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Oscillations in the brain

* Brain oscillations show power changes in response to events
— Changes linked to distinct frequency bands

m Frequency: Example association:

Delta 0-4 Hz Sleep, clinical disorders

Theta 4-8 Hz Working memory

Alpha 8-12 Hz Sensory stimulation, memory, attention
Beta 12-30 Hz Motor actions, planning

Gamma 30-80 Hz Binding, consciousness, attention

Herrmann, Grigutsch & Busch (2005)

However, oscillations recorded in MEG contain confluence of information
from different frequencies

* Need specialised analysis techniques



Oscillations in the brain

Techniques allow us to ask:

Are different frequencies more tuned to different
sensory/cognitive functions?

Is different information about a stimulus encoded in different
frequency bands?



Oscillations in the brain
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Complex oscillations we record can be decomposed into
different frequencies

The frequency-tuned power and phase can then be extracted
for each time-period

Power used to construct TFR
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Decomposing the oscillations

 Methods to extract freqg-tuned oscillations:

— Filtering
— FFT
— Multi-tapers
— Wavelets
Tt || e

5 B0 om0 w40 S0 6o
-

Filter { 35-45 Hz) FFT Wavelel translorm



Wavelets A,
* Extract power and phase centred at t and f g — m\;»—i»

 Morlet wavelet transformation of the signal

— Signal convolved with frequency-specific . Wi
wavelet function Rty me
— Shifted, scaled version of mother wavelet

— Though of as envelop of filtered signal
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* Reveals freg-specific power (and phase)
— But temporal/frequency resolution variable . t=7*1/f

— No. cycles/window
e Cycles go up: Time res goes down, Freq res goes

llp AF
.

e Typical 5-7 cycles
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(a) wavelet (b) multitaper
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Vugt et al (2007). Journal of Neuroscience methods



Data analysis

Stimulus
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Averaged evoked potential

Tallon-Baudry & Bertrand (1999)



Data analysis
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Tallon-Baudry & Bertrand (1999)



Example

Faces vs. scrambled faces
* Epoched, downsampled, artefact rejection
— TFR of trials, averaged within condition (total)

— SPM stats showing faces > scrambled
* 110 ms, 13 Hz
* 190 ms, 5 Hz

Faces Scrambled . Tmap: Faces > scram p <0.001
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SPMS8 multimodal face data: http://www.fil.ion.ucl.ac.uk/spm/data/




Advanced 1: Regression

Regression coefficients

* Regression between single-trial
power and stimulus properties

— At each time/frequency point

 Reveal TFR increases/decreases
with varying linear stimulus
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Advanced 2: Ml

* Mutual information (MI) between presence of pixels and
power (& phase) &

e Shared info between facial
features and frequency-
specific power/phase

 Multiplexing
— Mouth: Theta
— Eyes: Beta

Schyns, Thut & Gross (2011). PLoS biology



Advanced 3: Phase

* Category-specific phase responses in
non-human primate STS

— Phase of oscillations tied to type of image
(face vs. object)

e Systematic differences in phase not due
to firing rates

* Evidence that phase coding could support
rapid object recognition

Turesson, Logothetis & Hoffman (2012). PNAS
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Tutorials

* SPM8

— Multimodal face data
— http://www.fil.ion.ucl.ac.uk/spm/data/

— Chapter x of manual
* Fieldtrip
— http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis

 MNE
— http://mne-tools.github.com/mne-python-intro/
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