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When/Where is the effect reliable?



When/Where is the effect reliable?
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Common approach: Common approach: 
(1) View data, identify time-window containing effect, peak sensor(s)
(2) Extract and average data for conditions and subjects
(3) Compute statistics  ( ) p
* Circular if (1) performed on effect of interest
* OK if orthogonal effect or from literature



The Multiple Comparison Problemp p



The Multiple Comparison Problem

• The more comparisons we conduct, the more Type I errors (false 
positives) we will make when the Null Hypothesis is true.
* M t id  F il i (  i ) E  R t* Must consider Familywise (vs. per-comparison) Error Rate

• Comparisons are often made implicitly e g  by viewing (“eye-Comparisons are often made implicitly, e.g., by viewing ( eye
balling”) data before selecting a time-window or set of channels for 
statistical analysis. 

-> When is there 
 ff t i  tian effect in time

e.g., GFP (1D)? 

time
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The Multiple Comparison Problem
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-> When/where
i  th   ff t
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is there an effect
in sensor-topography
space/time (3D)? 

y

space/time (3D)? 



The Multiple Comparison Problem

• The more comparisons we conduct, the more Type I errors (false 
positives) we will make when the Null Hypothesis is true.
* M t id  F il i (  i ) E  R t* Must consider Familywise (vs. per-comparison) Error Rate
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(4-ish-D)? 
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Statistical Parametric Mapping (SPM)

• A mass-univariate statistical approach to inference regarding effects 
in space/time/frequency (using replications across trials or 
subjects)subjects).

• Data are converted into images, submitted to general linear model g , g
(GLM)

U  h f h   hi  l d i  i i l l i  f • Uses much of the same machinery employed in statistical analysis of 
fMRI data.

Random Field Theory (RFT) is a method for correcting for multiple 
statistical comparisons with N-dimensional spaces (for parametric 
t ti ti   Z  T  F t ti ti )statistics, e.g., Z-, T-, F- statistics).
* Correction depends on size of search volume

* Takes smoothness of images into accounta es s oot ess o ages to accou t

RFT: Worsley Et Al (1996). Human Brain Mapping, 4:58-73



GLM: Condition Effects after removing variance due 
to confoundsto confounds

Each trial-type Confounds 

Each trial

W/in Subject/ j
(1st-level) model
-> one image per trial
-> one covariate value
per trialper trial

Also: Group Analysis 
(2nd-level)
-> one image per subject
per condition
-> one covariate value per
subject per condition

beta_00* image volumes reflect 
( dj t d) diti ff t(adjusted) condition effects

Henson et al., 2008, NImage



Sensor-space analysesp y



Where is an effect in time-frequency space?

1 subject  (1st-level analysis)
1 MEG channel Faces > Scrambled

Fa
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s Morlet wavelet projection

1 t-x-f image per trial
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Kilner et al., 2005, Nsci Letters
CTF Multimodal Faces Dataset (Rik Henson)



Where is an effect in sensor-time space?

Analysis over subjects (2nd Level): Words vs. Pseudowords 
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Taylor & Henson (in review)
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Where is an effect in source space (3D)?

STEPS:

Estimate evoked/induced 
energy (RMS) at each dipole for 
 t i  ti f  i d  a certain time-frequency window 

of interest. 
- e.g., 100-220ms, 8-18 Hz
- For each condition For each condition 

(Faces, Scrambled)
- For each sensor type 

OR fused modalities

Write data to 3D image 
- in MNI space
- smooth along 2D surface- smooth along 2D surface

Smooth by 3D Gaussian

Submit to GLM

Henson et al., 2007, NImage



Where is an effect in source space (3D)?

RESULTS: Faces > Scrambled

MEG
sensor fusion

E+MEGEEGfMRI

Henson et al, 2011
Neuromag Faces



Where and When do effects emerge/disappear
i    (4 i h D  ti  f t i d)?

C di i i i d

in source space (4-ish-D: time factorised)?

Condition x Time-window
Interactions

F t i i  ti ll  Factorising time allows 
you to infer (rather than 
simply describe) when 
effects emerge or disappeareffects emerge or disappear.

* estimate source energy in 
each sub-time-windoweach sub-time-window

* submit to GLM with 
conditions & time-windows conditions & time windows 
as factors 

* Cond effects per t-winCo d e ects pe t

* Cond x t-win interaction

Taylor & Henson, in review
Neuromag Lexical Decision



Alternative Approachespp



Alternative Approaches

p<.05 FWENon-Parametric Approach 
(SnPM)(SnPM)

Robust to non-Gaussian 
distributions

Less conservative than 
RFT when dfs<20

Caveats:

No idea of effect size (e.g., 
for power, future expts)

E h bilit  diffi lt f  Exchangeability difficult for 
more complex designs

(Taylor & Henson  Biomag 2010)(Taylor & Henson, Biomag 2010)

SnPM Toolbox by Holmes & Nichols:SnPM Toolbox by Holmes & Nichols:
http://go.warwick.ac.uk/tenichols/software/snpm/

CTF Multimodal Faces



Alternative Approaches

p>.95 (γ>1SD)Posterior Probability 
Maps (PPMs)p ( )

Bayesian Inference

No need for RFT (no MCP)

Threshold on posterior 
probabilty of an effect 
greater than some size

C  h  ff t i ft  Can show effect size after 
thresholding

Caveats:Caveats:

Assume Gaussian 
distribution (e g  of mean distribution (e.g., of mean 
over voxels)

CTF Multimodal Faces



Th  d -- The end --

• Thanks for listening
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