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Structural, functional & 
effective connectivity 

• Structural/anatomical connectivity 
= presence of axonal connections / white matter tracks (eg, DWI) 

• Functional connectivity  
= statistical dependencies between regional time series (eg, ICA) 

• Effective connectivity  
= causal (directed) influences between neuronal populations (eg, DCM) 
 (based on explicit network models) 



• Tracing studies 

 
• Tractography from DWI 

 

But functionally, effect of one neuron 
on another can depend on: 

– Activity of a third (gating) 

– Rapid changes in plasticity 

Structural vs Functional 
connectivity 



No connection between B and C, 
yet B and C correlated because 
of common input from A, eg: 
 
A = V1 fMRI time-series 
B = 0.5 * A + e1 
C = 0.3 * A + e2 

Correlations:  
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• Useful when no model, no experimental perturbation (eg resting state) 

• Popular examples: seed-voxel correlations, PCA, ICA, etc 

• Graph-theory summaries of functional networks 

 

• Correlations in fMRI timeseries could be spurious haemodynamics (e.g, 
effects of heart-rate/breathing; movement confounds...) 

• Condition-dependent changes in functional connectivity (e.g,  PPIs...) 

Functional connectivity 



1. Direct experimental interventions (e.g, lesion, drugs) 

2. Indirect experimental manipulations (e.g, PPI, DCM) 

3. Network model inference (e.g, SEM, DCM) 

4. Temporal precedence (e.g, Granger Causality, DCM) 

5. … 

Effective-connectivity: 
Definitions of Causality? 



1. Direct experimental interventions (e.g, lesion, drugs) 

2. Indirect experimental manipulations (e.g, PPI, DCM) 

3. Network model inference (e.g, SEM, DCM) 

4. Temporal precedence (e.g, Granger Causality, DCM) 

5. … 

Effective-connectivity: 
Definitions of Causality? 
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Parametric, factorial design, in which one 
factor is psychological (eg attention) 
 

...and other is physiological (viz. activity 
extracted from a brain region of interest) 

2. Condition-dependent 
changes: eg PPI 
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1. Direct experimental interventions (e.g, lesion, drugs) 

2. Indirect experimental manipulations (e.g, PPI, DCM) 

3. Network model inference (e.g, SEM, DCM) 

4. Temporal precedence (e.g, Granger Causality, DCM) 

5. … 

Effective-connectivity: 
Definitions of Causality? 



• (Bivariate) correlations do not use an explicit network (graph) model 

 

 

 

• Structural Equation Modelling (SEM) can test different network models, by 
simply comparing predicted with observed covariance matrices, but... 
– has no dynamical model (stationary covariances) 
– has no neural-BOLD model 
– cannot test some graphs, eg loops (no temporal definition of direction) 
– restricted to classical inference comparing nested models 

3. Explicit Network Models 
of Causality 



1. Direct experimental interventions (e.g, lesion, drugs) 

2. Indirect experimental manipulations (e.g, PPI, DCM) 

3. Network model inference (e.g, SEM, DCM) 

4. Temporal precedence (e.g, Granger Causality, DCM) 

5. … 

Effective-connectivity: 
Definitions of Causality? 



4. Temporal definition of 
Causality 

Stationary 
(correlations, SEM) 

Dynamic 
(Granger, DCM) 

Ti
m

e 

(“unfolding” in time is one way to infer direction of connectivity) 



• Problem with time-based measures of connectivity arises with fMRI: 
BOLD timeseries is not direct reflection of Neural timeseries  

– (e.g, peak BOLD response in motor cortex can precede that in visual cortex in 
a visually-cued motor task, owing to different neural-BOLD mappings) 

 

• This compromises methods like Granger Causality and Multivariate Auto-
Regressive models (MAR) that operate directly on fMRI data  
 (Friston, 2010; Smith et al, 2011) 

 

• Note that this does not preclude these methods (eg MAR) for MEG/EEG 
timeseries, assuming these are more direct measures of neural activity 

4. Note on temporal causality 
and fMRI 



1. Dynamic: based on first-order differential equations  

 - at level of neural activity, with separate haemodynamic model for fMRI 

2. Causal: based on explicit directed graph models 

3. Modelling: designed to test experimental manipulations 

  - “bilinear” approximation to interactive dynamics 

4.    (Estimated in a Bayesian context, allowing formal 
comparison of any number/type of models…) 

=> Development of DCM 



Rough comparison of 
popular methods? 

Experimental 
modulation 

Temporal/ 
Dynamical 

Network  
model 

Haemodynamic 
Model (for fMRI) 

Correlation /   
ICA / PCA 

PPI Y 

Granger Y 

SEM Y 

DCM Y Y Y Y 
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DCM overview 

Friston et al. 2003, NeuroImage 



DCM parameters = rate constants 

1
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Oridinary Differential Equations: 
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Neurodynamics:  
2 nodes, 1 driving input 
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Neurodynamics:  
…+1 modulatory input 
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Bilinear state equation 

intrinsic 
connectivity 

driving 
inputs 

direct  
inputs 
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The hemodynamic 
“Balloon” model 
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Haemodynamics:  
reciprocal connections 
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Model evidence: The optimal balance of fit and complexity 
 

Comparing models 

• Which is the best model? 
 

Comparing families of models 

• What type of model is best? 
• Feedforward vs feedback  

• Parallel vs sequential processing 

• With or without modulation 
 

Only compare models with the same data 
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Inference on model space 



V1 

V5 

SPC 
Photic 

Motion 

Time [s] 

Attention 

    What is site of attention modulation during visual 
motion processing 

Friston et al. 2003, NeuroImage 

Example DCM: 
Attention to motion 

- fixation only   
- observe static dots + photic   V1  
- observe moving dots + motion   V5 
- task on moving dots + attention  V5 + parietal cortex 

? 



Model 1: 
attentional modulation 
of V1→V5 

Model 2: 
attentional modulation 
of SPC→V5 

Bayesian model selection: Model 1 better than model 2 
 
 

→ attention primarily modulates V1→V5 (in these data) 

1 2log ( | ) log ( | )p y m p y m>>

Example DCM: 
Attention to motion 



So, DCM…. 

• enables one to infer hidden neuronal processes 

• allows one to test mechanistic hypotheses about observed effects 

– uses a deterministic differential equation to model neuro-dynamics 
(represented by matrices A, B and C) 

• is informed by anatomical and physiological principles 

• uses a Bayesian framework to estimate model parameters 

• is a generic approach to modelling experimentally perturbed dynamic systems 

– provides an observation model for neuroimaging data, e.g. fMRI, M/EEG 

– DCM is not model or modality specific (models will change and the 
method extended to other modalities e.g. LFPs) 



• DCM for fMRI 

– “non-linear” DCM: modulatory input (B) equal to activity in another region 

– “two-state” DCM: inhibitory and excitatory neuronal subpopulations 

– “stochastic” DCM: random element to activity (e.g, for resting state) 

• DCM for E/MEG 

– “evoked” responses (complex neuronal model based on physiology)   

– “induced” responses (within/across frequency power coupling; no  
                                physiological model (more like DCM for fMRI)) 

– “steady-state” responses  

– with (e.g, EEG/MEG) or without (e.g, LFP, iEEG) a forward (head) model 

Variants of DCM 
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Functional Connectivity 
Background 

• Much interest in functional connectivity in fMRI 
 

• And yet many neural interactions (e.g, coupled oscillations) 
occur at a timescale faster than visible by fMRI 
 

• So, real promise of MEG/EEG is functional connectivity? 
 
 



Talk Overview 

 1. Problem of Field Spread (Volume Conduction) 
 
 2. Linear vs Nonlinear measures 
 
 3. Directed vs Undirected measures 
 
 4. Direct vs Indirect measures 
 
 5. Generative Models 
 



Field Spread Problem 

Many (zero-lag) measures of functional connectivity between 
sensors can be spurious, i.e, reflect activity from single source 

No true source connectivity Spurious sensor connectivity 

True source connectivity True sensor connectivity 

0-lag correlation 

PDC (see later) 



Field Spread Problem 

Source reconstruction reduces field spread problem… 
 
…and allows easier comparison with fMRI connectivity 
 
BUT spurious connections between sources can remain 
(“point-spread”) 
 
 
One approach is to orthogonalise raw data, then correlate 
(0-lag) power envelopes…  
 
…another uses fact that field-spread is instantaneous, so 
time- or phase-lagged measures are immune to field spread 
(though assume no true zero-lag connectivity) 

Hillebrand et al (2012) Neuroimage 

Colclough et al (2015) Neuroimage 



Different Types of Connection 

Undirected, Indirect (bivariate) 

Directed, Indirect (bivariate) 

Directed, Direct (multivariate) 
(“effective connectivity”) 



Cross-Correlation 

Undirected, Indirect, Linear (sensitive to Field-spread when  =0)  
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Undirected, Indirect, Linear, sensitive to Field-spread 
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Digression on Complex Numbers 

An oscillation of frequency f can be represented in terms of amplitude and phase 
(polar coordinates), which can also be represented by a complex number 
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Coherence 
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Undirected, Indirect, Linear, sensitive to Field-spread 



Imaginary Coherency 
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Nolte et al (2004) Clin Neurophys 



Imaginary Coherency 

0Λ >

0Ψ =

A zero imaginary component implies a phase of the coherency of either 0o or 
180o, which could be caused by field-spread… 

( ) ( ( ))xy xyf imag C fΨ =
xyc
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lNolte et al (2004) Clin Neurophys 



Imaginary Coherency 

A zero imaginary component implies a phase of the coherency of either 0o or 
180o, which could be caused by field-spread… 

( ) ( ( ))xy xyf imag C fΨ =
xyc
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0Ψ =

lNolte et al (2004) Clin Neurophys 



Imaginary Coherency 

…whereas a NON-zero imaginary component implies a phase of the coherency 
other than 0o or 180o, which can NOT be caused by field-spread 

( ) ( ( ))xy xyf imag C fΨ =

Nolte et al (2004) Clin Neurophys 
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Digression on Analytic Signals 

A signal can be represented analytically in terms of its amplitude and phase over 
time (within a narrow frequency band) (e.g, using Hilbert transform) 
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Phase-Locking Value 

Phase-Lag Index 

Phase-related Measures 

Stam et al (2007) Human Brain Mapp 
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Cross-frequency coupling 

Jenson & Colgin (2007) TICS  
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Nonlinear Measures 
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Nonlinear Measures 

Cross-correlation/coherence insensitive to nonlinear dependencies 
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Mutual Information 

Sensitive to Field-spread, Undirected, Indirect, Nonlinear 
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Directed Measures 

(bivariate) Granger Causality 
Immune to Field-spread, Directed, Indirect, Linear 
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If classical F-test shows b parameters are non-zero, then x “Granger-causes” y   
(special case of MVAR; see later) 
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Directed, Nonlinear Measures 

Generalised Synchronisation 
Sensitive to Field-spread, Directed, Indirect, Nonlinear 
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and embedded neighbours 

Quian Quiroga et al (2000)  Phys Rev E 

m is the embedding dimension and l lag 

Transfer Entropy (lagged generalisation of mutual information) 
Immune to Field-spread, Directed, Indirect, Nonlinear 

Schreiber (2000)  Phys Rev Letters 

, ,

, ,

( | , )( ) ( , , ) log
( | )

( | , )( ) ( , , ) log
( | )

n l n n

n l n n

n l n n
y x n l n n

x x y n l n

n l n n
x y n l n n

y y x n l n

p x x yTE l p x x y
p x x

p y x yTE l p y x y
p y y

+

+

+
→ +

+

+
→ +

+

 
=  

 
 

=  
 

∑

∑

1

( )1( | )
( | )

N
t

t t

D xS x y
N D x y=

= ∑



Talk Overview 

 1. Problem of Field Spread (Volume Conduction) 
 
 2. Linear vs Nonlinear measures 
 
 3. Directed vs Undirected measures 
 
 4. Direct vs Indirect measures 
 
 5. Generative Models 
 



Direct Measures 

Multivariate Autoregressive Modelling (MVAR) 

Various summary measures, eg,  
Partial Directed Coherence (PDC): 
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Though insensitive to true zero-lag 
dependencies (occur in reality?) 
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Generative Models 

Connectivity modelled between 
sources 
 
Projected to sensors via headmodel 
 
Typically a handful of sources, and 
a range of networks fit to data 
 
Bayesian methods for comparing 
which network model is best 
 
Dynamic Causal Modelling (DCM) 
is one approach  

Chen et al, 2009, Neuroimage 
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Measure Immume to  
Field Spread 

Directed Nonlinear Direct 

Cross-Correlation Y 
(l>0) 

N N N 

Coherence Y 
(imaginary) 

N N N 

PLV/PLI 
 

Y N N N 

Granger 
(bivariate) 

Y Y N N 

Mutual 
Information 

N N Y N 

Generalised 
Synchrony 

N Y Y N 

Transfer    
Entropy 

Y Y Y N 

MVAR 
(eg, PDC) 

Y Y N Y 

Generative 
(eg, DCM) 

Y Y Y Y 



The End 



DCM Neural Level 

Input u(t) 

connectivity parameters θ 

system 
z(t) state  

System changes depend on: 
 

– the current state z 
 

– the connectivity θ 
 

– external inputs u 
– driving (to nodes) 
– modulatory (on links) 

 
– time constants & delays ),,( θuzF

dt
dz

=

(cf GLM, “inputs” to all  
nodes simultaneously!) 



Constraints on 
•Haemodynamic parameters 

•Connections 

Models of 
•Haemodynamics in a single region 

•Neuronal interactions 

Bayesian estimation 
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posterior 

priors likelihood 

DCM Estimation: Bayesian framework 

Inferences on: 
   1. Parameters 
   2. Models 
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Inference about DCM parameters: 
 

Bayesian single subject analysis 

• The model parameters are 
distributions that have a mean 
ηθ|y and covariance Cθ|y. 

– Use of the cumulative normal 
distribution to test the 
probability that a certain 
parameter is above a chosen 
threshold γ: 
 

 

 

 γ ηθ|y 

Classical frequentist test across Ss 

• Test summary statistic: mean ηθ|y 

 
– One-sample t-test: Parameter>0?

   

– Paired t-test: 
 parameter 1 > parameter 2?  

 

– rmANOVA: e.g. in case of multiple 
sessions per subject 



Model comparison and selection 

Given competing hypotheses, 
which model is the best? 

log ( | )
( )

( )

p y m
accuracy m
complexity m

=
−

)|(
)|(
jmyp
imypBij =

=
=

Pitt & Miyung (2002) TICS 

Bayes Factor 
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