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When/Where is the effect reliable?
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When/Where Is the effect reliable?

Best Channel

N N Aannrnarh-
Ornnnior appiruadcii.

(1) View data, identify time-window containing effect, peak sensor(s)
(2) Extract and average data for conditions and subjects

(3) Compute statistics

* Circular if (1) performed on effect of interest

* OK if orthogonal effect or from literature



The Multiple Comparison Problem
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The Multiple Comparison Problem

« The more comparisons we conduct, the more Type | errors (false
positives) we will make when the Null Hypothesis is true.

* Must consider Familywise (vs. per-comparison) Error Rate

« Comparisons are often made implicitly, e.g., by viewing (“eye-
balling”) data before selecting a time-window or set of channels for
statistical analysis.

-> \When iIs there
an effect in time
e.g., GFP (1D)?
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The Multiple Comparison Problem

« The more comparisons we conduct, the more Type | errors (false
positives) we will make when the Null Hypothesis is true.

* Must consider Familywise (vs. per-comparison) Error Rate

« Comparisons are often made implicitly, e.g., by viewing (“eye-
balling”) data before selecting a time-window or set of channels for
statistical analysis.

-> When/at what frequency A e e
Is there an effect . H N
an effect in time/frequency 2| " H
(2D)? 2| Faws] F-9
time .
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The Multiple Comparison Problem

The more comparisons we conduct, the more Type | errors (false
positives) we will make when the Null Hypothesis is true.

* Must consider Familywise (vs. per-comparison) Error Rate

Comparisons are often made implicitly, e.g., by viewing (“eye-
balling”) data before selecting a time-window or set of channels for
statistical analysis.

-> When/where X
is there an effect y[ o
In sensor-topography o o
space/time (3D)? w
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The Multiple Comparison Problem

« The more comparisons we conduct, the more Type | errors (false
positives) we will make when the Null Hypothesis is true.

* Must consider Familywise (vs. per-comparison) Error Rate

« Comparisons are often made implicitly, e.g., by viewing (“eye-
balling”) data before selecting a time-window or set of channels for

statistical analysis.
“
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-> When/where
IS there an effect
INn source

cnara/timao
JPMU\I’ Cilliu

(4-ish-D)?




Statistical Parametric Mapping (SPM)

« A mass-univariate statistical approach to inference regarding effects
In space/time/frequency (using replications across trials or
subjects).

« Data are converted into images, submitted to general linear model
(GLM)

« Uses much of the same machinery employed in statistical analysis of
fMRI data.

Random Field Theory (RFT) is a method for correcting for multiple
statistical comparisons with N-dimensional spaces (for parametric
statistics, e.g., Z-, T-, F- statistics).

* Correction depends on size of search volume
* Takes smoothness of images into account

MRC | Medical Research Council RFT: Worsley Et Al (1996). Human Brain Mapping, 4:58-73



GLM: Condition Effects after removing variance due
to confounds

Each triil—type Confﬁunds
T & 2 % % § @ =R
T & & 3§ 3§ 8 £ E 5 =

Jtrial4EE Eftriald 71 Limg
Jtrialtype frial1 03 mg
Mrialtype Arial204 img
Mrialtype Arial284 img
Jrialtype Arial 358 img
Mrialtype! Ariald S8 img
Jrialtype2frialSs img
Jtrialtypezstrial 1 90.0mg

Each trial§5

Jrialtypez2ftrial285 img
Jtrialtypertrial 372 mg
Jrialtypez2ftrialdB2 img
Mrialtypesfriale? img

Jtrialtype3strial1 65 img
Mrialtypesftrial2dd img
Jtrialtype3strial 324 img
Mrialtypesftriald 28 img
Jtrialtypedstriald 2 img

Mrialtypedtriall 45 img
Jtrialtypedstrial2 19.mg

W/in Subject

(1st-level) model
-> one image per trial
-> one covariate value
per trial

images

Mrialtypedtrial 331 img
Jtrialtypedstriald 36 img
MrialtypeSiriall 4 img

MrialtypeSirialss img

JtrialtypeSitriall 75.img
MrialtypeSirial2 70 img
JrialtypeSitrial 355 img
JtrialtypeSstrialdS0img
JrialtypeBftriall 16.img
JtrialtypeBstrial1 91 dmg
Jrialtypebftrial293 img
Jtrialtypebstrial 357 img
JrialtypeBftriald 71 img

Also: Group Analysis
(2nd-level)

-> one image per subject
per condition

-> one covariate value per
subject per condition

paﬁ%

beta 00* image volumes reflect
(adjusted) condition effects

Henson et al., 2008, NImage



Sensor-space analyses
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Where is an effect in time-frequency space?

channel MLT34 (MEGGRAD)
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Kilner et al., 2005, Nsci Letters

Faces > Scrambled
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Design matrix

Statistics: p-vaiues adjusted for search volume

set-level cluster-level peak-level

Hz ms

& ‘ 't?FWE-cc:rr qFDH-cnrr Jc;E 'Guncnrr 'OFWE-cnrr 'gFDH-cc:rr 7 ':ZE:' 'Guncnrr
o.op1r 2 0.000 0006 79 0.003 0. 000 0.002 5.40 5.28 0. 00D 5 185
0.005 0.092 32 0.092 0.013 0262 4.12 4.06 0. 00l 12 100

labie shows 3 local maning more el 8.0mn spant

Height threshold: T = 3.74, p = 0.000 (0.050) Deqgrees of freedom = [1.0, 334.0]

Extent threshold: k = 0 voxels, p = 1.000 (0.030) FWWHM = 7.5 58.5 Hz ms ; 7.5 11.7 {voxels}
Expected voxels per cluster, <k= = 13420 Yolume: 28380 = 5736 voxels = 63.7 resels
Expected number of clusters, <c= = 0.05 Woxel size: 1.0 5.0 Hz ms ; (resel = §7.91 voxels)

FWEp: 3.736, FDRp: 5.336, FWEc: 32, FDRc: 73

CTF Multimodal Faces Dataset (Rik Henson)



Where iIs an effect in sensor-time space?

Analysis over subjects (2"d Level): Words vs. Pseudowords
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Source-space analyses
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Where is an effect in source space (3D)?

STEPS:

Estimate evoked/induced
energy (RMS) at each dipole for
a certain time-frequency window
of interest.
- e.g., 100-220ms, 8-18 Hz
- For each condition
(Faces, Scrambled)

- For each sensor type
OR fused modalities

Write data to 3D image
- in MNI space

- smooth along 2D surface '.“
Smooth by 3D Gaussian :
Submit to GLM b

Henson et al., 2007, NImage



Where is an effect in source space (3D)?

RESULTS: Faces > Scrambled

fMRI

.......................
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EEG

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

sensor fusion
E+MEG

Henson et al, 2011
Neuromag Faces



Where and When do effects emerge/disappear
INn source space (4-ish-D: time factorised)?

Condition X Time-window
Interactions

Factorising time allows
you to infer (rather than
simply describe) when
effects emerge or disappear.

* estimate source energy in
each sub-time-window

* submit to GLM with
conditions & time-windows
as factors

* Cond effects per t-win

* Cond x t-win interaction

MRC | Medical Research Council
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Taylor & Henson, in review
Neuromag Lexical Decision



Alternative Approaches
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Alternative Approaches

Non-Parametric Approach
(SnPM)

Robust to non-Gaussian
distributions

Less conservative than
RFT when dfs<20

Caveats:

No idea of effect size (e.g.,
for power, future expts)

Exchangeability difficult for
more complex designs

SnPM Toolbox by Holmes & Nichols:
http://go.warwick.ac.uk/tenichols/software/snpm/

P values & statistics:

Design katri=

JMEG Group/SourceSPMs/Inv2imags/SnPM

cluster-level

vioxel-level

Powe-comPFog-cor

4579

619

T

o.0002  0.0034 12.03 ooooz 42 -52 -6
n.00oz 0.0054 11.94 g.oooz 44 -44 -3
n.0ooz 0.0054 11.34 noooz  E6 -42 -38
0.0032  0.0034 8.27 g.oo0z  -26 -62 -32
0.003z 0.0054 g.27 g0.0o00z  -44 -44 -G
0.006& 0.0054 ¥.a5 o.oooz  -40 -4 -G
0.0139 0.0034 6.69 n.oooz a0 -80 -30

0.0168  0.0034 6.63 noooz 38 -34 -4

0.0212 0.0051 6.44 o000z a8 -64 -32

-~ s -~ oo -~ - —_

CTF Multimodal Faces



Alternative Approaches

Posterior Probability
Maps (PPMs)

Bayesian Inference

No need for RFT (no MCP)
Threshold on posterior
probabilty of an effect

greater than some size

Can show effect size after
thresholding

Caveats:

Statistics: Posterior Probabilities

Faces » Scrambled

PPMU.DS

.....

contrastis)

2 4 B &5 1012 14
Design matrix

Assume Gaussian

AictriliitiAanrn ~F "

aistrioution \c g., O mean

over voxels)

set-level cluster-level peak-level PR TR T
[ kE ~ r_3

£ 1239 0.1 -0_92 40 -84 -127

017 -0.45 1% -5 -10

0,17 -0.96 40 -3¢ -1f

a5 0.14  -1.0% -3% -5 -12

0,13 -1.13 -3% -4 -14

0.1z -1.1k -394 -4 -22

i 0.12  -1.15 22 -54 -1f

2 0.1Z  -1.15 24 -62 -16

1 0.12  -1_20 22 -60 -14

4 .11 -1.23 o -62 -4

CTF Multimodal Faces



-- The end --
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More info:
http://imaging.mrc-cbu.cam.ac.uk/meg (wiki)
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