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Abstract 

The newly emerging field of Social Neuroscience has drawn much attention in recent 
years, with high-profile studies frequently reporting extremely high (e.g., >.8) 
correlations between behavioral and self-report measures of personality or emotion and 
measures of brain activation obtained using fMRI.  We show that these correlations often 
exceed what is statistically possible assuming the (evidently rather limited) reliability of 
both fMRI and personality/emotion measures.  The implausibly high correlations are all 
the more puzzling because social-neuroscience method sections rarely contain sufficient 
detail to ascertain how these correlations were obtained.  We surveyed authors of 54 
articles that reported findings of this kind to determine the details of their analyses.  More 
than half acknowledged using a strategy that computes separate correlations for 
individual voxels, and reports means of just the subset of voxels exceeding chosen 
thresholds.  We show how this non-independent analysis grossly inflates correlations, 
while yielding reassuring-looking scattergrams.  This analysis technique was used to 
obtain the vast majority of the implausibly high correlations in our survey sample.  In 
addition, we argue that other analysis problems likely created entirely spurious 
correlations in some cases.  We outline how the data from these studies could be 
reanalyzed with unbiased methods to provide the field with accurate estimates of the 
correlations in question.  We urge authors to perform such reanalyses and to correct the 
scientific record.  

 

 

A Puzzle: Remarkably High 

Correlations in Social Neuroscience 

The field of social neuroscience (or 
social cognitive neuroscience, as it is 
also sometimes referred to) scarcely 
existed 10 years ago, and yet the field 
has already achieved a remarkable level 
of attention and prominence.  Within the 
space of a few years, it has spawned 
several new journals (Social 

Neuroscience, Social Cognitive and 

Affective Neuroscience), and is the focus 
of substantial new funding initiatives 
(National Institute of Mental Health, 
2007), lavish attention from the popular 
press (Hurley, 2008) and the trade press 
of the psychological research community 
(e.g., APS Observer, Fiske, 2003).  
Perhaps even more impressive, however, 

is the number of papers from social 
neuroscience that have appeared in such 
prominent journals as Science, Nature, 

and Nature Neuroscience.   

While the questions and methods used in 
social neuroscience research are quite 
diverse, a substantial number of widely 
cited papers in this field have reported a 
specific type of empirical finding that 
appears to bridge the divide between 
mind and brain; extremely high 
correlations between measures of 
individual differences relating to 
personality, emotionality and social 
behavior, and measures of brain activity 
obtained with functional magnetic 
resonance imaging (fMRI). We focus on 
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social neuroscience1 here because this 
was the area where these correlations 
came to our attention; we have no basis 
for concluding that the problems 
discussed here are necessarily any worse 
in this area than in some other areas. 

To take but a few examples of many 
studies that will be discussed below: 

Eisenberger, Lieberman, and Williams 
(2003), writing in Science, described a 
game they created to expose individuals 
to social rejection in the laboratory.  The 
authors measured the brain activity in 13 
individuals at the same time as the actual 
rejection took place, and later obtained a 
self-report measure of how much 
distress the subject had experienced.   
Distress was correlated at r=.88 with 
activity in the anterior cingulate cortex 
(ACC).   

In another Science paper, Singer et al. 
(2004) found that the magnitude of 
differential activation within the ACC 
and left insula induced by an empathy-
related manipulation was correlated 
between .52 and .72 with two scales of 
emotional empathy (the Empathic 
Concern Scale of Davis, and the 
Balanced Emotional Empathy Scale of 
Mehrabian). 

Writing in NeuroImage, Sander et al. 
(2005) reported that a subject's 
proneness to anxiety reactions (as 
measured by an index of the Behavioral 
Inhibition System; Carver and White, 
1994) correlated at r=.96 with the 

                                            
1 Social neuroscience relies on a variety of 
methodologies,including neuroimaging (e.g., 
fMRI, PET), patient studies (e.g., lesions), 
electrophysiology (e.g., EEG and EMG), animal 
research (e.g., cross-species comparisons), 
neuroendocrine, and  neuroimmunological 
investigations (Harmon-Jones & Winkielman, 
2007). 

difference in activation of the right 
cuneus to attended versus ignored angry 
speech.  

In the review below, we will encounter 
many studies reporting similar sorts of 
correlations. 

The work that led to the present article 
began when the present authors became 
puzzled about how such impressively 
high correlations could arise.  We 
describe our efforts to resolve this 
puzzlement, and the conclusions that our 
inquiries have led us to. 

Why should it be puzzling to find high 
correlations between brain activity and 
social and emotional measures?  After 
all, if new techniques of social 
neuroscience are providing a deeper 
window on the link between brain and 
behavior, does it not make sense that 
researchers should be able to find the 
neural substrates of individual traits—
and thus potentially bring to light 
stronger relationships than have often 
been found in purely behavioral studies? 

The problem is this: It is a statistical fact 
(first noted by researchers in the field of 
classical psychometric test theory) that 
the strength of the correlation observed 
between measures A and B 
(rObservedA,ObservedB ) reflects not only the 
strength of the relationship between the 
traits underlying A and B (rA,B), but also 
the reliability of the measures of A and 
B (ReliabilityA and ReliabilityB, 
respectively).  In general,  

  rObservedA,ObservedB = rA,B * 
sqrt (reliabilityA * reliabilityB) 

Thus, the reliabilities of two measures 
provide an upper bound on the possible 
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correlation that can be observed between 
the two measures (Nunnally, 1970)2. 

Reliability Estimates 

So what are the reliabilities of fMRI and 
personality/emotional measures likely to 
be3?  The reliability of personality and 
emotional scales varies between 
measures, and according to the number 
of items used in a particular assessment.  
However, test-retest reliabilities as high 
as .8 seem to be relatively uncommon, 
and usually found only with large and 
highly refined scales.  Viswesvaran and 
Ones (2000) surveyed many studies on 
the reliability of the Big Five factors of 
personality, and concluded that the 
different scales have reliabilities ranging 
from .73 to .78.   Hobbs and Fowler 
(1974) carefully assessed the reliability 
of the sub-scales of the MMPI, and 
found numbers ranging between .66 
and .94, with an average of .84.  In 
general, therefore, a range of .7 - .8 
would seem to be a somewhat optimistic 
estimate for the smaller and more ad hoc 
scales used in much of the research 

                                            
2 This is the case because the correlation 
coefficient is defined as the ratio between the 
covariance of two measures and the product of 

their standard deviations: rx , y =

σ xy

σ xσ y

.  Real-

world measurements will be corrupted by 
(independent) noise, thus the standard deviations 
of the measured distributions will be increased 
by the additional noise (whose magnitude is 
assessed by the measure’s reliability).  This will 
make the measured correlation lower than the 
true underlying correlation, by a factor equal to 
the geometric mean of reliabilities. 
3
 We consider test-retest reliabilities here (rather 

than inter-item, or split-half reliability) because, 
for the most part, the studies we discuss gathered 
behavioral measure at different points in time 
than the fMRI data.  In any case, internal 
reliability measures, like coefficient alpha, do 
not generally appear to be much higher in this 
domain. 

described below, which could well have 
substantially lower reliabilities. 

Less is known about the reliability of 
blood oxygenation level dependent 
(BOLD) signal measures in fMRI, but 
some relevant studies have recently been 
performed4.  Kong et al. (2006) had 
subjects engage in six sessions of a 
finger tapping task while recording brain 
activation.  They found test-retest 
correlations of the change in BOLD 
signal ranging between 0 and .76 for the 
set of areas that showed significant 
activity in all sessions5.  Manoach et al 
(2001, their figure 1, p. 956) scanned 
subjects on two sessions of performance 
on the Sternberg memory scanning task, 
and found reliabilities ranging 
between .23 to .93, averaging .60.  Aron, 
Gluck, and Poldrack (2006) had people 
perform a classification learning task on 
two separate occasions widely separated 
in time, and found voxel-level 
reliabilities with modal values (see their 
figure 5, p. 1005) a little bit below .86.  
Johnstone et al. (2005, p. 1118) 
examined the stability of amygdala 
BOLD response to presentations of 
fearful faces in multiple sessions.  
Intraclass correlations for left and right 
amygdale regions of interest were in the 
range of .4 to .7 for the 2 sessions 
separated by 2 weeks.  Thus, from the 

                                            
4 We focus here on studies that look at the 
reliability of BOLD activation measures, rather 
than the reliability of patterns of voxels 
exceeding specific thresholds, which tend to be 
substantially lower (e.g., Stark et al., 2004). 
5 It seems likely that restricting the reliability 
analysis to regions consistently active in all 
sessions would tend to overestimate the 
reliability of BOLD signal in general. 
6 They found somewhat higher reliabilities for 
voxels within a frontostriatal system that they 
believed was most specifically involved in 
carrying out the probabilistic classification 
learning.  
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literature that does exist, it would seem 
reasonable to suppose that fMRI 
measures computed at the voxel level 
will not often have reliabilities greater 
than about .7. 

The Puzzle 

This, then, is the puzzle.  Measures of 
personality and emotion evidently do not 
often have reliabilities greater than .8.  
Neuroimaging measures seem typically 
to be reliable at .7 or less.  If we assume 
that a neuroimaging study is performed 
in a case where the underlying 
correlation between activation in the 
brain area and the individual difference 
measure (i.e., the correlation that would 
be observed if there were no 
measurement error) is perfect

7 then the 
highest possible meaningful correlation 
that could be obtained would be sqrt(.8 
* .7), or .74. Surprisingly, correlations 
exceeding this upper bound are often 
reported in recent social neuroscience 
literature. 

Meta-Analysis Methods 

We turned to the original papers to find 
out how common these remarkable 
correlations are, and what analyses 
might be yielding them.  Unfortunately, 
after a brief review of several articles, it 
became apparent that the analyses 

                                            
7 There are several reasons why a true correlation 
of 1.0 seems highly unrealistic.  First, for any 
behavioral trait, it is far-fetched to suppose that 
only one brain area influences this trait.  Second, 
even if the neural underpinnings of a trait were 

confined to one particular region, it would seem 
to require an extraordinarily favorable set of 
coincidences for the BOLD signal (basically a 
blood flow measure) assessed in one particular 
stimulus or task contrast to capture all function 

relevant to the behavioral trait, which after all 
reflects the organization of complex neural 
circuitry residing in that brain area.   

employed varied greatly from one 
investigator to the next, and the exact 
methods were simply not made clear in 
the typically brief and sometimes opaque 
method sections.   

To probe the issue further, we conducted 
a survey of the investigators.  Our focus 
was confined to social neuroscience 
because this is the place where the 
remarkably-high correlations first drew 
our attention, and because they seem 
most prevalent here; however, we would 
not want the reader to think that any of 
the issues examined here are unique to 
this area.  We proceeded as follows: 
First, we attempted to pull together as 
complete a sample as we could readily 
achieve of the social neuroscience 
literature reporting correlations between 
evoked BOLD activity and behavioral 
measures of individual differences in 
personality, emotionality, social 
behavior, and related domains (generally 
excluding psychopathological symptoms, 
however).  Then we emailed the authors 
of the articles we identified, sending a 
brief survey to determine how the 
reported correlation values were 
computed. 

Literature Review 

Our literature review was conducted 
using the keyword “fMRI” (and 
variants), in conjunction with a list of 
social terms (e.g., “jealousy”, “altruism”, 
“personality”, “grief”, etc.).  Within the 
articles retrieved by these searches, we 
selected all the articles we could find 
that reported across-subject correlations 
between a trait measure and evoked 
BOLD activity.  This resulted in 54 
articles, with 256 significant correlations 
between BOLD signal and a trait 
measure.  It should be emphasized that 
we do not suppose this literature review 
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to be exhaustive.  Undoubtedly we 
missed some papers reporting these 
kinds of numbers, but our sample seems 
likely to be quite representative, perhaps 
slanted toward papers that appeared in 
higher impact journals.  

A histogram of these significant 
correlations is displayed in Figure 1.  It 
can be seen that correlations in excess 
of .75 are plentiful indeed. 

 

Figure 1: A histogram of the correlations between evoked BOLD response and 

behavioral measures of individual differences seen in the studies identified for analysis in 

the current article.  

We turn next to the question: where do 
these numbers come from?  Before doing 
so, we have to provide a bit of background 
for readers unfamiliar with methods in this 
area. 

Elements of fMRI Analysis 

For those not familiar with fMRI analysis, 
the essential steps in just about any 
neuroimaging study can be described 
rather simply (those familiar with the 
techniques may wish to skip this 
section).  The output of an fMRI 
experiment typically consists of two types 
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of “3D pictures” (image volumes): 
“anatomical” (a high resolution scan that 
shows anatomical structure, not function) 
and “functional”.  Functional image 
volumes are lower resolution scans 
showing measurements reflecting, among 
other things, the amount of deoxygenated 
hemoglobin in the blood – blood 
oxygenation level dependent (BOLD) 
signal.  A functional image volume is 
composed of many measurements of the 
BOLD signal in small, roughly cube-
shaped, regions called “voxels” 
(‘volumetric pixels’).  The number of 
voxels in the whole image volume 
depends on the scanner settings, but it 
typically ranges between 10x64x64 and 
30x128x128 voxels. Thus, each functional 
image contains somewhere between 
40,000 and 500,000 voxels, with each of 
these voxels covering between 1 mm3 
(1x1x1 mm) and 125 mm3 (5x5x5mm) of 
brain tissue (except for voxels outside of 
the brain). A new functional image volume 
is usually acquired every 2 or 3 seconds 
(TR, or repetition time) during a scan, so 
one ends up with a timeseries of these 
functional images. 

These data are typically preprocessed to 
reduce noise and to allow comparisons 
between different brains.  The 
preprocessing usually includes smoothing 
(averaging each voxel with its neighbors, 
weighted by some function that falls with 
distance, such as a Gaussian).  The studies 
we focus on here ultimately compute 
correlations across subjects: in this kind of 
study, the voxels are usually mapped onto 
an average brain (although not always, 
e.g., Yovel & Kanwisher, 2005).  A 
number of average-brain models exist, the 
most famous being Talairach (Talairach & 
Tournoux, 1988) and MNI (Evans et al. 
1993), but some investigators compute an 
average brain model for their particular 

subjects, and normalize their functional 
image scans onto that model.  

Following pre-processing, some measure 
of the activation in a given voxel needs to 
be derived to assess if it is related to what 
the person is doing, seeing, or feeling.  
The simplest procedure is just to extract 
the average activation in the voxel while 
the person does a task.  However, because 
any task will engage most of the brain 
(from visual cortex to see the stimulus, to 
motor cortex to produce a response, and 
everything in between), fMRI researchers 
typically focus not on the activation in 
particular voxels during one task, but 
rather on a contrast between the activation 
arising when the person performs one task 
versus the activation arising when they do 
another.  This is usually measured as 
follows: while functional images are being 
acquired, the subject does a mixed 
sequence of two different tasks 
(A,B,B,A,A,B,A, and so forth—where A 
might be reading words and B might be 
looking at nonlinguistic patterns). Thus, 
the experimenter ends up with two 
different time series to compare: the 
sequence of tasks the person performed 
and, separately for each voxel, the 
sequence of activation levels measured at 
that voxel.  A regression analysis can now 
be performed to ask: “is this voxel’s 
activity different when the subject was 
performing Task A compared to Task B”? 

These basic steps common to most fMRI 
data analyses yield matrices consisting of 
tens or hundreds of thousands of numbers 
indicating activation levels.  These can be 
(and indeed generally are) displayed as 
images.  However, to obtain quantitative 
summaries of these results and do further 
statistics on them (such as correlating 
them with behavioral measures—the topic 
of the present article), an investigator must 
somehow select a subset of voxels and 
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aggregate measurements across them. This 
can be done in various ways.  A subset of 
voxels in the whole brain image may be 
selected based on purely anatomical 
constraints (e.g., all voxels in a region 
generally agreed to represent the 
amygdala, or all voxels within a certain 
radius of some a priori specified brain 
coordinates).  Alternatively, regions can be 
selected based on “functional constraints”: 
meaning voxels are selected based on their 
activity pattern in functional scans.  For 
example, one could select all the voxels 
for a particular subject that responded 
more to reading than to non-linguistic 
stimuli.  Finally, voxels could be chosen 
based on some combination of anatomy 
and functional response. 

In the papers we are focusing on here, the 
final result, as we have seen, was always a 
correlation value—a correlation between 
each person’s score on some behavioral 
measure, and some summary statistic of 
their brain activation.   The latter summary 
statistic reflects the activation or activation 
contrast within a certain set of voxels.  In 
either case, the critical question is: how 
was this set of voxels selected?  As we 
have seen, voxels may be selected based 
on anatomical criteria, functional criteria, 
or both.  Within these broad options, there 
are a number of additional more fine-
grained choices.  It is hardly surprising, 
then, that brief method sections rarely 
suffice to describe how the analyses were 
done in adequate detail to really 
understand what choices were being made. 

Survey methods 

To learn more than the Method sections of 
these papers disclosed about the analyses 
that yielded these correlations, we emailed 
the corresponding authors of these articles.  
The exact wording of our questions is 
included in Appendix 1, but we often 

needed to send customized follow-up 
questions to figure out the exact details 
when the survey questions were 
misunderstood, or did not match our 
reading of the methods section.   

In our survey we first inquired whether the 
fMRI signal measure that was correlated 
across subjects with a behavioral measure 
represented the average of some number 
of voxels, or instead, the activity from just 
one voxel that was deemed most 
informative (referred to as the peak voxel).   

If it was the average of some number of 
voxels, we inquired about how those 
voxels were selected – asking whether 
they were selected based only on anatomy, 
only on the activation seen in those voxels, 
or both?   

If activation was used to select voxels, or 
one voxel was determined to be most 
informative based on its activation, we 
asked what was the measure of activation 
used.  Was it the difference in activation 
between two task conditions computed on 
individual subjects, or was it a measure of 
how this task contrast correlated with the 
individual difference measure?   

Finally, if functional data were used to 
select the voxels, were they the same 
functional data as were used to define the 
reported correlation? 

Survey participants 

Of the 55 articles we found in our review, 
we received methodological details from 
52, and 3 did not respond to repeated 
requests. 

Survey Results 

We display the raw results from our 
survey as the proportion of studies that 
investigators described with a particular 
answer to each question (Figure 2).  Since 
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some questions only applied to a subset of 
participants, we display only the 

proportion of the relevant subset of studies.

 

 

Figure 2.  The results of our survey of social neuroscience individual-difference 

correlation methods.  Of the 55 articles surveyed, the authors of 52 provided responses.  

Of those, 23 reported a correlation between behavior and one peak voxel; 29 reported 

the mean of a number of voxels.  For those that reported the mean of a subset of voxels, 7 

defined this subset purely anatomically, 11 used only functional constraints, and 11 used 

anatomical and functional constraints.  Of the 45 studies that used functional constraints 

to choose voxels (either for averaging, or for finding the ‘peak’ voxel), 10 said they used 

functional measures defined within a given subject, 28 used the across-subject 

correlation to find voxels, and 7 did something else.  All of the studies using functional 

constraints used the same data to select voxels, and then to measure the correlation. 

Notably, 54% of the surveyed studies selected voxels based on a correlation with the 

behavioral individual-differences measure, and then used those same data to compute a 

correlation within that subset of voxels. 

The raw answers to our survey do not by themselves explain how the (implausibly high, 
or so we have argued) correlations were arrived at.  The key, we believe, lies in the 54% 
of respondents who said that “regression across subjects” was the functional constraint 
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used to select voxels: indicating that voxels were selected because they correlated highly 
with the behavioral measure of interest.8.   

Figure 3 shows very concretely the sequence of steps that these respondents reported 
following in analyzing their data.  A separate correlation across subjects was performed 
for each voxel within a specified brain region.  Each correlation relates some measure of 
brain activity in that voxel (which might be a difference between responses in two tasks 
or in two conditions) with the behavioral measure for that individual.  Thus, the number 
of correlations computed was equal to the number of voxels (meaning that in many cases, 
thousands of correlations were computed).  At the next stage, the set of voxels for which 
this correlation exceeds some threshold were selected, and some measure of the 
relationships for the voxels that exceed this threshold was reported.  

 

Figure 3: An illustration of the analysis employed by 54% of the papers surveyed.  (a) 

From each subject, the researchers obtain a behavioral measure as well as BOLD 

measures from many voxels.  (b) The activity in each voxel is correlated with the 

behavioral measure of interest across subjects. (c) From this set of correlations, 

researchers select those voxels that pass a statistical threshold, and (d) aggregate the 

fMRI signal across those voxels to derive a final measure of the correlation of BOLD 

signal and the behavioral measure.   

                                            
8 It is important to note that all of these studies also reported using the same data to compute the correlation 
as were initially used to select the subset of voxels. 



What are the implications of selecting 
voxels in this fashion? Such an analysis 
will inflate observed across-subject 
correlations, and can even produce 
significant measures out of pure noise.  
The problem is illustrated in the simple 
simulation displayed in Figure 4: (a) 
investigator computes a separate 
correlation of the behavioral measure of 
interest with each of the voxels.  Then, 
(b) those voxels that exhibited a 
sufficiently high correlation (passing a 
statistical threshold) are selected.  Then 
an ostensible measure of the ‘true’ 

correlation is aggregated from the voxels 
that showed high correlations (e.g., by 
taking the mean of the voxels over the 
threshold).  With enough voxels, such a 
biased analysis is guaranteed to produce 
high correlations even if none are truly 
present (Figure 4).  Moreover, this 
analysis will produce visually pleasing 
scattergrams (e.g., Figure 4c) that will 
provide (quite meaningless) reassurance 
to the viewer that s/he is looking at a 
result that is solid, “not driven by 
outliers”, etc.

  

 

  

Figure 4: A simulation of a non-independent analysis on pure noise data (for similar 

exercises in other neuroimaging domains see Baker, Hutchison, et al, 2007; Simmons et 

al, 2006; Kriegeskorte et al, 2008). We simulated 1000 experiments each with 10 subjects 

and 10000 voxels, and one individual difference measure.  Each subjects’ voxel activity 

and behavioral measure were independent 0-mean Gaussian noise.  Thus, (a) the true 

distribution of correlations between the behavioral measure and simulated voxel activity 

is distributed around 0, with random fluctuations resulting in a distribution that spans 

the range of possible correlations.  (b) When a subset of voxels are selected for passing a 

statistical threshold (a positive correlation with p<0.01), the observed correlation of the 

mean ‘activity’ of those voxels is very high indeed. (c) If the BOLD activity from that 

subset of voxels is plotted as a function of the behavioral measure, a compelling 

scattergram may be produced.  
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The non-independence error 

The fault seen in glaring form in Figure 4 
will be referred to henceforth as the non-

independence error.  This approach 
amounts to selecting one or more voxels 
based on a functional analysis, and then 
reporting the results of the same analysis 
and functional data from just the selected 
voxels.  This analysis distorts the results 
by selecting noise exhibiting the effect 
being searched for, and any measures 
obtained from such a non-independent 
analysis are biased and untrustworthy (for 
a formal discussion see Vul & Kanwisher, 
in press).   

It may be easier to appreciate the gravity 
of the non-independence error by 
transposing it outside of neuroimaging. 
We (the authors of this paper) have 
identified a weather station whose 
temperature readings predict daily changes 
in the value of a specific set of stocks with 
a correlation of r=-0.87.  For $50.00, we 
will provide the list of stocks to any 
interested reader.  That way, you can buy 
the stocks every morning when the 
weather station posts a drop in temperature, 
and sell when the temperature goes up.  
Obviously, your potential profits here are 
enormous.  But you may wonder: how did 
we find this correlation?  The figure of -
.87 was arrived at by separately computing 
the correlation between the readings of the 
weather station in Adak Island, Alaska, 
with each of the 3315 financial 
instruments available for the New York 
Stock Exchange (through the Mathematica 
function FinancialData) over the 10 days 
that the market was open between 
November 18th and December 3rd, 2008.  
We then averaged the correlation values of 
the stocks whose correlation exceeded a 
high threshold of our choosing, thus 
yielding the figure of -.87.  Should you 
pay us for this investment 

strategy?  Probably not: Of the 3,315 
stocks assessed, some were sure to be 
correlated with the Adak Island 
temperature measurements simply by 
chance – and if we select just those (as our 
selection process would do), there was no 
doubt we would find a high average 
correlation.  Thus, the final measure (the 
average correlation of a subset of stocks) 
was not independent of the selection 
criteria (how stocks were chosen): this, in 
essence, is the non-independence 
error.  The fact that random noise in 
previous stock fluctuations aligned with 
the temperature readings is no reason to 
suspect that future fluctuations can be 
predicted by the same measure, and one 
would be wise to keep one’s money far 
away from us, or any other such 
investment advisor9. 

Variants of the non-independence error 
occur in many different types of 
neuroimaging studies and in many 
different domains.  The non-independence 
error is by no means confined to social 
neuroscience, nor to studies correlating 
individual behavioral differences with 
evoked fMRI activity.  (For broader 
discussions of how non-independent 
analyses produce misleading results in 
other domains, see: Vul & Kanwisher, in 
press, Kriegeskorte et al, 2008; Baker, 
Hutchinson, et al, 2007; Baker, Simmons, 
et al 2007; Simmons et al, 2006). 

Our survey allows us to determine which 
of the studies were committing variants of 
the non-independence error by finding 
analyses in which researchers selected 
voxels (answered A or B to question 1) 
based on correlation with the across-

                                            
9 See Taleb (2004) for a sustained and engaging 
argument that this error, in subtler and more 
disguised form, is actually a common one within 
the world of market trading and investment 
advising. 
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subject behavioral measure of interest 
(answered B or C to question 2, and B to 
question 3), then plotted or reported the 
observed correlations from just those 
voxels (answered A to question 4).   

Results and Discussion 

For maximum clarity, we will present the 
results of our survey, and our overall 
analysis of what it means for the social 
neuroscience literature, in the form of a 
number of questions and answers. 

A. Are the correlation values reported in 

this literature meaningful? 

Of the 52 articles we successfully 
surveyed, 28 provided responses 
indicating that a non-independent analysis, 
like the one portrayed in Figures 3 and 4, 
was used to obtain the across-subject 
correlations between evoked BOLD 
activity and a measure of individual 
differences.  As we saw in Figure 4, a non-
independent analysis systematically 
distorts any true correlations that might 
exist.  Thus, in half of the studies we 
surveyed, the reported correlation 
coefficients mean almost nothing, because 
they are systematically inflated by the 
biased analysis. The magnitude of this 
distortion depends upon variables (such as 
the number of voxels within the brain, 
noise and signal variance, etc.) which a 
reader would have no way of knowing, so 
it is not possible to correct for it.  The 
problem is exacerbated in the case of the 
38% of our respondents who reported the 
correlation of the peak voxel (the voxel 
with the highest observed correlation) 
rather than the average of all voxels in a 
cluster passing some threshold.   

Figure 5 shows the histogram of 
correlation values with which our 

investigation started, this time color-coded 
by whether or not such a non-independent 
analysis was employed in the article. It is 
reassuring to see that the mode of 
independently acquired (i.e., valid) 
correlation values (coded green) is indeed 
below the ‘theoretical upper bound’ we 
anticipated from classical test theory and 
the limited information we have on test 
reliability (described in the introduction).  
The overwhelming trend is for the larger 
correlations to be emerging from non-
independent analyses that are statistically 
guaranteed to inflate the measured 
correlation values. 

In looking at Figure 5, it is tempting to 
assume that the non-independent (red) 
correlations, had they been measured 
properly, would have values around the 
central tendency of the independent 
(green) correlations (around .6).  Thus, one 
might say, “it is very unfortunate that the 
numbers were seriously exaggerated, but 
the real relationships here are still pretty 
impressive.”  In our view, any such 
inference is unwarranted; many of the real 
relationships are probably far lower than 
the ones shown in green.  After all, the 
published studies reporting independent 
measures of correlations are still 
predominantly those that found significant 
effects (resulting in the well known 
publication bias for significant results; cf. 
Ioannidis, 2005), and correlations much 
lower than .5 would often not have been 
significant with these sample sizes.  We 
would speculate that, properly measured, 
many of the "red correlations" would have 
been far lower still, and may not exist at 
all.  (For a discussion of the relationship 
between the non-independence error and 
the use of spatial clustering thresholds, see 
Appendix 2.)
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Figure 5. The histogram of the correlations values from the studies we surveyed (same 

data as Figure 1), this time, color-coded by whether or not the article from which this 

analysis originated used non-independent analyses. Correlations coded in green 

correspond to those that were achieved with independent analyses, avoiding the bias 

described in this paper.  However, those in red correspond to the 54% of articles 

surveyed that reported conducting non-independent analyses – these correlation values 

are certain to be inflated. Entries in orange arise from papers whose authors chose not to 

respond to our survey.  (See Table 1 below for key to article numbers; * study 26 carried 

out a slightly different, non-independent analysis: instead of explicitly selecting for a 

correlation between IAT and activation, they split the data into two groups, those with 

high IAT scores and those with low IAT scores, they then found voxels that showed a 

main effect between these two groups, and then computed a correlation within those 

voxels. This procedure is also non-independent, and will inflate correlations.)   

B. Is the problem being discussed here anything different than the well-known problem 

of multiple comparisons raising the probability of false alarms?  
 
Every fMRI study involves vast numbers 
of voxels, and comparisons of one task 
to another involve computing a t-statistic 
and comparing it to some threshold.  
When numerous comparisons are made, 
adjustments of threshold are needed, and 
are commonly employed.   The 
conventional approach involves finding 
voxels that exceed some arbitrarily high 
threshold of significance on a particular 
contrast (e.g., reading a word versus 
looking at random shapes).  This 
multiple comparisons correction 
problem is well known and has received 
much attention. 
 
The problem we describe arises when 
authors then report secondary statistics 
on the data in the voxels that were 
selected originally.  In the case discussed 
in the present article, correlations are 
both the selection criterion and the 
secondary statistic.  
 
When people compare reading a word 
versus reading a letter, and find brain 
areas with a t value of 13.2 (with 11 
degrees of freedom, comparable to an r 
of .97, or an effect size of d=2.4), few 
people would interpret the t value as a 

measure of effect size.  On the other 
hand, in the case of the r values under 
discussion here, we would contend that 
essentially everyone interprets them in 
that way.    
 

C. What may be inferred from the 

scattergrams often exhibited in 

connection with non-independent 

analyses? 

Many of the papers reporting biased 
correlation values display scattergram 
plots of evoked activity as a function of 
the behavioral measure.  These plots are 
presumably included in order to show 
the reader that the correlation is not 
being driven by a few outliers, or by 
other aberrations in the data.  However, 
when non-independent selection criteria 
are used to pick out a subset of voxels, 
the voxels passing this criterion will 
inevitably contain a large admixture of 
noise favoring the correlation (see the 
scattergram in Figure 4c for an example 
of a case where the relationship is pure 
noise).  Thus, the shape of the resulting 
scattergrams provides no reliable 
indication about the nature of the 
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possible correlation signal underlying 
the noise, if any.   

D. How can these same methods 

produce no correlations? 

It may be as surprising to some readers, 
as it was to us, that a few papers 
reporting extraordinarily high 
correlations arrived at through non-
independent analyses also reported some 
negative results (correlations that failed 
to reach significance).  If the same 
analysis methods were applied to each 
correlation investigated, shouldn’t the 
same correlation-amplifying bias apply 
to each one? 

Indeed it should normally do so.  
However, with a bit of investigation, we 
were able to track down the source of (at 
least some of) the inconsistency: in 
certain papers, the bias inherent in non-
independent analyses was sometimes 
wielded selectively, in such a way as to 
inflate certain correlations, but not others.  

Take for instance Takahashi et al (2006), 
reporting an interaction in the presence 
of a correlation between evoked BOLD 
activity and rated jealousy in men and 
women: activity in the insula correlated 
with self-reported jealousy about 
emotional infidelity in men (r=0.88), but 
not women (r=-0.03).  The opposite was 
true of activity in the posterior STS 
correlated with such self-reported 
jealousy in women (r=0.88), but not men 
(r=-0.07).  At first blush, the 
scattergrams and correlations exhibit a 
very striking interaction (reported as 
significant at p<0.001).  However, the 
insula activity corresponds to the peak 
voxel of a cluster that passed statistical 
threshold for the correlation between 

rated jealousy and BOLD signal in 

males; thus the observed correlation with 
rated jealousy in males was non-

independent and biased, while the same 
correlation for rated jealousy in females 
was independent.  The pSTS activity 
was selected for correlating with rated 

jealousy in females, and thus only the 
jealousy correlation in males was 
independent in that region.   

It should come as no surprise, therefore, 
that such non-independently selected 
data produced a striking interaction in 
which the non-independent analyses 
showed high correlations while the 
independent analyses showed no 
correlation.  Thus, the presence of the 
interaction, along with the magnitude of 
the correlations themselves, is quite 
meaningless and could have been 
obtained with completely random data 
like those utilized in the simulation 
shown in Figure 4. 

E. But is there really any viable 

alternative to doing these non-

independent analyses? 

It is all very well to point out ways in 
which research methods fall short of the 
ideal. However, the ideal experiment and 
the ideal analysis are often out of reach, 
especially in fields like psychology and 
cognitive neuroscience.  Perhaps we 
must settle for somewhat imperfect 
designs and methods to get any 
information whatsoever about across-
subject brain-behavior correlations: Are 
any better methods available? 

We contend that the answer is a clear-cut 
“Yes”.  These kinds of brain-behavior 
linkages can be readily investigated with 
designs that do not invite any of the 
rather disastrous complications that 
accompany the use of non-independent 
analyses.  

One method is to select the voxels 
comprising different regions of interest 
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in a principled way that is “blind” to the 
correlations of those voxels with the 
behavioral measure and also mindful of 
the fact that individuals’ brains are far 
from identical.  For instance, to assess 
the relationship between ACC activity 
during exclusion and reactions to social 
rejection measured in a questionnaire, 
one would first put the social rejection 
data aside, and not “peek” at it while 
analyzing the fMRI data.  The researcher 
can then define regions of interest in 
individual subjects in whatever way 
seems appropriate; e.g., by identifying 
voxels within the anatomical confines of 
the ACC that were significantly active 
for the excluded-included contrast (or, 
even better, using a different contrast, or 
different data, altogether).  Once a subset 
of voxels is defined within an individual 
subject, one number should be 
aggregated from these voxels (e.g., the 
mean signal change). Only then are the 
behavioral data examined, and an 
unbiased correlation can be computed 
between the ACC region of interest and 
the behavioral measure.  This method 
was used by a few of the authors of the 
current studies, e.g., Kross et al  (2007).  
In addition to providing an unbiased 
measure of any relationships between 
evoked activity and individual 
differences, this ‘functional Region of 
Interest’ (fROI) method avoids 
implausible assumptions about voxel-
wise correspondence across different 
individuals’ functional anatomy10 (Saxe, 
Brett, & Kanwisher, 2006). 

                                            
10 Although it is possible for voxels registered to 
the ‘average brain’ to be functionally matched 
across subjects, the variability in anatomical 
location of well-studied regions even in early 
visual cortex (V1, MT) and visual cognition 
(FFA) suggests to us that higher-level functions 
determining individual differences in personality 
and emotionality is not likely to be anatomically 

If one feels that it makes sense to draw 
voxelwise correspondences between the 
functional anatomy of one subject and 
another, a second alternative exists: a 
‘split half’ analysis.  Here, half of the 
data are used to select a subset of voxels 
exhibiting the correlation of interest, and 
the other half of the data are used to 
measure the effect (examining the same 
voxels, but looking at different runs of 
the scanner).  For example, if there are 4 
runs in the social exclusion and 4 runs in 
the neutral condition, one can use 2 
exclusion runs and 2 neutral runs to 
identify voxels that maximize the 
correlation, and then test the correlation 

of the behavioral trait with these same 

voxels--but looking only at the other 2 

runs.  Such a procedure uses 
independent data for voxel selection and 
the subsequent correlation test, and thus 
avoids the non-independence error11.  

                                                            

uniform across individuals (Saxe, Brett, & 
Kanwisher, 2006). 
11

 At first blush, one might worry that using only 
half of the data to select the correlated regions 
will greatly decrease statistical power.  However, 
there are two reasons why this should not be a 
concern.  First, removing half of the data from 
each subject does not reduce the number of data-
points that go into the across-subject correlation 
– it simply makes the estimate of BOLD activity 
for an individual subject more noisy (by a factor 
of sqrt(2)).  This is not as detrimental to the 
ability to evaluate a correlation as reducing the 
number of data points.  Second, stringent 
corrections for multiple comparisons are 
unnecessary for an independent split-half 
analysis, thus, a (reasonable) liberal threshold 
may be chosen to select the subset of voxels that 
correlate with the behavioral measure in the first 
half of the data. The statistical inference relies on 
the magnitude of the correlation observed in 
those voxels in the second half of the data – a 
single comparison, which will have ample power 
to detect any effect that may be close to 
significant in a properly corrected whole-brain 
analysis.  For an even more data-efficient (but 
computationally intensive) independent 
validation technique, variants of the ‘k-fold’ 
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This straight-forward analysis may be 
computed on all of the suspect results 
noted in our paper thus far, and can be 
used to provide unbiased estimates of the 
correlations reported in these papers.  
Techniques of this kind (hold out 
validation and cross-validation) are used 
in a variety of fields (including fMRI) to 
evaluate the generality of conclusions 
when over-fitting is a possibility 
(Geisser, 1993) – as is the case when 
picking a small subset of many measured 
correlations as a measure of the true 
correlation. 

It may often be advisable to use both of 
the methods just described, because they 
may find slightly different kinds of (real) 
patterns in the data.  The first type of 
analysis focuses on the voxels that are 
most active in the task contrast at issue.  
This is a sensible place to look first to 
find relationships with individual 
differences.  However, it is possible that 
the behavioral individual differences 
may be most closely associated with 
activity in some subset of voxels which 
may not show the greatest activity in this 
contrast.  For example, it is possible that 
within the ACC there could be neural 
structures whose magnitude of response 
is related to rejection, even if the mean 
activation in those structures across 
subjects does not differ from zero. 

F. Even if correlations were 

overestimated due to non-independent 

analyses, can’t we at least be sure the 

correlations are statistically significant 

(and thus that there exists a real, 

nonzero, correlation)? 

In most of the nonindependent analyses, 
the voxels included in the computation 

                                                            

method can also be used  (Brieman & Spector, 
1992). 

of the reported correlation were those 
that passed a threshold for significance 
that was based on some combination of 
the correlation value for each voxel and 
the spatial contiguity between the voxel 
and other elevated voxels--a threshold 
that typically included some ostensible 
adjustment for multiple comparisons.  
Given that, can we not be sure that there 
is a real, albeit weaker-than-reported, 
correlation?  In principle, this ought to 
be the case – but only if the correction 
for multiple comparisons is 
appropriately implemented. 

We did not explicitly survey the authors 
about their multiple comparisons 
correction procedures, but we do see 
evidence that the corrections used in this 
literature may often be less than 
trustworthy.  The most common method 
of correcting for multiple comparisons 
used in this literature is family-wise 
error correction relying on “minimum 
cluster size thresholds”12.  In this 
approach, the correlation in clusters of 
voxels is determined to be significant if 
the cluster contains a sufficiently large 
number of contiguous voxels each 
exceeding some statistical threshold.  
This procedure “relies on the assumption 
that areas of true neural activity will tend 
to stimulate signal changes over 
contiguous pixels” (Forman et al., 1995), 
i.e., “signal” will tend to show up as 
activity that extends beyond a single 
voxel, whereas statistical noise will 
generally be independent from one voxel 
to its neighboring voxel and thus will not 
usually appear in large clusters13. 

                                            
12

 See Appendix 2 for a discussion of whether 
the problem of inflated correlations is eliminated 
by the use of a cluster-based threshold. 
13 Technically, the rationale is somewhat more 
complicated and relies on estimates of the spatial 
correlations known to be present in the voxels 
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Given particular scan parameters14, one 
can use various sophisticated techniques 
to compute the probability of falsely 
detecting a cluster of voxels (Type I 
error). This probability may be estimated 
using the AlphaSim tool from the 
program AFNI (Analysis for Functional 
NeuroImaging)15 (Cox, 1996; Douglas 
Ward).  We noticed that many papers in 
our sample chose p-thresholds of 0.005 
and cluster size thresholds of 10, and 
stated that these choices were made 
relying upon Forman et al. (1995) as an 
authority. For instance, Eisenberger, et al. 
(2003) claimed that their analysis had a 
per-voxel false positive probability of 
“less than 0.000001.” They used these 
thresholds on 19x64x64 imaging 
volumes at 3.125x3.125x4 mm, 
smoothed with 8 mm full-width at half-
max Gaussian kernel.  We were puzzled 
that these parameters would be able to 
reduce the rate of false alarms to the 
degree claimed, and so we investigated 

                                                            

(e.g., due to smoothing). The smoothness 
assumption defines how likely it is for pure noise 
observations with these spatial statistics to 
contain clusters with a particular number of 
contiguous voxels exceeding statistical threshold. 
14 These parameters include: voxel dimensions, 
volume dimensions, smoothing parameter 
(sometimes data smoothness as estimated from 
the data), minimum cluster size, and minimum 
single-voxel p-threshold. 
15 The method used by AlphaSim differs subtly 
from that in SPM: AlphaSim allows users to 
estimate the smoothness of the data by entering 
the smoothing kernel – thus ‘smoothness’ 
amounts to the degree to which data were 
smoothed.  In contrast, SPM computes a measure 
of ‘smoothness’ by measuring the spatial 
correlation in the data in addition to the 
smoothing parameter applied.  Thus, simply 
entering the smoothing kernel into AlphaSim 
underestimates the smoothness of the data, and 
underestimates the probability of a falsely 
detected cluster.  For our purposes, this means 
that the numbers obtained from AlphaSim will 
actually underestimate how large the clusters 
must be to reach a certain false alarm probability. 

using AlphaSim.  According to the 
AlphaSim simulations, pure noise data is 
likely to yield a cluster passing this 
threshold in nearly 100% of all runs (a 
per-voxel false alarm probability of 
0.002)!  To hold the false detection 
probability for a particular cluster 
below .000003 (thus keeping the overall 
probability of a false positive in the 
analysis below the commonly desired 
alpha level of 0.05), a far larger cluster 
size (namely, 56 voxels) would need to 
be used16. Thus, we suspect that 
the .000001 figure cited by Eisenberger 
et al. (2003) and other authors actually 
reflects a misinterpretation of Forman’s 
simulations results17. It seems that 
ostensible corrections for multiple 
comparisons with the cluster size 
method are at least sometimes 
misapplied, and thus, even the statistical 
significance of some correlations in this 
literature may be questionable. 

                                            
16

 Even if the brain occupied just one tenth of the 
imaging volume (7,700 voxels), the parameters 
described would falsely detect a cluster 60% of 
the time in pure noise – in this case, the 
appropriate minimum cluster size threshold 
would need to be 27, rather than 10, to reach a 
false detection rate of 0.05. 

17 The per-voxel false detection probabilities 
described by Eisenberger et al (and others) seem 
to come from Forman et al.’s Table 2C.  Values 
in Forman et al’s table report the probability of 
false alarms that cluster within a single 2D slice 
(a single 128x128 voxel slice, smoothed with a 
FWHM of 0.6*voxel size).  However, the 
statistics of clusters in 2D (a slice) are very 
different from those of a 3D volume: there are 
many more opportunity for spatially clustering 
false alarm voxels in the 3D case, as compared to 
the 2D case. Moreover, the smoothing parameter 
used in the papers in question was much larger 
than 0.6*voxel size assumed by Forman in Table 
2C (in Eisenberger et al., this was >2*voxel size).  
The smoothing, too, increases the chances of 
false alarms appearing in larger spatial clusters. 
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In general, it is important to keep in 
mind what statistics the conclusions of a 
particular paper rely on.  In many papers, 
a liberal threshold is used to select an 
ROI (one that would be insufficiently 
conservative to address the multiple 
comparisons problem), and then an 

independent secondary statistic is 
computed on the ROI voxels.  The 
conclusions of such papers usually rest 
on the secondary statistic computed 
within the ROI; what threshold was used 
to select the ROI voxels does not really 
matter.  In the cases we discuss in this 
paper, the secondary statistics are non-

independent, and are thus biased and 
meaningless.  In these cases, the criteria 
used to select voxels becomes the only 
statistic which may legitimately be used 
to evaluate the results, and thus the 
selection criteria are of utmost 
importance for the conclusions of the 
paper. 
 

It should be emphasized that we 
certainly do not contend that problems 
with corrections for multiple 
comparisons exist in all (or even a 
majority) of the papers surveyed. Many 
comparisons are corrected in a 
defensible fashion.  Moreover, even 
papers using multiple comparisons 
corrections that, strictly speaking, rely 
on assumptions that were not really met, 
may report relationships that do indeed 
exist at least to some nonzero extent.   In 
any case, we argue that (a) the actual 
correlation values reported by the non-
independent analyses comprising over 
half of the studies we examined are sure 
to be inflated to the point of being 
completely untrustworthy, (b) assertions 
of statistical significance based on non-
independent analyses require careful 
scrutiny—which does not always appear 
to have been done in the publication 

process.  Perhaps most importantly, we 
argue (c) that if researchers would use 
the approaches recommended above (see 
Question D) they could avoid the whole 
treacherous terrain of non-independent 
analyses and its attendant uncertainties 
and complexities.  In this way, the 
statistics would only need to be done 
once, the false alarm risk would be 
completely transparent, and there would 
be no need to use highly complex 
corrections for multiple comparisons that 
rest on hard-to-assess assumptions.    

G. Well, in those cases where the 

correlation really is significant (i.e., 

nonzero), isn’t that what matters, 

anyway?  Does the actual correlation 

value really matter so much? 

We contend that the magnitude, rather 
than the mere existence, of the 
correlation is what ‘really matters’.  A 
correlation of 0.96 (as in Sander et al., 
2005), indicates that 92% of the variance 
in proneness to anxiety is predicted by 
the right cuneus response to angry 
speech.  A relationship of such strength 
would be a milestone in understanding 
of brain-behavior linkages, full of 
promise for potential diagnostic and 
therapeutic spin-offs.  In contrast, 
suppose—and here we speak purely 
hypothetically--the true correlation in 
this case were 0.1, accounting for 1% of 
the variance. The practical implications 
would be far less, and the scientific 
interest would be greatly reduced as well.  
A correlation of 0.1 could be mediated 
by a wide variety of highly indirect 
relationships devoid of any generality or 
interest.  For instance, proneness to 
anxiety may lead people to breathe faster, 
drink more coffee, or make slightly 
different choices in which lipids they 
ingest.  All of these are known to have 
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effects on BOLD responses (Weckesser 
et al, 1999; Mulderink et al., 2002; 
Noseworthy et al, 2003), and those 
effects could easily interact slightly with 
the specific hemodynamic responses of 
different brain areas.  Or perhaps 
anxious people are more afraid than 
others of failing to follow task 
instructions and attend ever so slightly 
more to the required auditory stream.  
The weaker the correlation, the greater 
the number of indirect and uninteresting 
causal chains that might be accounting 
for it, and the greater the chance that the 
effect itself will appear and disappear in 
different samples in a completely 
inscrutable fashion (e.g., if the dietary 
propensities of anxious people in 
England differ from those of anxious 
people in Japan).  We suspect that it is 
for this reason that the field of risk-
factor epidemiology is said to have 
reached some consensus that findings 
involving modest but statistically 
significant risk ratios (e.g., ratios 
between 1.0 and 2.0) have not generally 
proven to be robust or important.  It 
seems likely to us that most reviewers in 
behavioral and brain sciences also 
implicitly view correlation magnitude as 
important, and we suspect that the very 
fact that so many of the studies reviewed 
here appeared in high-impact journals 
partly reflects the high correlation values 
they reported. 

Concluding Remarks 

We began this article by arguing that 
many correlations reported in recent 
social neuroscience literature are 
“impossibly high”. Correlations of this 
magnitude are unlikely to occur even if 
one makes the (implausible) assumption 
that the true underlying correlations -- 
the correlations that would be observed 
if there were no measurement error -- are 

perfect.  We then went on to describe 
our efforts to figure out how these 
impossible results could possibly be 
arising.  While the method sections of 
articles in this area did not provide much 
information about how analyses were 
being done, a survey of researchers 
provided a clear and worrisome picture.  
Over half of the investigators in this area 
used methods that are guaranteed to 
offer greatly inflated estimates of 
correlations.  As seen in Figure 5, these 
procedures turn out to be associated with 
the great majority of the correlations in 
the literature that struck us as impossibly 
high18. 

Interestingly, we suspect that the 
problems brought to light here are ones 
that most editors and reviewers of 
studies using purely behavioral measures 
would usually be quite sensitive to.  
Suppose an author reported that a 
questionnaire measure was correlated 
with some target behavioral measure at 
r=.85, and that this number was arrived 
at by separately computing the 
correlation between the target measure 
and each of the items on the 
questionnaire, and reporting just the 
average of the highest-correlated 
questionnaire items.  Moreover, to assess 
whether these highest-correlated 
questionnaire items were just the tail of a 
chance distribution across the many 
items, a filtering procedure had been 
used with properties too complex to 
derive analytically.  We believe that few 
prestigious psychology journals would 
publish such findings.  It may be that the 
problems are not being recognized in 
social neuroscience because of the 

                                            
18 The others (high green numbers in Figure 5) 
could simply reflect normal sampling variability 
of the sort found with any kind of imperfect 
measurement.  
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relative unfamiliarity of the measures, 
and the relatively greater complexity of 
the data analyses.  Moreover, perhaps 
the fact that the papers report using 
procedures that include some precautions 
relating to the issue of multiple 
comparisons leads reviewers to assume 
that such matters are all well taken care 
of. 

As discussed above, one thing our 
conclusions leave open is whether, 
behind any given inflated correlation, 
there is at least some real relationship—
i.e. a true correlation higher than zero.  
Most investigators used thresholds that 
ostensibly correct for multiple 
comparisons but, we have argued, in 
some cases these corrections were 
seriously misapplied.  Based on the 
analysis described above, we suspect 
that while in many cases the reported 
relationships probably reflect some 
underlying relationship (albeit a much 
weaker relationship than the numbers in 
the articles implied), it is quite possible 
that a considerable number of 
relationships reported in this literature 
are entirely illusory.   

To sum up, then, we are led to conclude 
that a disturbingly large, and quite 
prominent, segment of social 
neuroscience research is using seriously 
defective research methods and 

producing a profusion of numbers that 
should not be believed.   

A Suggestion to Investigators 

Despite the dismal scenario painted in 
the last paragraph, we can end on a 
much more positive note.  We pointed 
out earlier how investigators could have 
explored these behavioral trait- brain 
activity correlations using methods that 
do not have any of the logical and 
statistical deficiencies described here.   
The good news is that in almost all cases 
the correct (and simpler) analyses can 

still be performed.  It is routine, and 
often required by journals and funders, 
for large neuroimaging data sets (which 
have usually been collected at great cost 
to public agencies) to be archived.  
Therefore, in most cases it is not too late 
to perform the analyses advocated here 
(or possibly others that also avoid the 
problem of non-independence).  Thus, 
we urge investigators whose results have 
been questioned here to perform such 
analyses and to correct the record by 
publishing follow-up errata that provide 
valid numbers.  At present, all studies 
performed using these methods have 
large question marks over them.  
Investigators can erase these question 
marks by re-analyzing their data with 
appropriate methods. 
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APPENDIX 1: fMRI Survey Question Text 

Would you please be so kind as to answer a few very quick questions about the analysis 
that produced, i.e., the correlations on page XX.  We expect this will just take you a 
minute or two at most.  
 
To make this as quick as possible, we have framed these as multiple choice questions and 
listed the more common analysis procedures as options, but if you did something 
different, we'd be obliged if you would describe what you actually did. 
 
The data plotted reflect the percent signal change or difference in parameter estimates 
(according to some contrast) of...� 
1. ...the average of a number of voxels.� 
2. ...one peak voxel that was most significant according to some functional measure.� 
3. ...something else?�� 
 
If 1:� 
The voxels whose data were plotted (i.e., the "region of interest") were selected based 
on...� 
1a. ...only anatomical constraints (no functional data were used to define the region, e.g., 

all voxels representing the hippocampus).� 
1b. ...only functional constraints (voxels were selected if they passed some threshold 

according to a functional measure – no anatomical constraints were used; e.g., all 
voxels significant at p<.0001, or all voxels within a 5 mm radius of the peak voxel)� 

1c. ...anatomical and functional constraints (voxels were selected if they were within a 
particular region of the brain and passed some threshold according to a functional 
measure; e.g., all voxels significant at p<.0001 in the anterior cingulate)� 

1d. ...something else? 
 
If you picked [1b, 1c, or 2] above could you please advise us about the following: 
 
The functional measure used to select the voxel(s) plotted in the figure was...� 
[A]. ...a contrast within individual subjects (e.g., condition A greater than condition B at 

some p value for a given subject)� 
[B]. …the result of running a regression, across subjects, of the behavioral measure of 

interest against brain activation (for a contrast) at each voxel.� 
[C]. ...something else? 
 
Finally: the fMRI data (runs/blocks/trials) displayed in the figure were...� 
[A]. ...the same data as those employed in the analysis used to select voxels (the 

functional localizer).� 
[B]. ...different data from those employed in the analysis used to select voxels (the 

functional localizer).��Thank you very much for giving us this information so that 
we can describe your study accurately in our review. 
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APPENDIX 2 

G. Most papers use cluster size, not just a high threshold, to capture correlations.  Does 

the inflation of correlation problem still exist in this case? 

Yes. The problem arises from imposing any threshold which does not capture the full 
distribution of the ‘true effect’.  Since any true signal will also be corrupted by 
measurement noise, measurements of voxels that really do correlate with the behavioral 
measure of interest will also produce a distribution (although in this case the distribution 
will have a mean with a value that differs from zero).  Imposing a threshold on this 
distribution will select only some samples – those with more favorable patterns of noise. 
If nearly the whole distribution is selected (statistical power is nearly 1) and there are no 
false alarm clusters, there would be no inflation.  However, the lower the power, the more 
biased the selected subsample. Although cluster-size correction methods effectively 
increase power, they do not increase it sufficiently to mitigate bias.  For simple whole-
brain contrasts, cluster-size methods, appear to provide power that does not exceed 0.4 
(and will more likely be substantially lower than that; Friston, Holmes, Poline, Price, and 
Frith, 1995).  If statistical power is at 0.4, that means that only the top 40% of the true 
distribution will be selected – the mean of these selected samples will be very much 
higher than the true mean. 

 

 

Figure A3: Simulation of cluster size correction and measure variable inflation. 

For the moderately technical audience we provide a simplified cluster-size threshold 
simulation to show the magnitude with which the underlying signal can be inflated by an 
analysis procedure of roughly the sort we describe in this article.  We generated a random 
1000x1000 voxel slice (300x300 subset shown; the dimensions are irrelevant in our case, 
because we had a constant proportion of signal voxels) by generating random noise for 
each voxel (gaussian noise with mean 0 and standard deviation of 3.5).  We blurred this 
slice with gaussian smoothing (kernel standard deviation = 2), thus inducing a spatial 
correlation between voxels, and resulting in an effective standard deviation of 0.5 per 
voxel.  We then added ”signals” to this noise: Signals were square “pulses” added to 
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randomly chosen 5X5 sub-regions of the matrix.  Within one simulated matrix, 25% of 
the voxels were increased by 1.  The color map shows measured intensity of a given 
voxel, with 0 being the noise average, 1 (marked with a *) the signal average.   
 
We then did a simple cluster-search (finding 5x5 regions in which every voxel exceeded 
a particular threshold).  We tried a number of different height thresholds, and for each 
threshold we measured the probability of a false alarm (the probability that a voxel that 
was within a 5x5 region in which all voxels passed threshold did not contain a true 
signal) -- the logarithm (base 10) of this probability is the x axis (-2 corresponds to p(FA) 
= 0.01, -0.3: p(FA) = 0.5).  We also computed the inflation of the measured signal 
compared to the true signal in the detected voxels, as a percentage of true mean voxel 
amplitude; this is plotted on the y axis.  “**” on the x-axis corresponds to simulated 
thresholds that did not produce any false alarm voxels in our simulations, thus, those 
reflect only regions that were entirely composed of signals.  Error bars correspond to +/- 
1.96 standard deviations across simulations for each threshold.  (Naturally, low 
thresholds are on the right of the graph, producing many false alarms, high thresholds are 
on the left, producing few, if any, false alarms).  A crude summary of the results of this 
simulation is that taking only signals that pass a threshold always inflates the underlying 
signal rather seriously (given thresholds that have a reasonable probability of false 
alarm), and as thresholds are raised to decrease false alarms, the signal inflation becomes 
even greater.   

 


