formulation of the GLM:

- Or more concisely: $\mathrm{Y}=\mathrm{XB}$

Solving for β : Matrix example

- As before, we are trying to solve for B in the equation $Y=X \beta$
- If $\mathrm{Y}=[-510]$ and $\mathrm{X}=[2-1 ; 01]$, what is β ?
- Solution same as before
- $\beta=X^{-1} Y$
- Try in Matlab: $\begin{aligned} & Y=[-510]^{\prime} ; \mathbf{X}=\left[\begin{array}{lll}2-1 ; ~ & 01\end{array}\right] ; \\ & B=\operatorname{inv}(X)^{*} Y ;\end{aligned}$

$$
B=\operatorname{inv}(X)^{*} Y
$$

- Note that matrix inversion is not the same as element-wise division!
- Compare in Matlab: $\quad \operatorname{inv}(\mathbf{X})$
- So how do we know that the solution for B is correct? Because $X B$ should equal Y.
- Check in Matlab: $\mathbf{X * B}$

Pseudoinverse

- The matrix inverse is only defined for square matrices. This is a problem if we have the typical situation of fewer explanatory variables than subjects/trials (i.e. the number of columns in X is less than the the number of rows)
- The matrix inverse is also only defined when none of our explanatory variables are linear combinations of other explanatory variables
- In these situations, the pseudoinverse can be used instead
- In Matlab: pinv()

Graphical example

- Our data are mean reaction times (RTs) from 10 subjects.
- Use GLM to model RT as a function of subjects' age

Visualising the design matrix

- Commonly seen in neuroimaging software like SPM
- What does our design matrix for the age/reaction time experiment look like?

B1 (age)
c

Useful references

- Handbook of Functional MRI Data Analysis (Poldrack, Mumford and Nichols 2011). Appendix A: "Review of the GLM"
- Cyril Pernet's website http://www.sbirc.ed.ac.uk/cyril/glm/GLM lectures.html
- Poline and Brett (2012) Neurolmage "The general linear model and fMRI: Does love last forever?"

