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Data Analysis:
A Birdseye View

Flowchart courtesy Russell Thompson



T2* EPI T1 MPRAGE

Where Is My Mind?
Co-Registration: Aligning two images of different 

modalities from the same individual



THE
REALIGNMENT

ZONE



T2* EPI T2* EPI

Volume: 2 Volume: 1Volume: 9

The Problem
CSF Gray 

Matter<<Voxel Contents May Shift>>



The Goal: Compare Like to Like
Remove movement arti[e]facts in fMRI time-series

‣Increases SNR by reducing residual noise
‣Reduces likelihood of false positive due to task-
correlated motion
‣But can hurt sensitivity to real effects



Six Rigid Body Transformation 
Parameters:

3 Flavo[u]rs of Translation

Side-to-Side
Translation in X

Front-to-Back
Translation in Y

(Different than Zoom)

Top-to-Bottom
Translation in Z [Z]



Yaw
Rotation around Z [Z] Pitch

Rotation around X Roll
Rotation around Y

‘no’
‘yes’

‘maybe’

Six Rigid Body Transformation 
Parameters:

3 Flavo[u]rs of Rotation



Solutions*
1) Prevention

a. Comfortably lock down
‣ Padding, bite bar,...

b. Instructions
‣ Lie still!
‣ Don’t talk b/t runs!
‣ Minimiz[s]e swallowing!

c. Design
a. Keep scan time 

reasonable
2) Realignment (Motion 

Correction)
a. Prospective Movement 

Correction (PACE)
‣ Only rec. for real-time

b. Offline pre-processing
c. Include motion parameters

3) Reject bad data
*nothing’s perfect

bite bar



DIY: Realignment
1. Choose a reference image

Not necessarily the very first 
(dummy scans)
Should be representative & 
reasonably close in time to 
the structural

2. Registration
Estimate the 6 transformation 
parameters b/t each image & 
reference

Minimiz[s]e variance
3. Apply transformation 

(re-slice)
Re-sample each imaging 
according to the 
transformation parameters
*NOT necessary now for every 
image if later normaliz[s]ing



Diff
(Ref-Img1*)

Variance
(Diff2)

Var = 0

Optimiz[s]ing the Cost Function
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Gauss-Newton Algorithm
Provides a systematic way of 
modifying the parameters at 
each iteration
Attempts to 
minimiz[s]e mean of squared 
difference between two images

Minimum is estimated by 
fitting a quadratic at 
each iteration

We slowly build 
up a full 
transformation 
matrix out of this

Global 
Minimum

Local 
Minimum



1 0 0 Xtrans
0 1 0 Ytrans
0 0 1 Ztrans
0 0 0 1
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Rigid body transformations parameterised by:	Rigid body transformations paramateriz[s]ed by:

(1) Registration
Affine transformations can be 
represented in matrix form: 

*order of operations matters
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Transformation 
(mapping) Parameters

<<SPM does it from right to left



Original 50º around Z 50º around Y

Order of Operations
Original 50º around Y 50º around Z



Transform according to 
the estimated 
parameters & resample 
to match the reference 
grid
To do this, we need 
estimate intensity 
values between grid 
points

So...interpolate!

(2) Transformation (Reslicing)
Reference Source Source*

Ref

Source*

Reoriented

Re-sliced



Nearest Neighbo[u]r
(Zero-Order Hold)

Takes value of closest 
voxel
Original voxel 
intensities preserved
Very fast
But...image is 
degraded considerably

“Blocky” images



Trilinear Interpolation
(First-Order Hold)

Takes the weighted 
average of the neighbo[u]
ring voxels

f5 = f1x2+f2x1
f6 = f3x2+f4x1
f7 = f5y2+f6y1

Slower but less blocky 
than nearest neighbo[u]r
Loses some high frequency 
information (smoothing)Represented in 2D for 

illustration



Windowed Sinc Interpolation
Sinc interpolation gives results 
closest to a Fourier 
interpolation (which is ideal) 
but in real space

Convolve sinc function 
center[e]d on the point to be 
resampled
Theoretically, every voxel in 
sample is used, but  an 
approx. using subset of near 
neighbo[u]rs speeds things up

Hence the ‘window’
Greatly reduces arti[e]facts, but
S-L-O-W
Interpolation performed on each 
dimension sequentially

Windowed sinc 

Sinc f
unctio

n

2.2. RE-SAMPLING IMAGES 5

Figure 2.2: Sinc function in two dimensions, both with (right) and without (left) a Hanning

window.

2.2.3 Windowed Sinc Interpolation

The optimum method of applying rigid-body transformations to images with minimal interpola-

tion artifact is to do it in Fourier space. In real space, the interpolation method that gives results

closest to a Fourier interpolation is sinc interpolation. This involves convolving the image with a

sinc function centered on the point to be re-sampled. To perform a pure sinc interpolation, every

voxel in the image should be used to sample a single point. This is not feasible due to speed

considerations, so an approximation using a limited number of nearest neighbors is used. Because

the sinc function extends to infinity, it is often truncated by modulating with a Hanning window

(see Figure 2.2). Because the function is separable, the implementation of sinc interpolation

is similar to that for polynomial interpolation, in that it is performed sequentially in the three

dimensions of the volume. For one dimension the windowed sinc function using the I nearest

neighbors would be:

I�

i=1

vi

sin(πdi)
πdi

1
2 (1 + cos (2πdi/I))

�I
j=1

sin(πdj)
πdj

1
2 (1 + cos (2πdj/I))

where di is the distance from the center of the ith voxel to the point to be sampled, and vi is the

value of the ith voxel.

2.2.4 Generalized Interpolation

The methods described so far are all classical interpolation methods that locally convolve the

image with some form of interpolant
1
. Much more efficient re-sampling can be performed using

generalized interpolation [27], where the images are first transformed into something else before

applying the local convolution. Generalized interpolation methods model an image as a linear

combination of basis functions with local support, typically B-splines or o-Moms (maximal-order

interpolation of minimal support) basis functions (see Figure 2.3). Before re-sampling begins, an

1The polynomial interpolation can also be formulated this way by combining Equations 2.1 and 2.1 to eliminate
the intermediate q.
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Results of Interpolation

Nearest Neighbo[u]r Trilinear Sinc



B[asis]-splines
A form of ‘generalized 
interpolation’

First transforms image 
into basis functions 
before applying local 
convolution
Re-sampling involves 
computing linear 
combination of functions
Done sequentially along 
each dimension
Far more efficient than 
classical interpolation

1st degree 
(bilinear/
trilinear 

interpolation)0 degree 
(nearest 

neighbo[u]r)

2nd degree
3rd degree

Smoothed 
Interpolated 

Function 
Measured Voxel 

Value

y

x 

1

   ti                       ti+1                         ti+2                                       ti+3 

B(0,i) 
B(1,i) 

 
B(2,i) 

 



Fourier Methods
Faster than higher-
order interpolation
Uses fast Fourier 
transforms

Convolution performed 
rapidly in Fourier 
space

However, can only 
handle translations 
(not really built for 
rotations currently)



Residual Errors
Post-realignment, still variance due to 
movement left over:

Can be due to shifts between and 
within slice acquisition
Interpolation arti[e]facts
Non-linear distortions due to 
inhomogeneities of magnetic field...

Spin-history changes (@ their worst 
when acquired interleaved)

Residual magnetiz[s]ation effects of 
previous scans
Movement may make effective TR 
longer/shorter for some slices

Adding motion parameters may help

Spin History
‘Striping’



Make sure you have good coverage of ROI
If expect this problem, perhaps use PACE

The Limits of Realignment



SPM Walkthrough
1) Realign (“Est & Reslice”)

2) Select images for each
session. Don’t include dummies; 
First should be ‘good’

3) Speed (0.001) 
vs. Quality (1)

5) Use 1st image or 
run registration 2x

8) Set 
interpolation 
degree 
(higher=slower/
more neighbo[u]rs)

7) Create ‘Mean 
image only’**if NOT doing spatial 

normaliz[s]ation or need 
EPI undistortion, choose 
“All Images + Mean 
Image”

>this requires 
reslicing, otherwise, 
not necessary to do 
at this stage

4) Separation (mm) 
b/t points sampled 
in ref (smaller = 
better, slower)

6) Higher degree = 
better, slower 

(uses more 
neighbo[u]ring 

voxels

[Default for 
fMRI is 5mm]



SPM Outputs
spm.ps

Graphs of the estimated motion
rp_[firstimage].txt

all realignment parameters to realign to the first image 
file
Number of rows = number images in run

Need this for later stats & can be modeled as 
confounds

means*.nii
Mean of the realigned/resliced images, used in 
coregistration

r*.nii
Resliced images (only required if NOT doing spatial 
normaliz[s]ation or IF planning to apply EPI 
undistortion)



Estimated Motion



tsdiffana: Typical Data
Run before realignment

Available to outsiders: 
http://imaging.mrc-
cbu.cam.ac.uk/imaging/
DataDiagnostics

>>tsdiffana

Select files for 
one session & press 
“done”

Say “no” when asked 
if should write 
difference images

Writes mean, stdev, and 
slice-to-slice variance



tsdiffana: Problem Data
Here the gradient 
coil stopped 
working for a few 
volumes in the 
middle of the run

Notice 

the
scale:



Rules of Thumb
No simple rules to define ‘too much’ motion, but...

>2-3mm or 2 degrees (.38 radians) in any dimension, 
exclude subject (i.e., ~voxel size)

Ardekani et al. (2001) find SPM can handle up to 10mm 
summed across dimensions
If >.5 mm, consider including movement parameters 
(will eat up some DoFs, but typically have plenty)

Inside the brain, 1mm shifts can cause 3-5% signal change
At the edges, 3-5% change is caused by 1/20th of a 
pixel shift (~187 microns)!

General points:
Rotational data harder to correct
Motion during scan session worse than in between
If motion correlated w/ task, can you redesign & rerun?

Most researchers don’t recommend removing/replacing/‘fixing’ 
bad slices/scans

But it is possible to come up with nuisance regressors for 
affected volumes (e.g. for epilepsy)



Slice Timing <> Motion Correction?
If you run slice timing correction 1st then abrupt 
movements between scans will cause it to interpolate 
between different brain regions :(
If you run motion correction 1st, slices no longer 
necessarily correspond to acquisition order, so timing 
correction won’t be appropriate :(

Problem is worse if you have interleaved slice 
ordering, in which case you should run slice time 
correction 1st & select slice timing corrected 
images for realignment

CBU acquires in sequence (down), and many prefer to 
run motion correction 1st under this system

But whether this matters hasn’t been investigated 
fully



Artifact Detection Toolbox (ART)

http://web.mit.edu/swg/software.htm
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Warp Speed Ahead...


