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Structural, functional &
eﬁeCtive con neCtiVity MRC Brain Sciences Unit

structural connectivity functional connectivity effective connectivity
5 =~ Sl 1::':\:5

« Structural/anatomical connectivity
= presence of axonal connections / white matter tracks (eg, DWI)

« Functional connectivity
= statistical dependencies between regional time series (eg, ICA)

« Effective connectivity
= causal (directed) influences between neuronal populations (eg, DCM)
(based on explicit network models)
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Structural vs Functional
connectivity
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 Tracing studies

 Tractography from DWI

But functionally, effect of one neuron
on another can depend on:

— Activity of a third (gating)

— Rapid changes in plasticity
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Functional vs Effective
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connectivity
No connection between B and C, Correlations:
yet B and C correlated because
of common input from A, eg: A B C

A = V1 fMRI time-series 0.49

B =05%A+el 0.30 1

C=03*A+¢e2 0.49 k‘
O - ~ |

; Functional

o connectivity
Effective connectivity a -
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Functional connectivity
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« Useful when no model, no experimental perturbation (eg resting state)
* Popular examples: seed-voxel correlations, PCA, ICA, etc

« Graph-theory summaries of functional networks

« Correlations in fMRI timeseries could be spurious haemodynamics (e.g,
effects of heart-rate/breathing; movement confounds...)

« Condition-dependent changes in functional connectivity (e.g, PPIs...)
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Effective-connectivity: MRC
Definitions of Causality?
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1. Direct experimental interventions (e.g, lesion, drugs)
2. Indirect experimental manipulations (e.g, PPIl, DCM)
3. Network model inference (e.g, SEM, DCM)

4. Temporal precedence (e.g, Granger Causality, DCM)

MRC | Medical Researc h Counci



2.

Effective-connectivity: MRC
Definitions of Causality?
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Indirect experimental manipulations (e.g, PP, DCM)



2. Condition-dependent

changes: eg PPl

Parametric, factorial design, in which one
factor is psychological (eg attention)

...and other is physiological (viz. activity
extracted from a brain region of interest)

V1 activity

Cognition and
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@ oo

V5 activity

Attentional modulation of

V1 - V5 connectivity
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2. Condition-dependent
changes: eg PPl

0 1
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Effective-connectivity: MRC
Definitions of Causality?
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3. Network model inference (e.g, SEM, DCM)



3. Explicit Network Models
of Causality

« (Bivariate) correlations do not use an explicit network (graph) model

N

Cognition and
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« Structural Equation Modelling (SEM) can test different network models, by
simply comparing predicted with observed covariance matrices, but...
— has no dynamical model (stationary covariances)
— has no neural-BOLD model
— cannot test some graphs, eg loops (no temporal definition of direction)
— restricted to classical inference comparing nested models

MRC | Medical Research Council



Effective-connectivity: MRC
Definitions of Causality?
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4. Temporal precedence (e.g, Granger Causality, DCM)

5.
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4. Temporal definition of
Causality

Stationary Dynamic
(correlations, SEM) (Granger, DCM)
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)

Time

XXXXX

AL L mr— (“unfolding” in time is one way to infer direction of connectivity)



4. Note on temporal causality
and fMRI

* Problem with time-based measures of connectivity arises with fMRI:
BOLD timeseries is not direct reflection of Neural timeseries

Cognition and

MRC Brain Sciences Unit

— (e.g, peak BOLD response in motor cortex can precede that in visual cortex in
a visually-cued motor task, owing to different neural-BOLD mappings)

 This compromises methods like Granger Causality and Multivariate Auto-
Regressive models (MAR) that operate directly on fMRI data
(Friston, 2010; Smith et al, 2011)

* Note that this does not preclude these methods (eg MAR) for MEG/EEG
timeseries, assuming these are more direct measures of neural activity

MRC | Medical Research Council



=> Development of DCM

1. Dynamic: based on first-order differential equations

- at level of neural activity, with separate haemodynamic model for fMRI
2. Causal-based on explicit directed graph models

3. Modelling: designed to test experimental manipulations

- “bilinear” approximation to interactive dynamics

4. (Estimated in a Bayesian context, allowing formal
comparison of any number/type of models...)
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Rough comparison of
popular methods?
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Experimental Temporal/ Network Haemodynamic
modulation Dynamical model Model (for fMRI)
Correlation /
ICA/PCA
PPI Y
Granger Y
SEM Y
DCM Y Y Y Y

MRC | Medical Research Council



DCM OverV|eW MRC Cognition and
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Input
u(t)

haemodynamic
model

MRC | Medical Research Council Friston et al. 2003, Neurolmage



DCM Neural Level

Oridinary Differential Equations:

A dz,

& .- » 2,(t)=27,00)exp(=st), z,(0)=1

Half-life = Decay function

2,(r) =0.52,(0)
=7,(0)exp(-s7)

» s=In2/r

0-0.1 0 0.1-0.2 0.30.40506070809 7T = |n 2 / S

we | mescaresscn ol DCM parameters = rate constants



Neurodynamics:
2 nodes, 1 driving input MRC [ arin scences un
“ L
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Neurodynamics:
...+1 modulatory input

RENEEEEEN
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Neurodynamics:
...+ reciprocal connections

S

reciprocal connection
disclosed by u,

R N
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Bilinear state equation MRC | Cosnition anc
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modulatory
inputs
intrinsic modulatory direct driving
connectivity connectivity Inputs Inputs
51 [a. ... a - 0 b7 2] e, - o, U
1 a; a, m 1 n 1 11 1d 1
= - +Z;u | |+
; I= (§) (1)
_Zn_ k_anl ann_ _bnl bnn 1) _Zn_ _Cnl Cnd__ud_
n regions m mod inputs d drv inputs

=(A+) uBY)z+Cu
i-1
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The hemodynamic
“Balloon” model

BOLD signal
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y(t) = Mv,q)

changes in volume changes in dHb

w=f-v'" g =fE(fp)p—v"“qm

I Y

Y

v

flow induction o, AP

. HRFEs!
f=s

F 3

1/(25‘{)(}7?{{6?.?0?} S Igh".ﬁ?{r J 6 haemodynamic
. : parameters
s=z—xs—p(f -1

v

Friston et al. 2000,
Neurolmage

Stephan et al. 2007, i
Neurolmage <07 )
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Haemodynamics:
reciprocal connections
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U, |
4t ]
BOLD [ e e Y
: (without noise) 0 I\ I\ \ \
. {&-*,,.{&._;3,__AL — * \
AF i Il‘ . -
2r I'y | I\ b
(without noise) 0 l!l \ \\ A\ \
s \—r g q—
0 20 40 60
seconds

h(u,0) represents the BOLD

. blue: neuronal activity
response (balloon model) to input

red: BOLD response
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Haemodynamics:
reciprocal connections
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BOLD
U, with
Noise added

BOLD
with

Noise added

o N B~

0 20 40 60
seconds

y represents simulated observation of BOLD response, i.e. includes noise

MRC | Medical Research Council y — h(U, 9) +€



Conceptual overview  [¥iel EEEEam

Input
u(t)
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. n
Neuronal state equation L= F(Z,U,6’ )
The bilinear model 7= (A+ZUij)Z+CU

effective A= a_F - @
connectivity o0z 01
modulation of Bi_ O°F 0 oL
connectivity B ozdu, B ou, oz
direct inputs C :fzg

ou ou

haemodynamic
model

BOLD

y

Friston et al. 2003, Neurolmage



Inference on model space

Model evidence: The optimal balance of fit and complexity

H

Comparing models

* Which is the best model? ) I
Comparing families of models

12345678910

Im

« What type of model is best? 0 0
- Feedforward vs feedback ' /\ \/ \/
« Parallel vs sequential processing Q—[’Q I —
« With or without modulation
Y
C D C

Only compare models with the same data [ +
AN AN
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Example DCM:
Attention to motion

Cognition and
MRC Brain Sciences Unit

What is site of attention modulation during visual

motion processing Attention

08
0
04
0z
H 0 21 sk a0 1050

Photic
- fixation only | ‘ |
- observe static dots + photic -> V1
- observe moving dots  + motion -> V5
- task on moving dots  + attention - V5 + parietal cortex

Friston et al. 2003, Neurolmage MMNWWMMH



Example DCM:
Attention to motion
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Model 1: Model 2:
attentional modulation attentional modulation
of V1-V5 of SPC-V5

Atte n_t ion
""'--g.ss

Photic ' Photic

0.84 0-86

0.57 .

Motion 7 0.23

Attention

Bayesian model selection: Model 1 better than model 2

log p(y|m,) >>1log p(y|m,)

— attention primarily modulates V1-V5 (in these data)

MRC | Medical Research Council



SO, DCM amEE MRC Cognition and

Brain Sciences Unit

e enables one to infer hidden neuronal processes
* allows one to test mechanistic hypotheses about observed effects

— uses a deterministic differential equation to model neuro-dynamics
(represented by matrices A, B and C)

e isinformed by anatomical and physiological principles

e uses a Bayesian framework to estimate model parameters

e is ageneric approach to modelling experimentally perturbed dynamic systems
— provides an observation model for neuroimaging data, e.g. fMRI, M/EEG

— DCM is not model or modality specific (models will change and the
method extended to other modalities e.g. LFPs)

MRC | Medical Research Council



Variants of DCM
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« DCM for fMRI
— “non-linear” DCM: modulatory input (B) equal to activity in another region
— “two-state” DCM: inhibitory and excitatory neuronal subpopulations

— “stochastic” DCM: random element to activity (e.g, for resting state)

« DCM for EIMEG
— “evoked” responses (complex neuronal model based on physiology)

— ‘“induced” responses (within/across frequency power coupling; no
physiological model (more like DCM for fMRI))

— ‘“steady-state” responses

— with (e.g, EEG/MEG) or without (e.g, LFP, iEEG) a forward (head) model

MRC | Medical Research Council
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Functional Connectivity
Background

Cognition and
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 Much interest in functional connectivity in fMRI

* And yet many neural interactions (e.g, coupled oscillations)
occur at a timescale faster than visible by fMRI

e S0, real promise of MEG/EEG is functional connectivity?

MRC | Medical Researc h Counci



Talk Overview

1. Problem of Field Spread (Volume Conduction)

2. Linear vs Nonlinear measures

3. Directed vs Undirected measures

4. Direct vs Indirect measures

5. Generative Models

MRC | Medical Researc h Counci



Field Spread Problem MRC | Seenition and

Brain Sciences Unit

Many (zero-lag) measures of functional connectivity between
sSensors can be spurious, I.e, reflect activity from single source

No true source connectivity
\ e e Mk
|
» &

True source connectivity

MRC | Medical Research Council



Field Spread Problem MRC | Seenition and

Brain Sciences Unit

Source reconstruction reduces field spread problem...
...and allows easier comparison with fMRI connectivity

BUT spurious connections between sources can remain
(“point-spread”)
Hillebrand et al (2012) Neuroimage

One approach is to orthogonalise raw data, then correlate
(O_Iag) power envelopes. o Colclough et al (2015) Neuroimage
...another uses fact that field-spread is instantaneous, so
time- or phase-lagged measures are immune to field spread
(though assume no true zero-lag connectivity)

MRC | Medical Researc h Counci



Different Types of Connection MRC | Cognition and

Brain Sciences Unit

Undirected, Indirect (bivariate)

Directed, Indirect (bivariate)

Directed, Direct (multivariate)
(“effective connectivity”)

MRC | Medical Researc h Counci



Cross-Correlation MRC | Coonition and
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Undirected, Indirect, Linear (sensitive to Field-spread when |=0)
A
oy (1) =((% %) (Ve = Y)),

0 0.1 (s)
Cross-covariance
X
AWA
N\
\/ ’
0 0.1 t(s)

Cross-correlation |
MRC | Medical Research Counci 0 01 I (S)




COherenCy MRC Cognition and
(Fourier transform of cross-covariance) Srain Sciences unit

Undirected, Indirect, Linear, sensitive to Field-spread

Coy (1) =((% =X) (Yo - ¥)),

y

0 0.1 (s)
Cross-covariance
AWA \
N\
\/ '
0 0.1 t(s)

Cy(1)= Zny(l)e e

Coherency

C,, () Y
c.(P[c,(f)

(Magnitude-squared) Coherence 0 10 f(Hz)

Xy

Y ()=




Digression on Complex Numbers  F¥]=lol Feaahes

Brain Sciences Unit

An oscillation of frequency f can be represented in terms of amplitude and phase
(polar coordinates), which can also be represented by a complex number

T('maﬁ inary) A(magnitude)

C(f)=A(f)e®"

=A(f)+1'P(f) @(phase / angle)
A(reaB
A(T) =|C(F)|=A2(F)+¥(T) ®(f) =arctan(¥(f)/ A(f))

MRC | Medical Researc h Counci



Coherence agnition an
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Undirected, Indirect, Linear, sensitive to Field-spread

Coy (1) =((% =X) (Yo - ¥)),

y

0 0.1 (s)
Cross-covariance
AWA \
N\
\/ ’
0 0.1 t(s)

Cy(1)= Zny(l)e e

Coherency

C,, () Y
C..(f)]Cy, ()

(Magnitude-squared) Coherence 0 10 f(Hz)

Xy

Y ()=




Imaginary Coherency

Cognition and
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Undirected, Indirect, Linear, immune to Field-spread

Coy (1) =((% =X) (Yo - ¥)),

y

AVARY
AX/\./. \
C,(f)= Zny(l)e e L \

Coherency

¥, (1) =1mag(C, (1)) ;

Imaginary Coherency

Nolte et al (2004) Clin Neurophys 0 10 f(Hz)



Imaginary Coherency
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A zero imaginary component implies a phase of the coherency of either 0° or
180°, which could be caused by field-spread...
ANA

I \/

0 0.1 1(s)

V=0 /\ X /\ \
ﬁ—) \/ -
A > O 0 01 1®
ny
¥, (f)=1mag(C, (1)) i
o 0.1  (s)

Nolte et al (2004) Clin Neurophys



Imaginary Coherency
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A zero imaginary component implies a phase of the coherency of either 0° or
180°, which could be caused by field-spread...
AN

I VARV

0 A t(s)

veo e e

A < O 0 0.1 1(s)

¥, (1) =1mag(C, (1)) :

_ 0 0.1 | (s)
Nolte et al (2004) Clin Neurophys



Imaginary Coherency
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...whereas a NON-zero imaginary component implies a phase of the coherency
other than 0° or 180°, which can NOT be caused by field-spread

AA

Y >0 0

AVARY
e

1

¥, (f)=imag(C, (f)) @‘\/

Nolte et al (2004) Clin Neurophys 0 01 ls)




Digression on Analytic Signals

Cognition and
MRC Brain Sciences Unit

A signal can be represented analytically in terms of its amplitude and phase over
time (within a narrow frequency band) (e.g, using Hilbert transform)

\P(Ima,g inary) A(magnitude)

X(t, £) = A, f)e®®"

®(phase/angle)
>
A(real)

pi/2 \

r59\/\/\
-/ VAV

Ipif2




Phase-related Measures ognition an
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Undirected, Indirect, Linear, immune to Field-spread (when A® # ()

x(t) = A (t)e'™V s A

: \VJ \VAYA

t) = A (t)e'™" Y VAYA
y(t) = A (1) W
AD(t) = D (1) - D (t VIV

() =D, (), (1) L )
PLV = <em’(t) >t PLV=0 PLV=0.5 PLV=0.75

Phase-Locking Value

PLI = (sign(AD(1))),

Phase-Lag Index

Stam et al (2007) Human Brain Mapp



Cross-frequency coupling

X(t)

y(t)
Power-Power

A A D)

Phase-Phase

D, (t): (1)

Phase-Freq
D, (t): F, ()

Phase-Power

D, (0): A1)

Cognition and
MRC Brain Sciences Unit

N~ N\ )

Jenson & Colgin (2007) TICS
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2. Linear vs Nonlinear measures
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Nonlinear Measures
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AA

AVARN
ViV

1 :
o 0.1 '

| (s)
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Nonlinear Measures
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Cross-correlation/coherence insensitive to nonlinear dependencies

A
NP

0.1 (s)

Xy

0 0.1  (s)

MRC | Medical Research Council



Mutual Information
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y=x"
MI(X,y) = p(x,y)log[ p(x, Y) j AA/\

p(x) p(y) I
/\ ’ /\ ‘/. \

oY) f p(x)

y(t)

. o
.....

MRC | Medical R x(1) X(t)



Mutual Information

Cognition and
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Sensitive to Field-spread, Undirected, Indirect, Nonlinear

y
M (x y) 0 p(x,y)j _
R Fero A
WWWMQ/. )
P(X,y) p(X)

y(t)

x(t)

MRC | Medical R
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3. Directed vs Undirected measures
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Directed Measures

Cognition and
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(bivariate) Granger Causality
Immune to Field-spread, Directed, Indirect, Linear

Auto-regressive model to order p \ y /\
(assuming mean-corrected, with residuals e) \/ \

yY(t):aiy(t_l)+...+apy(t— p)_|_e(t) X /’0 s
:Zp:au)’(t—|)+e(t) /\/\ o

Augmented model including past values of x (to order q)

Yy 0= Y Ay ()

If classical F-test shows b parameters are non-zero, then x “Granger-causes” y
(special case of MVAR; see later)

MRC | Medical Research Council



Directed, Nonlinear Measures

Cognition and
MRC Brain Sciences Unit

Transfer Entropy (lagged generalisation of mutual information)
Immune to Field-spread, Directed, Indirect, Nonlinear

TEy_)X (I) _ Z p(Xn+| | Xn1 yn) |Og[ p(Xn+I | Xn’ yn)j

Xn+l 1 X0+ Yn p(xn+l | Xn)

P(You | X0 Ya)
TE, ()= p(Y,. ,xn,yn)log[ - non ]
y yn+l’zyr;’xn I p(yn+l | yn)

Schreiber (2000) Phys Rev Letters

Generalised Synchronisation
Sensitive to Field-spread, Directed, Indirect, Nonlinear

X = [Xt’xt+l""’ XT+(m—1)|]

Yi = [yt’ Yisrs oo yt+(m—1)l]

S(X | y) _ iZN: Dt (X) D is the Euclidean distance between X
N Dt(Xl y) and embedded neighbours

m is the embedding dimension and | lag

t=1
MRC | Medical Research Council QUian QUirOga et al (2000) Phys Rev E



Cognition and

Ta.l k Ove rVieW MRC Brain Sciences Unit

4. Direct vs Indirect measures
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Direct Measures

Cognition and
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Multivariate Autoregressive Modelling (MVAR)

Immune to Field-spread, Directed, Direct, Linear
X, (t)

N p \
O-SamX, D

=1 I=1
. X, (t)

ANA
Vi arr

X5()

Various summary measures, eqg,
Partial Directed Coherence (PDC):

Alj(f) Aij(f):F(aij(I))
M 2 Generalised form of Granger Causality
\/ 2| Ag(F)
k=1

Though insensitive to true zero-lag
dependencies (occur in reality?)

PDC, (f) =

Baccala & Sameshima (2001) Biol Cybernet
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5. Generative Models
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Generative Models

Cognition and
MRC

Brain Sciences Unit

Immune to Field-spread, Directed, Direct, Nonlinear, model-driven

Connectivity modelled between

X,(t)
sources m
Projected to sensors via headmodel [
J X - on X, (0
Typically a handful of sources, and L A %
a range of networks fit to data AN
lll \'f\ /"\'/ l',
- - LN
Bayesian methods for comparing s N e
which network model is best 1 N ‘-f'/ , ;

Dynamic Causal Modelling (DCM)
IS one approach

MRC | Medical Research Council

Chen et al, 2009, Neuroimage



Immume to Directed
Field Spread

Cross-Correlation

(I>O)
Coherence Y N N N
(imaginary)
PLV/PLI Y N N N
Granger Y Y N N
(bivariate)
Mutual N N Y N
Information
Generalised N Y Y N
Synchrony
Transfer Y Y Y N
Entropy
MVAR Y Y N Y
(eg, PDC)
Generative Y Y Y Y

(eg, DCM)
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The End
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DCM Neural Level MRC | sesmiion 20 oo

(cf GLM, “inputs” to all system
nodes simultaneously!) Z(t) state
System changes depend on: Input (%)
® @
— the current state z @ ®
o ® O
— the connectivity 6
y ° @

_ connectivity parameters ¢
— external inputs u

— driving (to nodes)
— modulatory (on links)

— time constants & delays % — F (21 u1 9)

at

MRC | Medical Research Council



DCM Estimation: Bayesiar s

Brain Sciences Unit

Models of Constraints on
sHaemodynamics in a single region  *Haemodynamic parameters
*Neuronal interactions Connections
ikelihood | PLY16) pe) e
posterior\ p(@1y) < p(y|6) p(6) /

l

Bayesian estimation

= Prior
—— Likelihood
0.6} —— Posterior

0.7

0.5¢

Inferences on:
1. Parameters
2. Models

0.4r

0.3

0.2t

0.1¢

0
MRC | Medical Research Council 15 30



Parameter estimation: an |

U,
aF
2_
1_
0
.]_-I
a21
3 o
2
A/ 1 ‘
0 ;
2 15 . . .
0 20 40 60
seconds

Prior density ==
MRC | Medical Research Council

Cugnition and
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Input coupling, ¢,

Forward coupling, a,,

Posterior density === true values ==



-
Inference about DCM para

Bayesian single subject analysis Classical frequentist test across Ss

 The model parameters are  Test summary statistic: mean r,,
distributions that have a mean
Ngy @nd covariance Cy,

_ _ et ,
— Use of the cumulative normal One-sample t-test: Parameter>0*

distribution to test the

probability that a certain — Paired t-test:
parameter is above a chosen parameter 1 > parameter 27?
threshold vy:

| — rmANOVA: e.g. in case of multiple
y_>/ Noyy sessions per subject

0 0.1 02 03 04 05 06 07

MRC | Medical Research Council



Model comparison and seIeGHoR:

brain Sciences Unit

Given competing hypotheses,
which model is the best?

]

log p(y[m) =
accuracy(m)—

complexity(m) = = = g

/" / \ Model complexity

w\/w‘

Pitt & Miyung (2002) TICS

Goodness of fit

Good

A
|
| Overfitting
\

Model fit

Generalizability

Poor

o _ p(y|m=i)
" p(yIm= )

Bayes Factor

MRC | Medical Researc Council
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