

Solutions*

- 1) Prevention
 - a. Comfortably lock down
 - Padding, bite bar,...
 - b. Instructions
 - Lie still!
 - Don't talk b/t runs!
 - Minimiz[s]e swallowing!
 - c. Design
 - a. Keep scan time reasonable
- 2) Realignment (Motion Correction)
 - a. Prospective Movement Correction (PACE)
 - Only rec. for real-time
 - b. Offline pre-processing
 - c. Include motion parameters
- 3) Reject bad data

*nothing's perfect

DIY: Realignment

- 1. Choose a reference image
 - Not necessarily the very first (dummy scans)
 - Should be representative & reasonably close in time to the structural
- 2. Registration
 - Estimate the 6 transformation parameters b/t each image & reference
 - Minimiz[s]e variance
- Apply transformation (re-slice)
 - Re-sample each imaging according to the transformation parameters
 - *NOT necessary now for every image if later normaliz[s]ing

lewton / 7aussdor

Global

- Provides a systematic way of modifying the parameters at each iteration
- Attempts to minimiz[s]e mean of squared difference between two images
- Minimum is estimated by \bigcirc fitting a quadratic at each iteration

We slowly build up a full transformation matrix out of this

 \bigcirc

 \bigcirc

Translations					Pitch about X axis		Roll about Y axis					i	Yaw about Z axis			
(1	0	0	Xtrans	(1	0	0	0)	$\cos(\Theta)$	0	$\sin(\Theta)$	0)	$\cos(\Omega)$	$sin(\Omega)$	0	0	
0	1	0	Ytrans	0	$\cos(\Phi)$	$sin(\Phi)$	0	0	1	0	0	$-\sin(\Omega)$	$\cos(\Omega)$	0	0	
0	0	1	Ztrans	0	$-sin(\Phi)$	$\cos(\Phi)$	0	$-\sin(\Theta)$	0	$\cos(\Theta)$	0	 0	0	1	0	
0	0	0	1)	0	0	0	1)	0	0	0	1)	0	0	0	1	

<< SPMo rateers oift of preona trilogitst maat thee fst

Reference

Transform according to the estimated parameters & resample to match the reference grid

To do this, we need estimate intensity values between grid points

So...interpolate!

Reslicing

Source*

Re-sliced

Takes value of closest voxel Original voxel intensities preserved Very fast But...image is degraded considerably Solocky" images

rilinear Interpolation rder OID

 \bigcirc

Represented in 2D for illustration

Takes the weighted average of the neighbo[u] ring voxels

(a) $f_5 = f_1 x_2 + f_2 x_1$

$$f_6 = f_3 x_2 + f_4 x_3$$

$$f_7 = f_5 y_2 + f_6 y_1$$

- Slower but less blocky than nearest neighbo[u]r
- Loses some high frequency information (smoothing)

indowed Sinc Interpolation

w/ Hanning Window

- Sinc interpolation gives results closest to a Fourier interpolation (which is ideal) but in real space
 - Convolve sinc function center[e]d on the point to be resampled
 - Theoretically, every voxel in sample is used, but an approx. using subset of near neighbo[u]rs speeds things up
 - Hence the 'window'
- Greatly reduces arti[e]facts, but S-L-O-W
- Interpolation performed on each dimension sequentially

asis]-splines

 \bigcirc

- A form of 'generalized interpolation'
 - First transforms image into basis functions before applying local convolution
 - Re-sampling involves
 computing linear
 combination of functions
 Done sequentially along
 each dimension
 - Far more efficient than classical interpolation

Fourier Methods

Hi, Dr. Elizabeth? Yeah, Uh... I accidentally took the Fourier transform of my cat...

Meow

Faster than higherorder interpolation

Uses fast Fourier transforms

> Convolution performed rapidly in Fourier space

However, can only handle translations (not really built for rotations currently)

Residual Errors

- Post-realignment, still variance due to movement left over:
 - Can be due to shifts between and within slice acquisition
 - Interpolation arti[e]facts
 - Non-linear distortions due to inhomogeneities of magnetic field...
- Spin-history changes (@ their worst when acquired interleaved)
 - Residual magnetiz[s]ation effects of previous scans
 - Movement may make effective TR longer/shorter for some slices
- Adding motion parameters may help

Spin History 'Striping'

spm.ps

Graphs of the estimated motion

prp_[firstimage].txt

all realignment parameters to realign to the first image file

translation

20 25 image

roll vaw

15

v translatio

- Number of rows = number images in run
 - Need this for later stats & can be modeled as confounds

means*.nii

Mean of the realigned/resliced images, used in coregistration

r*.nii

Resliced images (only required if NOT doing spatial normaliz[s]ation or IF planning to apply EPI undistortion)

tsdiffana: Typical Data

Run <u>before</u> realignment

Available to outsiders: <u>http://imaging.mrc-</u> <u>cbu.cam.ac.uk/imaging/</u> <u>DataDiagnostics</u>

>>tsdiffana

Select files for one session & press "done"

Say "no" when asked if should write difference images

Writes mean, stdev, and slice-to-slice variance

Here the gradient coil stopped working for a few volumes in the middle of the run

scale:

Notice
the

0

If you run slice timing correction 1st then abrupt movements between scans will cause it to interpolate between different brain regions :(

Slice Timing <> Motion Correction?

If you run motion correction 1st, slices no longer necessarily correspond to acquisition order, so timing correction won't be appropriate :(

Problem is worse if you have interleaved slice ordering, in which case you should run slice time correction 1st & select slice timing corrected images for realignment

CBU acquires in sequence (down), and many prefer to run motion correction 1st under this system

But whether this matters hasn't been investigated fully

owledgemer

SPM Methods for Dummies

www.fil.ion.cul.ac.uk/spm/doc

FSL Course

www.fmrib.ox.ac.uk/fslcourse

CBU Imaging wiki

imaging.mrc-cbu.cam.ac.uk/imaging/ CbuImaging

Jody Culham's fMRI for Newbies

www.fmri4newbies.com

Russell Thompson's fMRI Basics Course

Florida's citrus growers

