

Statistical analysis of M/EEG Sensor- and Source-Level Data

Jason Taylor

MRC Cognition and Brain Sciences Unit (CBU) Cambridge Centre for Ageing and Neuroscience (CamCAN) Cambridge, UK

9 Jan 2013 | MEG UK Workshop, Cambridge | jason.taylor@mrc-cbu.cam.ac.uk

When/Where is the effect reliable?

When/Where is the effect reliable?

Common approach:

- (1) View data, identify time-window containing effect, peak sensor(s)
- (2) Extract and average data for conditions and subjects
- (3) Compute statistics
- * Circular if (1) performed on effect of interest
- * OK if orthogonal effect or from literature

• The more comparisons we conduct, the more Type I errors (false positives) we will make when the Null Hypothesis is true.

* Must consider *Familywise* (vs. *per-comparison*) Error Rate

- Comparisons are often made *implicitly*, e.g., by viewing ("eyeballing") data before selecting a time-window or set of channels for statistical analysis.
 - -> When is there an effect in time e.g., GFP (1D)?

• The more comparisons we conduct, the more Type I errors (false positives) we will make when the Null Hypothesis is true.

* Must consider *Familywise* (vs. *per-comparison*) Error Rate

- Comparisons are often made *implicitly*, e.g., by viewing ("eyeballing") data before selecting a time-window or set of channels for statistical analysis.
 - -> When/at what frequency is there an effect an effect in time/frequency (2D)?

• The more comparisons we conduct, the more Type I errors (false positives) we will make when the Null Hypothesis is true.

* Must consider *Familywise* (vs. *per-comparison*) Error Rate

- Comparisons are often made *implicitly*, e.g., by viewing ("eyeballing") data before selecting a time-window or set of channels for statistical analysis.
 - -> When/where is there an effect in sensor-topography space/time (3D)?

The more comparisons we conduct, the more Type I errors (false positives) we will make when the Null Hypothesis is true.

* Must consider *Familywise* (vs. *per-comparison*) Error Rate

Comparisons are often made *implicitly*, e.g., by viewing ("eyeballing") data before selecting a time-window or set of channels for statistical analysis.

Statistical Parametric Mapping (SPM)

- A mass-univariate statistical approach to inference regarding effects in space/time/frequency (using replications across trials or subjects).
- Data are converted into images, submitted to general linear model (GLM)
- Uses much of the same machinery employed in statistical analysis of fMRI data.
- **Random Field Theory (RFT)** is a method for correcting for multiple statistical comparisons with N-dimensional spaces (for parametric statistics, e.g., Z-, T-, F- statistics).
 - * Correction depends on size of search volume
 - * Takes smoothness of images into account

GLM: Condition Effects **after** removing variance due to **confounds**

Henson et al., 2008, NImage

Sensor-space analyses

Where is an effect in **time-frequency space**?

Extent threshold: k = 0 voxels, p = 1.000 (0.050) Expected voxels per cluster, <k> = 13.420 Expected number of clusters, <c> = 0.05 FWEp: 3.736, FDRp: 5.396, FWEc: 32, FDRc: 79 Degrees of freedom = [1.0, 334.0] FWHM = 7.5 58.5 Hz ms ; 7.5 11.7 {voxels} Volume: 28980 = 5796 voxels = 63.7 resels Voxel size: 1.0 5.0 Hz ms ; (resel = 87.91 voxels)

0.5

Τ

5.40

4.12

1

 (Z_{\equiv})

5.28

4.06

50

Faces > Scrambled

1.5

Design matrix

 $p_{\rm uncorr}$

0.000

0.000

2

2.5

Hz ms

5 185

12 100

Kilner et al., 2005, Nsci Letters

CTF Multimodal Faces Dataset (Rik Henson)

Where is an effect in **sensor-time space**?

Analysis over subjects (2nd Level): Words vs. Pseudowords

Source-space analyses

Where is an effect in **source space** (3D)?

STEPS:

Estimate evoked/induced

energy (RMS) at each dipole for a certain time-frequency window of interest.

- e.g., 100-220ms, 8-18 Hz
- For each condition (Faces, Scrambled)
- For each sensor type OR fused modalities

Write data to 3D image

- in MNI space
- smooth along 2D surface

Smooth by 3D Gaussian

Submit to GLM

Where is an effect in **source space** (3D)?

RESULTS: Faces > Scrambled

Henson et al, 2011 Neuromag Faces

Where and When do effects **emerge/disappear** in source space (4-ish-D: time factorised)?

Condition x Time-window Interactions Mags Factorising time allows 432-531 531-597 ms 170.256 you to infer (rather than simply *describe*) when Grads difference effects emerge or disappear. of RMS) * estimate source energy in each sub-time-window * submit to GLM with conditions & time-windows as factors * Cond effects per t-win * Cond x t-win interaction

Taylor & Henson, in review Neuromag Lexical Decision

MRC | Medical Research Council

Alternative Approaches

Alternative Approaches

Non-Parametric Approach (SnPM)

Robust to non-Gaussian distributions

Less conservative than RFT when dfs<20

Caveats:

No idea of effect size (e.g., for power, future expts)

Exchangeability difficult for more complex designs

(Taylor & Henson, Biomag 2010)

SnPM Toolbox by Holmes & Nichols: http://go.warwick.ac.uk/tenichols/software/snpm/

P values & statistics: ./MEG_Group/SourceSPMs/Inv2/mags/SnPM

		voxel-level			X U 7 mm		
ĸ	P _{FWE-co}	m ^p FDR-com	T	P _{uncorr}	~,y,z mm		
4779	0.0002	0.0034	12.03	0.0002	42	-52	-6
	0.0002	0.0034	11.94	0.0002	44	-44	-8
	0.0002	0.0034	11.34	0.0002	26	-42	-38
619	0.0032	0.0034	8.27	0.0002	-26	-62	-32
	0.0032	0.0034	8.27	0.0002	-44	-44	-6
	0.0068	0.0034	7.55	0.0002	-40	-54	-6
1	0.0139	0.0034	6.89	0.0002	50	-80	-30
1	0.0168	0.0034	6.63	0.0002	38	-34	-44
1	0.0212	0.0051	6.44	0.0005	58	-64	-32
-	~ ~~ · ·	·	0 0F	0.0000		~~	~ •
	* 4779 619 1 1	k p _{FWE-co} 4779 0.0002 0.0002 0.0002 0.0002 0.0002 619 0.0032 0.0068 0.00139 1 0.0139 1 0.0168 1 0.0212	k voxel-level k p _{FWE-corr} p _{FDR-corr} 4779 0.0002 0.0034 0.0002 0.0034 0.0002 0.0034 619 0.0032 0.0034 0.0032 0.0034 0.0032 0.0034 0.0032 0.0034 0.0034 1 0.0139 0.0034 1 0.0168 0.0034 1 0.0168 0.0034 1 0.0212 0.0051	k voxel-level k p _{FWE-corr} p _{FDR-corr} T 4779 0.0002 0.0034 12.03 0.0002 0.0034 11.94 0.0002 0.0034 11.34 619 0.0032 0.0034 8.27 0.0032 0.0034 8.27 0.0068 0.0034 6.89 1 0.0139 0.0034 6.63 1 0.0212 0.0051 6.44	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	k voxel-level 7 punconr 4779 0.0002 0.0034 12.03 0.0002 42 0.0002 0.0034 11.94 0.0002 44 0.0002 0.0034 11.34 0.0002 26 619 0.0032 0.0034 8.27 0.0002 -26 0.0032 0.0034 8.27 0.0002 -44 0.0068 0.0034 7.55 0.0002 -40 1 0.0139 0.0034 6.89 0.0002 50 1 0.0168 0.0034 6.63 0.0002 38 1 0.0212 0.0051 6.44 0.0005 58	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

CTF Multimodal Faces

Alternative Approaches

Posterior Probability Maps (PPMs)

Bayesian Inference

No need for RFT (no MCP)

Threshold on posterior probabilty of an effect greater than some size

Can show effect size after thresholding

Caveats:

Assume Gaussian distribution (e.g., of mean over voxels)

Faces > Scrambled

p>.95 (y>1SD)

Statistics: Posterior Probabilities

Extent threshold k = 0 voxels

5050 5050 5050	el	peak-level	cluster-level	set-level
	(Z_{\equiv})	P	^k E	c
40 -44 -12	-0.92	0.18	1239	6
38 -56 -10	-0.95	0.17		
40 - 34 - 16	-0.96	0.17		
-38 -56 -12	-1.08	0.14	395	
-38 -46 -14	-1.13	0.13		
-34 -46 -22	-1.16	0.12		
22 -54 -16	-1.15	0.12	1	
24 -62 -16	-1.15	0.12	2	
22 -60 -14	-1.20	0.12	1	
30 -62 -4	-1.23	0.11	4	

CTF Multimodal Faces

-- The end --

Thanks for listening

- Acknowledgements:
 - Rik Henson (MRC CBU)
 - Dan Wakeman (MRC CBU / now at MGH)
 - Vladimir, Karl, and the FIL Methods Group
- More info:
 - http://imaging.mrc-cbu.cam.ac.uk/meg (wiki)

jason.taylor@mrc-cbu.cam.ac.uk