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Presentation of electromagnetic multichannel data: The signal space
separation method
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Measurement of external magnetic fields provides information on electric current distribution inside
an object. For example, in magnetoencephalography modern measurement devices sample the
magnetic field produced by the brain in several hundred distinct locations around the head. The
signal space separationsSSSd method creates a fundamental linear basis for all measurable
multichannel signal vectors of magnetic origin. The SSS basis is based on the fact that the magnetic
field can be expressed as a combination of two separate and rapidly converging expansions of
harmonic functions with one expansion for signals arising from inside of the measurement volume
of the sensor array and another for signals arising from outside of this volume. The separation is
based on the different convergence volumes of the two expansions and on the fact that the sensors
are located in a source current-free volume between the interesting and interfering sources.
Individual terms of the expansions are shown to contain uncorrelated information of the underlying
source distribution. SSS provides a stable decomposition of the measurement into a fundamental
device-independent form when used with an accurately calibrated multichannel device. The external
interference signals are elegantly suppressed by leaving the interference components out from the
reconstruction based on the decomposition. Representation of multichannel data with the SSS basis
is shown to provide a large variety of applications for improved analysis of multichannel data.
© 2005 American Institute of Physics. fDOI: 10.1063/1.1935742g
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I. INTRODUCTION

Measurement of magnetic fields has established a
valuable role in studies of electromagnetic phenomena
day, superconducting quantum interference devicesSQUIDd
sensors provide generally the best sensitivity in recordin
very small magnetic fields, such as the biomagnetic sig
associated with normal and pathological functions of e
able cells in the human bodys,10−10–10−14 Td.1 SQUID
sensors are typically operated in liquid heliums4 Kd,2 but
also high-temperature superconductorss180 Kd have bee
applied in some biomagnetic studies.2 Recent developme
of other sensor technologies, such as magnetores
elements3 and optical magnetometers,4 has improved the se
sitivity and opened exciting possibilities for detection of v
weak magnetic fields.

In many applications the magnetic field is detected
one or few magnetic sensors. However, there are app
tions, such as studies of the sources of biomagnetic si
outside of the headfmagnetoencephalographysMEGdg or the
thorax fmagnetocardiographysMCGdg, where simultaneou
recordings at multiple sites are necessary.5 The number o
SQUID sensors in commercially available magnetome
covering the whole head is over 250. In principle, also o
sensor types referred to above could be applied in the
tichannel biomagnetic studies.

In MEG and MCG, the electric current distributions
the body are examined by measuring the magnetic field
side of the subject. These studies are usually done by m

ad
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channel measurement devices comprising spatially dis
sensors designed to obtain representative measureme
the biomagnetic field. The finest geometric details of
magnetic field, however, decay rapidly as a function of
tance from the source and only relatively coarse feature
ceed the noise level of the sensors located farther
2–4 cm from the skin. Consequently, the number of deg
of freedom of measurable MEG signals is less than 206,7

but increasing the number of sensors beyond that pro
oversampling and statistically reliable data. The high num
of channels of the modern measurement devices encou
to compress the measured data into basic components
contain all information derivable from a measurement
are suitable for various signal processing and data an
tasks.

The multichannel measurements are discretization
the field and can be presented as signal vectors comp
the measured values of all channels. Therefore, it is na
to discretize also the magnetic field by a truncated b
function expansion with terms sorted by increasing con
of fine detail. By starting from the coarse features of the
and advancing towards finer details with increasing ord
expansion, we can explain any measurable signal of
netic origin with a fewer number of basis functions t
channels of modern multichannel devices. In this way, a
damental linear model with suitable basis vectors span
measurable signals of magnetic origin. Consequently,
measured signal vector can be uniquely decomposed
device-independent components corresponding to these
vectors.
In this paper we present the signal space separation
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sSSSd method which restricts the measured signals in
signal subspace spanning all measurable signals ob
Maxwell’s equations. We formulate the SSS basis for
quasistatic approximation which allows to express the m
netic field as the gradient of a harmonic scalar potential
also show that the magnetic field can be expressed as a
bination of two separate expansions, with one expansio
signals arising from inside of the measurement volume o
sensor array and another one for signals arising outsi
this volume. The separation is based on the different co
gence volumes of the two expansions and on the fact tha
sensors are located in a current-free volume between th
teresting and interfering sources.

In the case of vector spherical harmonics, individ
terms of the expansions are shown to contain uncorre
information of the underlying source distribution.

SSS improves and facilitates signal processing
analysis of multichannel MEG data dramatically. T
method elegantly solves the basic problem of biomag
measurements: suppression of the external interference
out distorting the inherently weak MEG signals. Furth
more, it provides, e.g., a simple and robust method to c
pensate for signal distortions caused by movement o
subject possibly having magnetic impurities attached on
head and the body, to measure physiological dc, and to
brate the sensors with a very high accuracy. The basic v
components decomposed from the measured signals c
used for simpler and more efficient source modeling than
raw measurement values of the channels. We show th
expressing the components in the lead field form compa
to the lead field form of the channels presented in Refs.
and 9.

The purpose of this paper is to present the theore
foundation of the SSS method. Comprehensive prac
demonstrations showing the success of SSS are presen
another publication.10

II. BASIC PROBLEMS IN BIOMAGNETIC STUDIES

A typical biomagnetic recording5 is a superposition o
signals produced by the biomagnetic sources, external
ference sources, and unidealities of the measurement d
Particular care has to be taken to eliminate the interfere
as they are generally several orders of magnitude stro
than the biomagnetic signals and may severely disturb
data analysis and the inherently difficult source mode
task.

Because of the aforementioned problems, several
ference reduction or removal methods have been devel
The interferences can be suppressed either by hardwa
software methods or by a combination of them. The m
common hardware methods include magnetically shie
rooms,11–13 gradiometer coils,14 and reference channels15

Some of the best-known software methods are based o
nal statistics, such as the signal space projectionsSSPd com-
bined with the principal component analysis16 sPCAd and
methods based on the independent components an
sICAd.17
All of the compensation methods used to reject the re-
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sidual interference inside the shielded room suffer f
strong and sometimes false assumptions about the ma
fields. Ideally balanced gradiometer coils provide per
shielding against homogeneous fields but fail to compe
for more complex fields. The reference channel metho
sumes that any interference seen by the signal channe
be modeled by a small number of reference channels
distance from the subject where they are sensitive to
interference only. In contrast, the PCA-based SSP me
calculates the dominant interference signals using the s
channels themselves leading to a reliable interferenc
moval method free of distortions caused by inaccurate
bration or geometry information. However, the statist
methods do not perform ideally in situations where the in
ference patterns differ from the interference subspace p
termined by the statistical analysis. SSS provides a
robust and reliable interference suppression method as
pared to the previous methods because it suppresses a
trary external interference of magnetic origin with minim
assumptions. With SSS one does not have to know any
about the interference sources or dedicate any chann
reference channels.

Movement-related distortion of the data has tradition
been considered as one of the major inherent limitation
the MEG method. Many subjects, such as small childre
some of the patients, may continuously move their head
ing the measurement. The movement distorts the mea
signal and sometimes makes data analysis impossible
movement compensation is done on the data. Further
even small magnetized particles attached to the head
large artifacts when moving with respect to the sens
These artifacts are typical, e.g., for patients with minor
purities left from instruments used in brain surgical op
tions.

The problem caused by movement can be solved b
ing the minimum norm estimate18 as a source model19 for
transforming the measured signals to correspond to a
ence head position. The device-independent compone
SSS are a similar source model with the benefit of mod
also the external interference signals. Furthermore, the
monic basis functions of SSS are faster to compute tha
lead fields needed with the minimum norm estimate. A
consequence, SSS can be used as an efficient move
correction method with no distortions caused by externa
terference.

Also, the magnetized impurities are static objects in
coordinate system of the head and appear as static co
nents in the SSS decomposition. Therefore, the move
artifacts can be eliminated from the movement compen
data by removing the dc component with a simple base
correction thus allowing for examinations of an impor
patient group so far excluded from MEG.

Measurement of dc or near dc has been difficult
conventional MEG because of the ambiguous response
SQUID to static fields and because at low frequencies
external interference signals dominate. The physiologic
phenomena can be recorded by movement modulation
ing the dc signals to appear as time-varying MEG sign

Previous solutions to measure these signals have included
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mechanical modulation20 by additional instrumentation d
signed to produce a well-defined movement pattern t
into account in extracting the dc signals. By means of S
however, dc measurements can be done as easily a
MEG measurements. The SSS-based dc measuremen
quire the subject to move the head with no predefined
quency or movement pattern. By calculating the dev
independent SSS components of the time differences o
signals, one can extract the dc components and, in add
get rid of the external interferences.

In contrast with most signal space methods, SSS r
on the knowledge about the sensor geometry and calibr
coefficients. Reconstruction of the signals is free of bias
if the geometry and calibration are known precisely. In
absence of random noise, any deviation of the measure
nal from the SSS-based expansion is caused by our in
plete knowledge about the sensor array. The portion o
deviations caused by uncorrelated sensor noise is nor
distributed with zero mean and thus statistically separ
from systematic calibration errors. Using SSS, the sy
can be calibrated to extremely high precision by finding
calibration parameters that minimize the deviations and b
the system to consistency with Maxwell’s equations.
probe with precisely known geometry is needed, and th
sufficient knowledge on probe geometry does not resu
bias of the calibration parameters.

III. HARMONIC BASIS FUNCTIONS FOR SCALAR
AND VECTOR FIELDS

The devices used in biomagnetic recordings comp
sensors located in a source-free volume. Furthermore
quasistatic approximation of Maxwell’s equations
justified5,21 and thus the field recorded by the sensors
gradient of a harmonic scalar potential,

B = − m0 ¹ V, s1d

where m0 is the permeability of vacuum andV satisfies
Laplace’s equation,

¹2V = 0. s2d

This potential can be expressed as a linear combination
complete set of basic solutions of Laplace’s equations.
example, with typical multichannel MEG devices it is pr
tical to use spherical coordinates in which case the sol
of Laplace’s equation can be expanded in sphe
harmonics,22,23

Vsr d = o
l=0

`

o
m=−l

l

alm
Ylmsu,wd

r l+1 + o
l=0

`

o
m=−l

l

blmrlYlmsu,wd

; Vasr d + Vbsr d. s3d

Throughout this paper, we use complex-valued function
keep the calculations as compact as possible. Howeve
could also use, e.g., the real-valued even and odd sph
harmonics24,25 as the starting point or change from comp

to real representation at any point. Here
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Ylmsu,wd =Î2l + 1

4p

sl − md!
sl + md!

Plmscosudeimw s4d

is the normalized spherical harmonic function,Plmscosud is
the associated Legendre function, andi denotes imaginar
unit. Importantly, expansionsVasr d and Vbsr d correspond
separately to source locationsr 8 with r8, r and r8. r, re-
spectively. In this paper, the primed coordinates always
to the source volume.

The corresponding expansion for the magnetic fieldBsr d
can be derived using Eqs.s1d and s3d. Let us start from th
expansion

Bsr d = − m0o
l=0

`

o
m=−l

l

alm ¹ FYlmsu,wd
r l+1 G

− m0o
l=0

`

o
m=−l

l

blm ¹ fr lYlmsu,wdg. s5d

Application of the gradient operator¹ gives in spherical co
ordinates

¹SYlm

rl+1D =
1

r l+2F− sl + 1dYlmer +
]Ylm

]u
eu +

imYlm

sinu
ewG s6d

and

¹sr lYlmd = r l−1SlYlmer +
]Ylm

]u
eu +

imYlm

sinu
ewD , s7d

whereer, eu, and ew are the orthogonal unit vectors in t
spherical coordinate system and argumentsu and w have
been left out to simplify the expressions. The angular de
dence of Eqs.s6d and s7d can be expressed by the modifi
vector spherical harmonicsnlmsu ,wd andvlmsu ,wd ssee Ap-
pendix Ad leading to

Bsr d = − m0o
l=0

`

o
m=−l

l

alm
nlmsu,wd

r l+2

− m0o
l=0

`

o
m=−l

l

blmrl−1vlmsu,wd ; Basr d + Bbsr d.

s8d

Thus, the magnetic field, derivable from a harmonic sc
potential, can be expressed as an expansion of ortho
harmonic vector fields with the same expansion coeffic
as in Eq.s3d.

Let us now express the multipole momentsalm andblm

with the vector spherical harmonic functionX lmsu ,wd ssee
appendix Ad. The relation betweenalm and the underlyin
current distribution is given by24,26

alm =
− 1

s2l + 1dsl + 1dEy8
r8lYlm

* su8,w8d¹8

· fr 8 3 Jinsr 8dgdy8, s9d

where prime refers to source volume, asterisk indicates
plex conjugate, andJinsr 8d is the current distribution in th
volume with r8, r. Using basic vector identities, the in

grand of the above equation can be transformed into form
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r 83¹8fr8lYlm
* su8 ,w8dg ·Jinsr 8d. On the other hand, the ang

lar momentum operator encountered in quantum mech
is given by L 8=−isr 83¹8d leading to inte
grand s1/idL 8*r8lYlm

* su8 ,w8d ·Jinsr 8d=s1/idr8lL 8*Ylm
* su8 ,w8d

·Jinsr 8d=s1/idr8lÎlsl +1dX lm
* su8 ,w8d ·Jinsr 8d with the las

equality being based on Eq.sA5d. Thus, Eq.s9d gets the form

alm =
i

2l + 1
Î l

l + 1
E

y8
r8lX lm

* su8,w8d ·Jinsr 8ddy8. s10d

Consequently, the relation between the current dist
tion and an individual multipole moment is of the lead fie
like presentation,

alm =E
y8

llm
a sr 8d ·Jinsr 8ddy8, s11d

where, in analogy to the conventional lead fields,

llm
a sr d =

i

2l + 1
Î l

l + 1
r lX lm

* su,wd. s12d

These lead fields are orthogonal over a spherical vo
with radiusR,

E
y

llm
a sr d · lLM

a* sr ddy

~ E
0

R

rl+L+2drE
V

X lm
* su,wd ·XLMsu,wddV

=
Rl+L+3

l + L + 3
dlLdmM. s13d

Hered means Dirac’s delta function.
The relation betweenblm and Joutsr 8d corresponding t

the source volumer8. r differs from that ofalm andJinsr 8d
only in the radial part and thereforeblm has the lead fiel
form

blm =E
y8

llm
b sr 8d ·Joutsr 8ddy8, s14d

with the lead field

llm
b sr d =

i

2l + 1
Î l + 1

l

X lm
* su,wd
r l+1 . s15d

Integration similar to Eq.s13d implicates that also the lea
fields llm

b sr d are orthogonal over a spherical volume. A
conclusion, the multipole momentsalm and blm are a com
pact representation of the total current distribution as
contain orthogonal, nonoverlapping information, in cont
with signals of the sensors measuring the magnetic field
nonorthogonal lead fields.

The lead fieldsllm
a sr d andllm

b sr d allow us to expand th
total current distribution in an orthogonal basis with ang
part X lm

* su ,wd. Let us first use a general sethj lmsr dj of or-

thogonal basis functions in an expansion

Downloaded 21 Jun 2005 to 130.233.180.156. Redistribution subject to AI
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Jsr d = o
l=0

`

o
m=−l

l

clmj lmsr d, s16d

where an individual expansion coefficient is given by

clm =
ey8j lmsr 8d ·Jsr 8ddy8

ey8j lmsr 8d · j lmsr 8ddy8
, s17d

where we can choosej lmsr d=llm
a sr d. Similar expression u

ing blm and llm
b sr d holds for the external sources and, c

sequently, the total current distribution can be expande

Jinsr 8d = o
l=0

`

o
m=−l

l

almhalS r8

Ra
Dl

X lm
* su8,w8d, s18d

where Ra is the radius of the sphere including all sour
with r8, r and

hal = − is2l + 1ds2l + 3dÎ l + 1

l

1

Ra
l+3 , s19d

and

Joutsr 8d = o
l=0

`

o
m=−l

l

blmhblSRb

r8
Dl+1

X lm
* su8,w8d, s20d

whereRb is the radius of the sphere excluding all sou
with r8. r and

hbl = is2l + 1ds1 − 2ldÎ l

l + 1
Rb

l−2. s21d

Note that the estimates for the current distribution are
unique as they are always strictly tangential with respe
the chosen expansion origin. Because of the ambiguity o
magnetic inverse problem, it is impossible to describe
internal degrees of freedom of the source distribution b
on the measured multipole moments. One way to chara
ize the ambiguity is to consider the silent terms of the Ta
expansion of the scalar potential.25,27

Finally, by using the orthonormal vector spherical h
monics V lm=nlm/Îsl +1ds2l +1d and W lm=vlm/Îls2l +1d
and comparing Eqs.s8d, s11d, s12d, s14d, and s15d, a usefu
alternative formulation for the magnetic field is found,

Bsr d = − m0o
l=0

`

o
m=−l

l

f lmsr,Ra,JindV lmsu,wd

− m0o
l=0

`

o
m=−l

l

glmsr,Rb,JoutdW lmsu,wd, s22d

where

f lmsr,Ra,Jind =Î l

2l + 1
E

0

Ra E
V8
S r8

r
Dl+2

iX lm
* su8,w8d

·Jinsr 8ddr8dV8 s23d
and
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glmsr,Rb,Joutd =Î l + 1

2l + 1
E

Rb

` E
V8
S r

r8
Dl−1

iX lm
* su8,w8d

·Joutsr 8ddr8dV8. s24d

Functions f lmsr ,Ra ,Jind and glmsr ,Rb ,Joutd can be used i
estimating the error made by truncating the expansion o
s22d because they demonstrate that the individual term
the expansion decay assr8 / rdl+2 for sources withr8, r and
as sr / r8dl−1 for sources withr8. r.

As a quantitative demonstration of the significance
functions f lmsr ,Ra ,Jind and glmsr ,Rb ,Joutd, Figs. 1 and 2
show the normalized cumulative signal power for two hy
thetical source current distributions as a function ofl. For
each value ofl, the signal power corresponding to Eq.s23d is
defined asÎomflm

2 sr ,Ra ,Jind with m=−l¯ l. In Fig. 1, the
source consists of 100 current dipoles evenly distributed
sphere at a distance of 7 cm from the expansion origin
spherically symmetric conductor model and the signal po
has been calculated for three different values ofr :10, 12, and
15 cm. Asymptotic values indicate convergence, and

FIG. 1. Cumulative signal power of the internal sources consisting o
current dipoles withr8=7 cm. The dot corresponds tor =10 cm, x corre
sponds tor =12 cm, and circle corresponds tor =15 cm.

FIG. 2. Cumulative signal power of the external sources consisting o
current dipoles withr8=50 cm. The dot corresponds tor =10 cm, x corre

sponds tor =12 cm, and circle corresponds tor =15 cm.

Downloaded 21 Jun 2005 to 130.233.180.156. Redistribution subject to AI
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practical measurements containing noise, truncation wl
ù8 is sufficient even for these superficial sources as
supported by experimental data.10 This can be conclude
from the simulations in Ref. 10 showing that truncati
based signal distortions of the order of those in Fig. 2 co
sponding tol ù8 are insignificant with practical signal-t
noise ratios of multichannel measurement devices. Simi
Fig. 2 shows the cumulative signal power correspondin
Eq. s24d. In this case, the source consists of 100 dipole
free space evenly distributed on a spherical surface at
tance of 50 cm from the expansion origin. All other par
eters are as in Fig. 1. Clearly,l ù3 suffices for a good re
resentation of these external signals.

As a practical example, consider the current dipole
spherically symmetric volume conductor, which is a wid
used source model in biomagnetism5 and defined as a co
centration of the primary current to a single point,Jsr d
=Qdsr −r qd. In this model, the whole current circuit can
described28,29 by a triangle having two radial sides and o
tangential side in such a way that the radial currents co
the contribution of the volume currents and the tange
component is the primary currentQ. From Eq.s11d we im-
mediately see that the contribution of the radial current
ishes provided that the expansion origin equals the orig
the conductor model. Then, by inserting Eq.s11d to Eq. s8d,
we get

Bdipolesr d = − m0o
l=0

`
1

2l + 1
Î l

l + 1 o
m=−l

l

rq
l iX lm

* suq,wqd

·Q
nlmsu,wd

r l+2 . s25d

This series-form solution, utilizing harmonic functions, p
vides an alternative for the formula derived by Sarvas.30

IV. THE SSS BASIS

A. Harmonic signal space

The geometry of a typical neuromagnetic measure
is illustrated schematically in Fig. 3. HereI in and Iout de-
scribe the interesting and interference sources, respec
The harmonic potentials associated with these source
given in the different volumes by eitherVasr d or Vbsr d ex-
pansions of Eq.s3d as indicated. Specifically, in volume
where the sensor array is located the potential assoc
with I in is given by the expansionVasr d, and the potentia
associated withIout is given by the expansionVbsr d. The
resolution between the interference and interesting mag
subspaces in the SSS method is based on this fact.

Let us define the signal vectorsalm andblm as response
of the multichannel measurement device to the indivi
terms of the expansionsBasr d andBbsr d in Eq. s8d. Then any
measured signal vectorf=ff1¯fNg corresponding toN

channels can be expressed as a linear combination,
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f = o
l=1

Lin

o
m=−l

l

almalm + o
l=1

Lout

o
m=−l

l

blmblm, s26d

provided thatLin and Lout are large enough. Here we ha
excluded the components withl =0 because they correspo
to magnetic monopoles which do not exist according to M
well’s equation¹ ·B=0.

Equations26d can be expressed in the compact ma
notation,

f = Sx= fSinSoutgF xin

xout
G , s27d

where

Sin = fa1,−1 . . .aLinLin
g, s28d

Sout = fb1,−1 . . .bLoutLout
g, s29d

xin = fa1,−1 . . . aLinLin
gT, s30d

xout = fb1,−1 . . . bLoutLout
gT. s31d

Thus,S is the magnetic subspace, the SSS basis, spanni
measurable magnetic signals, provided thatLin and Lout are
high enough, and it contains separate subspacesSin andSout

spanning the biomagnetic signals and external interfer
signals, respectively. The corresponding multipole mom
are contained in vectorx.

It is easy to see from Eq.s26d that the dimension, th
number of basis vectors, of the SSS basis is

n = sLin + 1d2 + sLout + 1d2 − 2. s32d

The fundamental requirement for the applicability of SS
the conditionN.n. Therefore, it is essential to estim
lower bounds for the ordersLin andLout capable of represen
ing any present magnetic field, for example, by using
s23d and s24d.

The SSS basis is linearly independent for practical

FIG. 3. Geometry of a typical neuromagnetic measurement includin
interesting source and an interference source. The origin is in the cente
figure was originally published in Ref. 33.
sor arrays. In principle, the array has linearly dependent basi

Downloaded 21 Jun 2005 to 130.233.180.156. Redistribution subject to AI
ll

e

.

-

vectors only when the sensors are confined into a p
spherical array and all the sensors are either strictly rad
strictly tangentialssee Appendix B for a proofd. Thus, with a
practical sensor array satisfyingN.n, any measured sign
vector can be uniquely decomposed into the multipole
ments containing separate amplitudes for the biomag
and external interference signals. It is interesting to note
measuring tangential components of the magnetic field
hances the resolution between the biomagnetic and ex
interference signals.

B. Sensitivity of the SSS basis

This section describes the theoretical relations sho
how the SSS reconstruction is affected by random noise
errors in the basis matrix. Practical demonstrations are g
in Ref. 10. In the following we assume that noise and m
netic signals are uncorrelated and have zero mean.

1. Noise

The noise sensitivity of the SSS basis depends on
sensor configuration and noise level of the sensors. Le
noise covariance of the device beN=EfnnTg, where E
means expectation andn is the signal vector composed
random noise. Furthermore, let the covariance matrix o
expansion amplitudes in Eq.s27d be Cx=EfxxTg. This cova
riance is altered by the pseudoinverseS† when the ampli
tudes are estimated from the measured noisy dataf=f0

+n as the estimate isx̂=S†f=S†sf0+nd=x+S†n leading to

Efx̂x̂Tg = EfxxTg + EfS†nnTsS†dTg = Cx + S†NsS†dT.

s33d

Thus, the noise increase is characterized by the
S†NsS†dT which combines the sensor geometry through
pseudoinverse ofS and the sensor noise through the n
covariance matrixN.

The SSS-reconstructed internal signalf̂in is also af-
fected by sensor configuration and noise level. Let us d
the matrixP=fI 0g, where I is a fsLin+1d2−1g3 fsLin+1d2

−1g-dimensional identity matrix and0 is a fsLin+1d2−1g
3 fsLout+1d2−1d-dimensional null matrix. Thenx̂in=Px̂ and
f̂in=SinPx̂ leading to covariance

Eff̂inf̂in
T g = Cf + SinPS†NsS†dTPTSin

T , s34d

whereCf=SinPCxP
TSin

T is the covariance of the signal.

2. Inaccurate knowledge of the sensors

In contrast with sensitivity to random noise, inaccura
in the knowledge of the sensor geometry and calibration
duce systematic bias to the SSS reconstruction. In a way
is a more severe cause of reconstruction errors than ra
noise as large systematic bias may significantly affect lo
ization accuracy. Consequently, it is important to estimat
amount of reconstruction bias as a function of geometry
calibration accuracy.

Let us assume a noiseless signalf0=Sx and defineS̃
=STS andf̃0=STf0. ThenS̃x=f̃0 and the estimated sign

e

sbased on erroneous amplitude vectorx+Dx and perturbated

P license or copyright, see http://jap.aip.org/jap/copyright.jsp



n
ccu-
mbe

cto

rac

ma-
ma-
ould
nso

netic

on-
ag

-

nce

-
nals
con

nd
ex-
bee

rme
mag

cord-

a
mea-
rray
head

cted
ndent
rag-
alcu-

ired
ipole

thod
oting
epen-
ignal

Thus,
raged

posi-

ratio
or-
e, it

per
ject

le

sen-
nsors

124905-7 S. Taulu and M. Kajola J. Appl. Phys. 97, 124905 ~2005!
matrix S̃+DS̃ is f̃=sS̃+DS̃dsx+Dxd, where the perturbatio
of the matrix is caused by geometry and calibration ina
racies. The estimation error depends on the condition nu

ksS̃d of matrix S̃ and the matrix error,31

iDxi
ix + Dxi

ø ksS̃d
iDS̃i

iS̃i
. s35d

On the other hand, the estimation error of the signal ve
f̂=sS+DSdsx+Dxd satisfies

if̂ − f0i ø iSiiDxi + iDSiix + Dxi

ø FiDSi + ksS̃d
iDS̃i

iS̃i
iSiGix + Dxi. s36d

This worst case estimate is generally too pessimistic in p
tice, as shown by extensive demonstrations,10 but it shows
that the reconstruction error is proportional both to the
trix error and the condition number of the unperturbated
trix. Therefore, the condition number of the SSS basis sh
be kept as low as possible by proper design of the se
array.32

V. APPLICATIONS OF SSS

A. Suppression of external interferences

The separation of the SSS basis into the biomag
subspaceSin and the external interference subspaceSout in
Eq. s27d allows one to remove the interferences by rec
structing the signals using only components of the biom
netic subspace. First, an estimatex̂ for the multipole mo
ments is calculated from the measured signal vectorf by
modeling both the biomagnetic and external interfere
signals,

x̂ = F x̂in

x̂out
G = S†f, s37d

whereS†=sSTSd−1ST is the pseudoinverse ofS or a regular
ized version of this inversion. Then the biomagnetic sig
can be reconstructed from the estimate leaving out the
tribution of the external interferences,

f̂in = Sinx̂in. s38d

As a consequence, all signals arising from volumes 4 a
of Fig. 3 are eliminated in the reconstruction. Practical
amples of the external interference suppression have
shown in Refs. 33 and 10.

B. Virtual signals and movement correction

The vector of multipole momentsx is device-
independent enabling biomagnetic signals to be transfo
between sensor arrays. Thus, transformation of the bio
netic signals from a measurement device with SSS basisS to

a virtual device with SSS basisSv is done simply by

Downloaded 21 Jun 2005 to 130.233.180.156. Redistribution subject to AI
r

r

-

r

-

-

5

n

d
-

f̂v = Sv,inx̂in, s39d

wherex̂in has been estimated from the measurement ac
ing to Eq.s37d.

The virtual signal calculation generalizes to
movement-correction method as one can transform the
sured signals from a moving subject to a virtual sensor a
locked to the subject’s head, provided that a continuous
movement monitoring method is available.19

The simplest way to perform a movement-corre
evoked measurement is to average the device-indepe
multipole moments instead of the traditional way of ave
ing the data epochs. After the measurement, one can c
late by Eq.s39d the virtual signals corresponding to a des
reference head position by using the averaged mult
moments.

However, a much faster movement-correction me
avoiding consecutive pseudoinverses is achieved by n
that the head movements and magnetic fields are ind
dent random variables. Consequently, the averaged s
kfl is of the form

kfl = kSxl = kSlkxl, s40d

where the second equality comes from independence.
the movement correction can be done using the ave
data kfl and averaged SSS basiskSl in Eq. s37d and the
resultingkx̂lin in Eq. s39d. The average of the SSS basiskSl
corresponds to averaging the bases of different head
tions during the measured data epochs.

In the case of large movements, the signal-to-noise
sSNRd may vary significantly between different epochs c
responding to different positions of the subject. Therefor
may be necessary to calculate the weighted averages

kSl =
1

ws
o
i=1

M

wiSi s41d

and

kfl =
1

ws
o
i=1

M

wifi , s42d

whereM is the number of epochs andws=oiwi. A suitable
weighting factor can be derived from the theoretical up
bound of the SNR corresponding to the position of the ob
during theith epoch,

SNR =
ifin,ii

ini
=

iSin,ixini
ini

ø iSin,ii
ixini
ini

, s43d

where n is a noise signal andi·i indicates some suitab
norm. Thus, the upper bound of SNR is proportional toiSin,ii
and we can choose

wi = iSin,ii. s44d

C. dc measurements

Static sources, the dc, can be measured by SQUID
sors only if the dc sources move with respect to the se

as the SQUIDs are sensitive to dynamic signals only. Thus,
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in order to measure the dc of the human brain the subjec
to move with respect to the sensor array. One way to ac
plish this is to move a bed sinusoidally back and forth w
the subject is lying on the bed in a fixed position.20

As an alternative and easier method, the movem
correction method described in Sec. V B enables on
monitor the dc signals. As the multipole momentsxin corre-
sponding to the biomagnetic sources are calculated in
head coordinate system, the static magnetic fields o
brain, measurable only from a moving subject, can be
tracted. Consequently, voluntary head movements ca
used for detection of dc phenomena of the brain. On
other hand, the undesirable movement artifacts cause
magnetic impurities can be removed by removing the
component after movement correction, e.g., by doing
line correction.34 A specifically powerful method to extra
the dc component can be formulated by considering the
nal differences as described in Ref. 35.

VI. DISCUSSION

SSS is a method to remove external disturbances, to
culate virtual signals, to perform movement correction,
to measure signals caused by dc. SSS also facilitates s
modeling by representing the measured magnetic signa
components containing orthogonal information about the
derlying current distribution.

The ability of SSS to span practically all MEG signal
based on the fact that the number of channels in mo
multichannel devices clearly exceeds the number of de
of freedom of the measurable magnetic fields produce
the brain and interference sources. Thus, it is possib
decompose in a stable manner any measured signal in
basis components by exploiting the oversampling condi

In this paper we have shown that in quasistatic app
mation, the magnetic field can be expressed by an expa
of vector spherical harmonics. By using these harm
functions, SSS models both the interesting and disturb
signals uniquely forming a very robust disturbance rem
method. Reconstruction of the interesting signals using
the corresponding multipole moments with disturbance
moved is in principle arbitrarily accurate if the calibrat
and geometry of the measurement device are prec
known.

The multipole moments are device independent w
immediately enables a straightforward way to perform m
ment correction and calculate virtual signals to any des
sensor configuration. Furthermore, the device independ
also enables dc measurements with SQUIDs and facil
removal of movement artifacts caused by static mag
objects.

The multipole moments can be expressed as projec
of the current distribution to their lead fields. Because th
lead fields are orthogonal, the multipole moments are a
pact representation of the measured data. Furthermor
lead fields have a simple mathematical form encouraging

to use the multipole moments for source modeling despite
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the lack of obvious physiological correlations between
multipoles and MEG sources beyond the dipole. This
topic of future research.

As a conclusion, SSS greatly improves the quality
biomagnetic data without requiring essential user inter
tion, e.g., in the form of user selectable-free paramete
particularly important feature in clinical MEG work.
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APPENDIX A: VECTOR SPHERICAL HARMONICS

Arfken22 and Hill36 define the following vector spheric
harmonic functions:

V lmsu,wd =
1

Îsl + 1ds2l + 1d
F− sl + 1dYlmsu,wder

+
]Ylmsu,wd

]u
eu +

imYlmsu,wd
sinu

ewG , sA1d

W lmsu,wd =
1

Îls2l + 1d
FlYlmsu,wder +

]Ylmsu,wd
]u

eu

+
imYlmsu,wd

sinu
ewG , sA2d

X lmsu,wd =
− 1

Îlsl + 1d
FmYlmsu,wd

sinu
eu + i

]Ylmsu,wd
]u

ewG
sA3d

satisfying the orthonormality condition,

E
V

Plmsu,wd ·RLM
* su,wddV = dPRdlLdmM, sA4d

whereV is the solid angle andP andR may beV, X or W.
FunctionX lmsu ,wd can also be expressed using the

malized scalar spherical harmonic functionYlmsu ,wd,22,23

X lmsu,wd =
1

Îlsl + 1d
LYlmsu,wd, sA5d

whereL is the angular momentum operator,

L = − isr 3 ¹ d. sA6d

Let us also define the modified vector spherical fu
tions,

nlmsu,wd = Îsl + 1ds2l + 1dV lmsu,wd sA7d

and

vlmsu,wd = Îls2l + 1dW lmsu,wd, sA8d

which are orthogonal over solid angle according to E

sA1d, sA2d, andsA4d.
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APPENDIX B: LINEAR INDEPENDENCE OF THE SSS
BASIS

According to elementary linear algebra, the column
the SSS basisS are linearly independent only if

f = Sx= 0 ⇒ x = 0 ⇔ alm = blm = 0 ∀ l,m. sB1d

Without loss of generality, suppose the sensors are poin
magnetometers,Lin=Lout=L, and that the number of sens
satisfiesN.2sL+1d2−2. Furthermore, we assume that
sensors are confined to two distinct surfaces separated
finite distance. If this distance is zero, the sensors are lo
on a single surface.

According to Eq.s8d, the output of thej th sensor havin
location r j and normal vectorn j =njrer +njueu+njwew is then

f j = − m0o
l,m
HF− sl + 1d

alm

r j
l+2 + lblmr j

l−1GnjrYlm

+ Salm

r j
l+2 + blmr j

l−1DSnju
]Ylm

]u
+ njw

imYlm

sinu j
DJ , sB2d

where the argument ofYlm has been left out for simplicit
We note that

− Îlsl + 1dier 3 X lm =
]Ylm

]u
eu +

imYlm

sinu
ew sB3d

and from Hill’s equations36 we get

− Îlsl + 1dier 3 X lm =Î lsl + 1d
2l + 1

fÎlV lm + Îl + 1W lmg

sB4d

and

Ylmer =
1

Î2l + 1
f− Îl + 1V lm + ÎlW lmg. sB5d

According to the orthogonality relations of the vector sph
cal harmonics, functionsYlmer andÎlsl +1dier 3X lm form a
set of orthogonal functions over a spherical volume, with

FIG. 4. The largest principal angle as a function of distance between th
spheres containing sensors. Solid curve: all sensors radial, dashed cu
sensors tangential, and dotted curve: both radial and tangential senso
property that any linear combination of such functions can be
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zero only when each function is multiplied by zero. Com
nation of Eqs.sB2d and sB3d gives

f j = − m0o
l,m
HF− sl + 1d

alm

r j
l+2 + lblmr j

l−1GYlmer ·n j

− Salm

r j
l+2 + blmr j

l−1DÎlsl + 1dier 3 X lm ·n jJ sB6d

The second term of the sum vanishes for radial sensosn j

=njrerd and similarly the first term of the sum vanishes
tangential sensorssn j =njueu+njwewd. Due to the orthogona
ity condition, in the radial case the solution off j =0 from
Eq. sB6d is

alm =
l

l + 1
blmr j

2l+1 ∀ l,m sB7d

and similarly the solution off j =0 in the tangential case i

alm = − blmr j
2l+1 ∀ l,m. sB8d

In order for a nontrivial solution to exist forf=Sx=0, Eqs.
sB7d and sB8d have to be valid on each channel indica
that r j =r0∀ j with r0 being arbitrary. Furthermore, Eqs.sB7d
and sB8d do not have a common solution apart from
trivial one, meaning that each channel has to be radi
each channel has to be tangential. This also means that
general case withn j =njrer +njueu+njwew the only solution
for f=Sx=0 is the trivial solutionalm=blm=0∀ l ,m. As a
conclusion, the SSS basis is linearly dependent for a sp
cal array with strictly radial or strictly tangential sensors

To examine the linear independence quantitatively
simulated the effect of the non-sphericality of the senso
ray on the SSS basis withLin=Lout=6. In the simulation, th
condition numberk of S and the largest principal anglec
betweenSin andSout were calculated for an array consist
of 397 pointlike magnetometers. The distance between
equidimensional subspaces is defined as sinc with c being

37

o
all
FIG. 5. Condition number of normalizedS as a function of distance betwe
the two spheres containing sensors. Solid curve: all sensors radial,
curve: all sensors tangential, and dotted curve: both radial and tang
sensors.
the largest principal angle between the subspaces.
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In the first simulation the sensors were equally dis
uted on two spherical surfaces and Fig. 4 shows the prin
angle as a function of distance between the surfaces.
the zero distance all sensors are located on the same s
andc=0 for an array consisting of radial or tangential s
sors. In these casesSin andSout become linearly depende
However, an array consisting of both radial and tange
sensors hasc.0 even when the sensors are located on
same spherical surface. With nonzero distance betwee
two spheres,c is nonzero also for the radial and tangen
sensors. These observations are in accordance with the
ematical proof shown above. A further confirmation is gi
by Fig. 5 showing the condition number of the normali
SSS basis using the same paradigm as in Fig. 4. The c
tion number is practically infinite for the radial and tang
tial sensors when the sensors are located on the same s
In other casesk is finite indicating linear independence.
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