
Matlab
Introduction:
basic commands,

loops & conditionals,
scripts & functions

Jason Taylor

MRC CBU
Cambridge

04 December 2013

[from xkcd.com]

jason.taylor@mrc-cbu.cam.ac.uk
jason.taylor@manchester.ac.uk

Outline

- Why Matlab?
- A Brief (Interactive) Introduction to Matlab

→ Starting Matlab
→ Path
→ Workspace
→ Numeric Variables
→ Maths/Logic
→ Strings, Cells, Structures
→ Loops

- Scripts and Functions
→ An Example Script (summarise RT data over subjects)
→ An Example Function (standard error of the mean)

- HELP?! (Where to get it)

* NOTE: Presentation, data, and scripts are available in:
/imaging/jt03/demo

I will race through
this as much of it
has been covered
by Russell & Yaara!

Why Matlab?
...or any other command-line software

There are distinct advantages to analysing your data using
scripts and functions:

- Leave data in its original format
- Retain a complete record of all processing
- Hard work for the first subject, easy sailing for the rest
- Easily modify analysis pipeline and re-run analyses

Alternatives to Matlab:

- Octave (free!) … matlab clone
- S-Plus (not free) or R (free!) … stats
- Yes, you can script Excel (Visual Basic) and SPSS (syntax) too, but

these are less flexible/powerful

Why Matlab?
… specifically

Versatility (stock functions + add-on toolboxes):
- Statistics (basic commands, statistics toolbox, other toolboxes)
- Image Processing
- Signal Processing
- 3D Visualisation
- Custom

see: http://www.mathworks.com/matlabcentral/fileexchange

Neuroimaging (MRI, fMRI, DTI, M/EEG)
- SPM
- GIFT / EEGIFT
- EEGLAB / FMRLAB
- FieldTrip
- etc.

Go to demo (brief_intro_to_matlab.m)

On the following slides I've simply copied the contents
of brief_intro_to_matlab.m, one cell per page. It's
meant to be explored interactively and run line-by-line,
so why not go open it in Matlab Editor and try it out?

(Otherwise, skip ahead to slide 22)

A Brief (Interactive) Introduction
to Matlab

% A Brief Introduction to Matlab
%
% This script is intended to introduce novices to
% the Matlab environment. It is meant to be executed
% line-by-line, allowing for interactive exploration
% of data types and whatnot.
%
% Notes:
% - odd spaces between cells for demonstration purposes!
% - navigate between cells using <ctrl>+<down> <ctrl>+<up>
%
% by Jason Taylor (18 Nov 2011 + subsequent small updates)
% MRC Cognition and Brain Sciences Unit
% Cambridge, UK
% email: <first>.<last>@mrc-cbu.cam.ac.uk
% School of Psychological Sciences
% University of Manchester
% email: <first>.<last>@manchester.ac.uk

%% SOME TIPS:
%
% GENERAL:
% % indicates a comment (ignored)
% ; (@ end of command) means don't print result
%
% COMMAND WINDOW:
% >> this is the 'prompt': type commands here!
% <up> scrolls through command history, last-to-first
% - all commands if you've typed nothing
% - matching commands if you've typed something
% <tab> completes (e.g., mea<tab> gives 'mean'...)
% <ctrl+c> stop command
% clc clears command window
%
% EDITOR:
% %% begins a new 'cell' (section of code)
% <F9> executes a highlighted line (or set of lines)
% <ctrl+dn> go to next cell
% <ctrl+up> go to prev cell

%% STARTING MATLAB

% Windows: Start->Matlab or double-click icon
% * Note: can set startup preferences in shortcut
% e.g., starting dir, -nojvm, etc.

% Linux Machines:
% Type 'matlab'
% Type 'matlab <-options>'
% Type 'spm <options>' *wrapper script @ CBU
% ... see demo ...

%% Matlab & Linux

% Within matlab, linux commands can be run:
% ! <command>
% or:
% [status,result] = unix(<command>);

% e.g.:
! hostname
[status,hname] = unix('hostname');
if ~status, fprintf(1,'You are connected to %s\n',hname); end

%% PATH
% = search path Matlab uses to identify and execute
% commands, functions, scripts...

% Report the contents of path:
path

% Add a directory to your path (prepend):
% >> addpath <path/to/directory>

% e.g.,
addpath /imaging/jt03/demo/scripts/
% or, append:
addpath /imaging/jt03/demo/scripts/ -END

% edit /home/<user>/matlab/startup.m

% Find the path of a particular function/script/command:
% which <command>
which mean

%% THE WORKSPACE
% = variables that are currently available to be used
% by you (or by functions as input)

% Two ways to get the mean of a vector:
mean([4.1 3.3 4.8]) % <-this will give you the answer

% or,
x = [4.1 3.3 4.8] % <- this will store the values
mx = mean(x) % and the answer in variables

%% ... and now you can:

% - get other summary statistics,
sx = std(x)
[min(x) max(x)]

% - plot
bar(x);
hold on;
plot(2,mx,'ko','MarkerFaceColor','r','MarkerSize',12);

% - write it to a text file:
dlmwrite('x.txt',x,'\t');

% - save as a .mat file
save('x.mat','x');
clear x
load('x.mat')

% - etc.
figure; imagesc(rand(64,64)*std(x));

%% Some WORKSPACE Commands:

% List names of all variables in the workspace:
who

% List names, size, class of all variables in the workspace:
whos

% List ... of a subset of variables in the workspace:
% whos [<variablenamelist>]

% eg.,
whos x
whos *x* % <- '*' = wildcard

% Clear (all or subset of) variables out of workspace:
clear x

%% NUMERIC VARIABLES:

% Scalar values:
x = 42

% Vectors:
xvec = [1 2 3 4 5 6]
xvec2 = 1:6 % equivalent

% Matrices:
xmat = [1 2 3; 4 5 6; 7 8 9]
xmat'

% N-dimensional arrays:
x3d = cat(3,xmat,xmat+10)

% Get size of each dimension:
size(xmat)

% Indexing:
xmat(:,[2 3]) % <- all rows, columns 2 and 3

%% MATHS (+ - * / ^)

% Add/subtract
42 + 10
x + 10
y = x - 10

% Multiply/divide (scalar):
y = x * 5
y = x/2

% Multiply/divide (vector):
y = xvec .* [10 100 1000 10 100 1000]
y = xvec/(xvec(1))

% etc.:
y = sqrt(x^3)
y = (x^3)^(1/2) % equivalent

%% LOGIC & LOGICAL INDEXING (== ~= > < & && | ||)

% Logic:
v = xvec*10
v > 30
v > 30 & v ~= 60

% Find index of 'true' (or nonzero, generally):
find(v>30 & v~=60)

% Use logical index:
v(v>30 & v~=60)
v(find(v>30 & v~=60)) % equivalent

% Use logical index on a different variable:
xvec(v>30 & v~=60)

% Valid numbers:
v(end) = NaN
v(~isnan(v))

%% STRINGS AND CELLS (‘’{} isstr iscell findstr strmatch)

% Strings:
mystring = 'hello world'
xstr = '42' % not the same as x = 42 (see 'isnumeric')

% String matching:
findstr('o',mystring)
findstr('world',mystring)

% Cell arrays (may mix types, sizes):
mycell = {'hello' 'world'}
xcell = {x xstr}
xcell(2)
xcell{2}

% Cell-string matching:
strmatch('world',mycell)

%% STRUCTURES (struct fieldnames isfield)
% ** SPM users take note (SPM.mat) **

% Struct:
S = struct()
S.subj = 's01'
S.sex = 'male'
S.age = 27
S.data = [1 2 3 4 5 6]
isfield(S,'age')

% Adding layers:
S(2).subj = 's02';
S(2).sex = 'female';
S(2).age = 19;
S(2).data = [11 12 13 14 15 16]

% Extracting data:
[S.age]
{S.sex}

%% LOOPS (for..end if..end while..end switch..case..end)

% For loop (with embedded if):
for i = 1:10

if i>3, fprintf(1,'subject %02d\n',i); end
end

% While loop:
i = 0;
while i<3

i = i+1;
fprintf(1,'subject %02d\n',i);

end

%% Loops continued

% Switch ... case ... otherwise ... end
switch S(1).sex

case 'male'
fprintf(1,'He is subject 1.\n');

case 'female'
fprintf(1,'She is subject 1.\n');

otherwise
fprintf(1,'Subject 1''s sex was not recorded.\n');

end

%% That's enough for now!

% On to scripts and functions...

% If you got here via the presentation, type 'return' +
[ENTER] at the
% command line, or highlight and <F9>:

return

Functions vs. (Batch) Scripts

Function:
- General

(usually applies to any data, project)

- Run as command
(specify input, output arguments)

- Variables do not stay in
workspace
(except input/output arguments,
debugging environment)

- Can get help by typing:
help <function name>

- First line of code MUST BE:
function [<out>] = <function_name>(<in>)

e.g. function y = mean(x,dim)

Script:
- 'Hack and Run'

(customise to your data, project)

- Copy&Paste (<F9>) or command
(no arguments allowed)

- Variables stay in workspace

Both are text files, which you can edit in Matlab’s editor (see edit command)
or your favourite text editor (emacs, nedit, gedit, wordpad, notepad, etc.)
NOTE: These vary in terms of debugging friendliness!

You may start writing a batch script, then later find it
useful to convert sections of it into functions.

Go to demo (demo_script_cell_by_cell.m)

On the following slides I've simply copied the contents of
demo_script_cell_by_cell.m, which shows the evolution of a
simple script to analyse response time data from 15 subjects
and produce a figure with a bar plot of mean RT + standard
error bars. You can also view and run the resulting script –
demo_script_simple.m –and the more elaborate version –
demo_script_final.m –in the CBU imaging workspace.

More information is given in demo_readme.m

An Example Batch Script

%
% This is what I showed in the demonstration. It is meant to show
% the evolution of demo_script_simple.m:
%
% - First, write description of what the script will do
% - Second, write comments describing each step
% - Third, flesh out each step with code
%
% The 'strings' at the top of each cell are annotations.
%
% Use <ctrl>+<down> and <ctrl>+<up> to navigate between cells.
%
% by Jason Taylor (21 Nov 2011 + subsequent revisions)
%

%%

'At top: What the script does, when created (updated)?'

% This is a batch script to get the median of each subject's RT data,
% plot the grand mean and standard error for the two conditions.
%
% by Jason Taylor (17/11/2008)
% + updated (jt 17/11/2008): added error bars
%

%%

'In body: Write an outline using comments'

% (1) Define directory, filename, subject parameters

% (2) Get each subject's median RT

% (3) Compute grand mean, standard error of median RTs

% (4) Plot bar graph with error bars

%%

'Then fill in with increasingly specific comments (as necessary) &
commands'

% (1) Define directory, filename, subject parameters:

% Project directory:
if ispc

projdir = '\\cbsu\data\imaging\jt03\demo\rtdata\subjects';
else

projdir = '/imaging/jt03/demo/rtdata/subjects';
end

% Working directory (where summary data will be saved):
if ispc

wkdir = '\\cbsu\data\imaging\jt03\demo\rtdata\ga15';
else

wkdir = '/imaging/jt03/demo/rtdata/ga15';
end

% Subjects:
subjects = [1:15];

%%

'...continue to fill in ...'

% (2) Get each subject's median RT:

% Initialise variable (subjects x conditions) to collect median RTs:
mdrt = zeros(length(subjects),2);

% Loop over subjects:
for i = 1:length(subjects)

% Get current subject label:
subj = sprintf('s%02d',subjects(i));

% Go to subject's directory, load data:
cd(fullfile(projdir,subj));
load('word_nonword.mat');

% Put median RT for each condition into summary matrix:
mdrt(i,1) = median(D.rt(D.event==1));
mdrt(i,2) = median(D.rt(D.event==2));

end % i subjects

%%

'...continue to fill in ...'

% (3) Compute grand mean, standard error:

% Compute mean (collapsing over rows):
gm = mean(mdrt,1);

% Get standard error:
se = std(mdrt)/sqrt(size(mdrt,1));

% Save it as a .mat file in working directory:
cd(wkdir)
save rtdata.mat gm se

%%

'...continue to fill in ...'

% (4) Plot:

% Open a figure, make background white:
fig = figure;
set(fig, 'color', [1 1 1])

% Plot means:
bar(gm);

% Rescale axes:
ymax = ceil(max(gm+se));
set(gca, 'ylim', [0 ymax]);

% Plot and format error bars:
ebar1 = line([1 1],[gm(1) gm(1)+se(1)]);
ebar2 = line([2 2],[gm(2) gm(2)+se(2)]);
set([ebar1 ebar2], 'linewidth', 6);

%%

'...continue to fill in ...'

% Apply title, labels, etc.:
title('Grand Mean of Median RTs');
xlabel('Stimulus Type');
ylabel('RT + SEM (ms)');
set(gca, 'xticklab', {'word', 'nonword'});

% End gracefully:
fprintf(1,'\n++ done! ++\n\n');

%%

'To run the script, type at the Command Line (or highlight and <F9>):'

demo_script_simple

'To run a version with nicer formatting, type:'

demo_script_final

'If you launched this from the presenation...'
'To return to the presentation, type:'

return

An Example Batch Script

Running the batch script demo_script_simple.m should:

- Add several variables to the workspace, including
gm (grand mean of median RTs for 2 conditions)
se (standard error of the mean for 2 conditions)

mdrt (median RTs for each subject and condition, 15x2)

- Open a figure window and plot M+SE for each condition

An Example Batch Script

The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

%% (0) Define options:

% Plot format:
barcolor = [.5 .5 .5];
ebarcolor = [0 0 0];
ebarsize = 3;
plotfont = 12;

'Adding (at top) some options to make the figure a bit more attractive'

% Plot means:
bar(gm, 'facecolor', barcolor);

'These get called later in the call to bar (which plots the data):'

set([ebar1 ebar2], 'linewidth', ebarsize, 'color', ebarcolor);

set(gca,'fontsize',plotfont);

An Example Batch Script

The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

'Which results in this slightly prettier figure:'

An Example Batch Script

The script demo_script_final.m shows how you might improve upon the
simple batch script. Some improvements include:

% Processing options:
plotvar = 'median'; % 'median', 'mean', 'trim<N>' (N%-trimmed mean)
dosave = 0; % save grandmean data?
doplot = 1; % plot grandmean data?

'Adding some processing options (Which summary statistic? Save? Plot?):'

% Data options:
conds = [1 2];
condlabs = {'word', 'nonword'};
Nevents = [240 240];

'And some data options...'

% Loop over conditions
for j = 1:length(conds)

rt = D.rt(D.event==conds(j));

end % j in conds

'... which get looped over later'

' ... '

' ... '

This loop is more flexible and more
powerful than typing out the same
command for each condition
In demo_script_simple.m, we had:

mdrt(i,1) = median(D.rt(D.event==1));
mdrt(i,2) = median(D.rt(D.event==2));

But what if we want to add more conditions?

* Better yet, vector/matrix operations
are more efficient than loops!

An Example Function

At some point, you may find you’re often typing out the same formula or
set of commands. This is annoying… and inefficient!

For example: In our script, we had to compute standard error by hand:

% Get standard error:
se = std(mdrt)/sqrt(size(mdrt,1));

By contrast, we don’t compute the mean by hand (sum elements/number
of elements), we just call the function mean.

So let’s create a standard error function.

An Example Function

First … what does a function look like?

To look at a function’s contents, you can:

edit mean % open the function's m-file in Matlab Editor

type mean % dump the function's contents to screen

which mean % find the function's m-file

unix(sprintf('nedit %s',which('mean'))); % edit in another editor

The main elements of a function are … (next slide)

function y = mean(x,dim)

%MEAN Average or mean value.
% For vectors, MEAN(X) is the mean value of the elements in X. For
% matrices, MEAN(X) is a row vector containing the mean value of
% each column. For N-D arrays, MEAN(X) is the mean value of the
% elements along the first non-singleton dimension of X.
%
% MEAN(X,DIM) takes the mean along the dimension DIM of X.
%
% Example: If X = [0 1 2
% 3 4 5]
%
% then mean(X,1) is [1.5 2.5 3.5] and mean(X,2) is [1
% 4]
%
% Class support for input X:
% float: double, single
%
% See also MEDIAN, STD, MIN, MAX, VAR, COV, MODE.

% Copyright 1984-2005 The MathWorks, Inc.
% $Revision: 5.17.4.3 $ $Date: 2005/05/31 16:30:46 $

if nargin==1,
% Determine which dimension SUM will use
dim = min(find(size(x)~=1));
if isempty(dim), dim = 1; end

y = sum(x)/size(x,dim);
else

y = sum(x,dim)/size(x,dim);
end

function call: function [out] = fname(in)
e.g., function y = mean(x,dim)

Description

-will display when
'help' is called.

-useful to include
examples

Author info

Contents of
function

An Example Function
So, have a crack at a standard error function, sem:

function y = sem(x)

% Computes standard error (standard deviation divided by
% square root of N) of a vector.
%
% by Jason Taylor (18/11/2008)
% note: should be modified to handle matrices
%

% Check that input is a vector:
if nargin~=1
help sem
error('No input!')

elseif sum(size(x)>1)>1
help sem
error('Input must be a vector!')

end

% Compute SEM:
y = std(x)/sqrt(length(x));

return

Save in your path (e.g., /home/<user>/matlab/sem.m)
(see sem.m in /imaging/jt03/demo/scripts)

Give it a unique
name; first try:

which sem

Describe it

Take credit/blame

Note modifications,
limitations, bugs

Do it!

Check for proper
input (here must be
a vector)

HELP?!
(where to find it)

Obviously:
help <funcname>

For pretty, hypertext, browser-based help:
doc <funcname>

Look at the function!
edit <funcname>
type <funcname>

Online: Matlab Central:
http://www.mathworks.com/matlabcentral/

And the user file exchange:
http://www.mathworks.com/matlabcentral/fileexchange/

On the imaging wiki:
http://imaging.mrc-cbu.cam.ac.uk/imaging/LearningMatlab

Email lists (e.g., imagers+, imagerstech)

