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RA central challenge in the fMRI based study of functional connectivity is distinguishing neuronally related sig-
nal fluctuations from the effects of motion, physiology, and other nuisance sources. Conventional techniques
for removing nuisance effects include modeling of noise time courses based on external measurements fol-
lowed by temporal filtering. These techniques have limited effectiveness. Previous studies have shown
using multi-echo fMRI that neuronally related fluctuations are Blood Oxygen Level Dependent (BOLD) signals
that can be characterized in terms of changes in R2* and initial signal intensity (S0) based on the analysis of
echo-time (TE) dependence. We hypothesized that if TE-dependence could be used to differentiate BOLD and
non-BOLD signals, non-BOLD signal could be removed to denoise data without conventional noise modeling.
To test this hypothesis, whole brain multi-echo data were acquired at 3 TEs and decomposed with Independent
Components Analysis (ICA) after spatially concatenating data across space and TE. Components were analyzed
for the degree towhich their signal changes fit models for R2* and S0 change, and summary scoreswere developed
to characterize each component as BOLD-like or not BOLD-like. These scores clearly differentiated BOLD-like “func-
tional network” components fromnon BOLD-like components related tomotion, pulsatility, and other nuisance ef-
fects. Using non BOLD-like component time courses as noise regressors dramatically improved seed-based
correlation mapping by reducing the effects of high and low frequency non-BOLD fluctuations. A comparison
with seed-based correlationmapping using conventional noise regressors demonstrated the superiority of the pro-
posed technique for both individual and group level seed-based connectivity analysis, especially in mapping sub-
cortical–cortical connectivity. The differentiation of BOLD and non-BOLD components based on TE-dependence
was highly robust, which allowed for the identification of BOLD-like components and the removal of non BOLD-
like components to be implemented as a fully automated procedure.

© 2011 Published by Elsevier Inc.
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The exploration and use of “resting state” functional magnetic res-
onance imaging (fMRI) data has shown explosive growth in recent
years. Methods for analyzing resting state fMRI functional networks
include the seed-voxel approach, which involves calculation of the
correlation between a signal time course from one brain region and
the time courses from the rest of the brain (Biswal et al., 1995), and
the decomposition approach, involving the use of techniques such
as Independent Components Analysis (ICA; Beckmann and Smith,
2004b). The consistency of resting networks in healthy adults is
well established (Damoiseaux et al., 2006a; review by Van Den
Heuvel and Hulshoff Pol, 2010), and the variations of networks due
in several neuropsychiatric conditions have been studied (review by
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ifferentiating BOLD and non
028
Broyd et al., 2009). Functional connectivity analysis of data from stan-
dard (i.e. single-echo) fMRI pulse sequences is limited, however, by
the fundamental problem that in such experiments, Blood Oxygen
Level Dependent (BOLD) signal arising from spontaneous neuronal
activity is not differentiable from fluctuations arising from cardiac
and respiratory physiology, motion, and many other sources. Several
techniques have been developed to remove artifactual signal, including
the use of temporal noise models and band pass filtering (Jonsson et al.,
1999), but these approaches are limited in their effectiveness (Birn
et al., 2006). For this reason, current de-noising techniques can under-
estimate the effect of non-neuronal fluctuations, remove neuronally re-
lated fluctuations, and require assumptions that may not be consistent
across subjects and scan sites. Here, building on Peltier and Noll (2000)
and Krüger and Glover (2001), we introduce a newmethod that employs
multi-echo acquisition and a TE-dependence test to remove artifactual
fluctuations more effectively than these previous approaches by cleanly
separating BOLD and non-BOLD signal components of resting state data.

A change in BOLD contrast can be described as a change in the
transverse relaxation rate or R2* due to changes in blood oxygenation
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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(Ogawa et al., 1990a; Menon et al., 1993; Bandettini et al., 1994). The
use of this endogenous contrast has become the primary MRI-based
method by which brain activation is assessed (Ogawa et al., 1990b;
Kwong et al., 1992; Bandettini et al., 1992). Typical acquisition of
time series data involves a single TE that is equal to the resting trans-
verse relaxation time, T2*, equal to 1/R2* (Menon et al., 1993). Over
the years, multi-echo acquisition has been used to enhance our under-
standing of fMRI time series. Early studies acquired multi-echo fMRI
duringmotor and visual stimulation to evaluate the effect of TE on acti-
vation mapping (Barth et al., 1999). They showed that TE influences
sensitivity to various vessel effects, which expanded on findings from
previous studies (Bandettini et al., 1994). Other multi-echo studies
characterized baseline and activation-induced changes in R2*, which
was not possible with time series acquisition at a single TE. Some of
these studies utilized the linear TE-dependence of percent change of
BOLD signal, which is a consequence of R2* signal decay (Menon et al.,
1993). Barth et al. attempted to denoise data by incorporating the rela-
tionship between TE and signal change with a fuzzy cluster analysis
(Barth et al., 2001). Peltier and Noll later usedmulti-echo fMRI to dem-
onstrate that the percent signal changes of resting BOLD fluctuations
demonstrate linear TE-dependence (Peltier and Noll, 2000, 2002).

One major application of multi-echo fMRI has been for BOLD con-
trast optimization by combining time courses of different TEs using a
weighting scheme. Several weighting schemes have been proposed
(Poser et al., 2006). Simple schemes use estimates of contrast-to-
noise ratio as weights. More robust schemes use weights from con-
trast curves that are modeled for each voxel after estimating T2*
from multi-echo fMRI data (Posse et al., 1999). Benefits of contrast
optimization, as described by Posse et al., include reduction of suscep-
tibility artifact and thermal noise. De-noising constitutes another ap-
plication of multi-echo fMRI. Dual-echo fMRI de-noising approaches
involve the regression of short TE, minimally BOLD weighted time se-
ries from longer TE, BOLD sensitive time series (Glover et al., 1996).
Buur showed that both general least squares and ICA approaches
weighted by TE-dependence factors could decouple the effects of col-
linear head motion from BOLD signal in multi-echo data (Buur et al.,
2008, 2009). Most recently, the subtraction of early TE from late TE
time series was shown to remove the effect of signal drift (Beissner
et al., 2010). In summary, substantial information is uniquely avail-
able in multi-echo fMRI data that can be used to improve data quality.

Classification of ICA components based on TE-dependence

In this study, resting state data were acquired with multi-echo
fMRI to allow for differentiation of BOLD from non-BOLD signal com-
ponents based simply on a goodness of fit to a R2* change model for
multi-echo data. Components were first identified using decomposi-
tion of multi-echo data with ICA. Components were then analyzed
to determine if signal changes were associated with R2* changes.
Scores to summarize the overall component-level modulation as R2*
change were computed. Sorting components according to these
scores identified BOLD fluctuations without anatomical templates or
time course priors and identified artifact fluctuations without time
course models for motion or physiology. Removing non-BOLD fluctu-
ations from time series data enabled data de-noising, which signifi-
cantly improved seed-based functional connectivity measures,
especially between subcortical and cortical regions.

Theory

Assuming mono-exponential decay, the signal across multiple
echo times, TEn, where n is the echo number, varies as a function of
initial signal intensity when the TE=0 (S0) and relaxation-rate
(R2*) according to Eq. (1),

S TEnð Þ ¼ S0 exp −R2
�TEnð Þ; ð1Þ
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
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where R2* is the inverse of relaxation time or 1/T2*. S0 can be modu-
lated by changes in T1 (longitudinal relaxation rate), inflow, and mo-
tion. R2* varies as a function of magnetic field homogeneity, and
specifically is modulated by changes in microscopic susceptibility
due to changes in blood oxygenation. Fig. 1 shows how changes in
S0 (left column) and R2* (right column) affect the signal decay (top
row) as a function of TE as well as the signal difference (middle
row) and percent signal change (bottom row). Note that these differ-
ence and percent change curves can be used to differentiate whether
or not the source of the signal change is BOLD (i.e. R2* change) or
non-BOLD (i.e. S0 change) Expanding Eq. (1) with a first order ap-
proximation for a small change in R2* gives:

ΔS=S ¼ ΔS0=S0–ΔR2
�TE: ð2Þ

Eq. (2) shows that the linear relationship in Fig. 1f is solely a func-
tion of TE and has slope equal to ΔR2*. The equation also shows that
for mono-exponential decay and small changes in ΔR2*, the signal
changes from modulations in S0 and R2* are linearly separable.

Multi-echo measurements can be acquired in fMRI using a single-
shot, multiple gradient-echo EPI (echo planar imaging) sequence. For
each time point in the fMRI time series, images are acquired at two or
more different echo times (TEs). Fig. 2a shows images from acquisi-
tion at 3 TEs. Fig. 2b shows the three time series corresponding to
each TE. From these three time series, the mean R2* and S0 are esti-
mated from a fit to Eq. (1).

The changes from mean R2* and S0 that underlie a signal fluctua-
tion can also be estimated. To estimate changes in mean R2* and S0,
a reference function, such as for a task design or resting fluctuation,
is first regressed to the signal time course of each TE. TE-specific sig-
nal changes can be fit to the TE-dependence model in Eq. (2), which
estimates both ΔR2* and ΔS0 with one least squares fit. Fitting both
ΔR2* and ΔS0, rather than one at a time, is unstable (Gowland and
Bowtell, 2007). Therefore we separate Eq. (2) into two sub-models,
one for estimation of ΔR2* and one for ΔS0:

ΔS=S ¼ ΔS0=S0andΔS=S ¼ −ΔR2
�TE: ð3Þ

Fitting signal changes to these sub-models has greater stability than
fitting for both parameters simultaneously. This approach is critical for
multi-echo acquisition when signals are acquired at a small number of
TEs in the presence of the typical noise levels in fMRI. Some physiological
or motion artifacts may produce coupled R2* and S0 changes, in which
case the precise values of R2* and S0 signal change cannot be computed
using this approach (Wu and Li, 2005). However, for the purposes of
classifying a fluctuation asmainly an R2* fluctuation andnot an S0 fluctu-
ation, the proposed approach is sufficient.

Goodness of fit statistics can be computed for the fits to these TE-
dependence models. This computation can be performed voxel-wise
with an F-test comparing the residual from the fit of a model to the re-
sidual of the null (zero)model (equal to the sumof the squares of signal
changes). A separate F-value is computed for the ΔR2* sub-model and
for the ΔS0 sub-model. F values are computed for 1 degree of freedom
used and n−1 degrees of freedom remaining, where n is the number
of echoes. The cumulative distribution function for F(1,n−1) can be
used to compute p-values corresponding to F-values. For a given time se-
ries reference function, the maps of ΔR2* and ΔS0 can be thresholded
according to these p-values. Furthermore, these F-values can be averaged,
weighted by total signal power

αυ ¼
Xn

i

ΔS2TEi ; ð4Þ
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Fig. 1. Shown are three echo simulations of BOLD (R2* change) and non-BOLD (S0 change) signals as a function of echo time (TE). The left column shows how the signal evolves for
non-BOLD effects and the right column shows how the signal evolves for BOLD effects. The top row shows the signal during state x (no activation) and state y (activation). This top
row demonstrates how the decay curves between rest and activation change in a different manner depending on if there is a change in (a) S0 or (b) R2*. The middle row shows the
difference (y−x) signal for (c) change in S0, and (d) change in R2*. The bottom row shows the percent signal change (y−x)/0.5(x+y) for (e) change in S0, and (f) change in R2*.
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where i is the TE index, n is the total number of echoes, and ΔSTE_i is the
coefficient of the reference function and the time course at TEi. This pro-
duces two summary statistics, κ and ρ,

κ ¼
Pm
υ
αυFυ;ΔR

�
2

Pm
υ
αυ

ð4aÞ

ρ ¼
Pm
υ
αυFυ;ΔS0

Pm
υ
αυ

ð4bÞ

where v is the voxel index,m is the number of voxels in the brain. κ and ρ
reflect the goodness offit toΔR2* andΔS0models respectively and convey
a representative F value for the voxels with the largest signal changes. F-
values are weighted by signal power so that κ and ρ are less representa-
tive of F-values for the small component signal changes, which are
more affected by ICA estimation error. κ and ρ are used to rank how
well components of linearmodels (here corresponding to ICA component
time courses) agreewith signal changes described byΔR2* andΔS0 signal
models.
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
(2011), doi:10.1016/j.neuroimage.2011.12.028
Methods

Subjects

Nine right-handed healthy volunteers participated in the study
(7 males, 2 females). Informed consent was obtained under an ap-
proved National Institute of Mental Health protocol.

Data acquisition

Imaging was performed on a General Electric (GE) 3 Tesla Signa
HDx MRI scanner (Waukesha, WI). The scanner's body coil was
used for RF transmission, and an 8-channel receive-only head coil
(GE, Waukesha, WI) was used for signal reception. High-order shim-
ming was performed to minimize field inhomogeneity.

Anatomical images were acquired using a T1-weighted MPRAGE
sequence (FOV 240 mm, 224×224 in-plane resolution, TI 725 ms,
SENSE (GE ASSET) acceleration factor 2). Functional images were ac-
quired with a multi-echo EPI sequence (TR 2.5 s, flip angle 90, matrix
size 64×64, in-plane resolution 3.75 mm, FOV 240 mm, 31 axial
slices, slice thickness 4.2 mm with 0.3 mm gap, acceleration factor
2). Three echoes were acquired with the shortest possible echo
times, TE=15 ms, 39 ms, and 63 ms. The readout window width for
each image was 24 ms, and receiver bandwidth was 125 kHz. Images
were reconstructed off-line using a C implementation of SENSE
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Fig. 2. (a) Multi-echo EPI images acquired at TE values of 15 ms, 39 ms, and 63 ms.
Image intensity decreases exponentially with TE. (b). Left: multi-echo EPI time courses
from a voxel in visual cortex (center of yellow box in (a)) during periodic visual stim-
ulation plotted as percent signal change. Right: percent signal change amplitude as a
function of TE (black), with linear fit, i.e. change in R2* (gold). The fit is significant
(pb0.01), with ΔT2*=0.3 ms. (c) Left: multi-echo EPI time courses from a single pre-
cuneus voxel (center of white box in (a)) during rest, plotted as percent signal change.
TE is indicated by the color. Right: percent signal change amplitude as a function of TE
(black), with linear fit, i.e. change in T2* (gold). The fit is significant (pb0.01), with
dT2*=0.3 ms. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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(Pruessmann et al., 1999). A separate fast gradient echo scan
(TR 150 ms, TE 2.1 ms) with the same coverage as the multi-echo ac-
quisition was used for SENSE calibration. The subjects were instructed
to rest with eyes open and fixate on a cross-hair. Two resting func-
tional runs of 148 images (time series duration=6 min 10 s) were
acquired. Pulse and respiration data were acquired using scanner-
integrated photoplethysmograph and respiratory bellows.

Data pre-processing

Data pre-processing was performed using AFNI (Cox, 1996). Each
of the steps mentioned below includes the corresponding AFNI func-
tion italicized in parentheses. Each functional run was pre-processed
separately as follows. For the standard analysis pathway, RETROICOR
corrections were applied first, based on the pulse and respiration data
(3dretroicor) (Glover et al., 2000). For the ME-ICA analysis pathway,
the following preprocessing was performed on unprocessed time se-
ries data. The first four time points were discarded to allow for mag-
netization to reach steady state. Slice time correction was applied
(3dTShift). Motion correction parameters were estimated for each time
point by aligning the middle TE (39 ms) images to corresponding first
time point image using a rigid-body (6 parameters) alignment proce-
dure (3dvolreg). The functional to structural co-registration parameters
were estimated by registering the skull-stripped middle TE image from
thefirst time point to the skull-stripped anatomical image using an affine
(12 parameters) alignment procedure with the local Pearson correlation
cost-functional (3dSkullStip, 3dAllineate) (Saad et al., 2009). Motion cor-
rection and anatomical co-registration parameters were then applied
in one step (3dAllineate). A brain mask was computed from the mean
image of the shortest TE (15 ms) time series (3dskullstrip) and applied
to all images. Each image was spatially smoothed with a 5 mm FWHM
Gaussian kernel within the functional mask (3dBlurInMask). Finally, all
voxel time series were high-pass filtered for frequencies above 0.02 Hz.

The processing sequence branches at this point. The above-
mentioned pre-processed data was used in the following two ways.
First, as is typical for multi-echo fMRI data, the three echoes were
combined to form a single time series. Regression analysis was
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
(2011), doi:10.1016/j.neuroimage.2011.12.028
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performed on this data. Second, to de-noise this data, nuisance re-
gressors were obtained from our novel multi-echo (ME)-ICA compo-
nent sorting method described below.

Multi-echo combination

Following the above preprocessing steps, we combined multi-
echo time courses with a T2* weighting scheme (Posse et al., 1999)
to produce a single time series data set. This weighting scheme en-
abled the application of the same weights to raw data and data
denoised with different strategies. For each voxel, the mean of each
of the three time courses was computed and used to estimate the
overall baseline S0 and baseline T2⁎ by fitting to Eq. (1) with log-
linear regression. The time courses were then optimally combined
by weighted summation by a factor, w, described in Eq. (6).

w T�
2

� �
n ¼

TEn· exp −TEn=T
�
2 f itð Þ

� �

∑n TEn· exp −TEn=T
�
2 f itð Þ

� � ð6Þ

On this data set, functional connectivity analysis using a seed
voxel approach was performed using either standard de-noising or
ME-ICA de-noising, as described below.

Nuisance Regressor Selection with ME-ICA

To find time series that are common across both TE and spatial lo-
cation, TE was treated as a fourth spatial variable for spatial ICA. The
data were decomposed as described in Eq. (7):

D Nt;NxxNyx NzxNe½ �
� �

¼ M Nt;Ncð ÞxC NxxNyx NzxNe½ �
� �

: ð7Þ

where D are the time series data, Nx, Ny, and Nz are the coordinates of
voxels within the functional brain mask, Ne is the number of echoes,
Nt is the number of time points, M is the mixing matrix (i.e. ICA com-
ponent time courses), Nc is the number of components, and C are the
component maps. To implement this spatial decomposition using
MELODIC ICA (Beckmann and Smith, 2004b), the multi-echo data
were concatenated over space. For each time point, the three volumes
corresponding to each TE were combined into a single volume of size
Nx, Ny, [Nz x Ne] (3dZcat). Each time course was de-meaned and
variance-normalized. Dimensionality was then automatically esti-
mated using probabilistic PCA, followed by dimensionality reduction
to the estimated number of components (Beckmann and Smith,
2004a). FastICA (Hyvarinen, 1999) was applied to dimensionally re-
duced data to produce the mixing matrix, M.

For each ICA component, the TE-dependence of the component
time series was mapped to localize where the component repre-
sented an S0 or an R2* modulation (as described in the Theory
section). For each voxel, the TE-specific signal changes for the ICA
component and TE-specific signal means were fit to compute ΔR2*
or ΔS0:

ΔS ¼ ΔS0=S0�S andΔS ¼ −ΔR2
�TE�S ð8Þ

using weighted ordinary least squares. Eq. (8) is the formulation of
Eq. (2) under the assumption that thermal noise variance is indepen-
dent of TE. For each sub-model, fit parameters, goodness of fit statis-
tics F{ΔR2*} or F{ΔS0}, and p-values were mapped. Alpha probability
simulations were computed for p(F)b0.05, and used to threshold
the maps at pb0.05, cluster corrected for αb0.01. To summarize the
overall ΔR2* and ΔS0 effects of the component, the averages of F
weighted by total power of signal changes (sum of squares) were
computed. κ represents the weighted average of F{ΔR2*} and ρ repre-
sents F{ΔS0}. High κ indicated strong ΔR2*-like character (BOLD-like),
and high ρ indicated strong ΔS0-like character (non BOLD-like).
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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The ICA components were rank-ordered based on their κ and ρ
scores. These two rank orderings (κ-spectrum and ρ-spectrum)
were used to differentiate BOLD components from non-BOLD compo-
nents. Both κ and ρ spectra were found to be L-curves with well-
defined elbows distinguishing high score and low score regimes.
This inherent separation was used to identify BOLD components in
an automated procedure. First, the elbows of κ and ρ spectra were
identified. The spectra were scanned from right to left to identify an
abruptly increased score following a series of similarly valued low
scores. The κ and ρ scores marking abrupt changes were used as
thresholds. Those components with κ greater than the κ threshold
and ρ less than the ρ threshold were considered BOLD components.
All other components were considered non-BOLD components.
These were used as noise regressors in time course de-noising.

De-noising and functional connectivity analysis

De-noising by removing the nuisance regressors identified by ME-
ICA was compared to de-noising by subtracting the fits of standard
noise regressors and band pass filtering. Standard noise regressors in-
cluded polynomial drifts, motion parameters, RETROICOR (Glover
et al., 2000) and RVT (respiration variation over time) (Birn et al.,
2006). These were fit to optimally combined time courses using mul-
tiple regression. Residuals were band pass filtered to a frequency
range of 0.02 Hz to 0.1 Hz to produce data for functional connectivity
analysis. The number of degrees of freedom used for de-noising was
calculated as the number of noise regressors, excluding drift terms,
plus the number of Fourier terms removed in the band pass filtering.

For seed-based connectivity analysis with standard de-noising
(i.e. motion parameters, RETROICOR, RVT, and band-pass filtering), a
seed time course was first extracted for a region of interest from the
de-noised and band passed data. The seed time course was then
regressed to all other de-noised and filtered time courses in a multi-
ple regression model. To properly account for the degrees of freedom
used in de-noising and band-pass filtering, a zero-column for each
degree of freedom was included in the regression model.

For ME-ICA de-noising, nuisance regressors (low κ, high ρ) were
removed from optimally combined data by first fitting the multiple
regression model including all component time courses (the mixing
matrix) and polynomial drifts, then subtracting the partial fit of the
nuisance regressors and drifts to produce ME-ICA de-noised time
courses. This is equivalent to the component removal procedure
implemented in the FSL function fsl_regfilt. No other filtering was ap-
plied. The number of degrees of freedom used in de-noising was the
number of nuisance regressors removed plus the number of drifts
removed.

For seed-based connectivity analysis with de-noised ME-ICA data,
a seed time course was extracted for a region of interest from ME-ICA
de-noised data. This was regressed to all other de-noised, optimally
combined time courses in a multiple regression model that included
a zero-column for each degree of freedom used. R2 and T statistics
were computed for all fits. T values accounted for degrees of freedom
used. Group analysis of seed-based connectivity was done by trans-
forming R values to Z values using the Fischer Z-transform, warping
Z maps to Talairach space (auto_tlrc), and performing a one-sample
T-test (3dttest).

Results

TE-dependence of BOLD-like and non BOLD-like components

The TE-dependence mapping is demonstrated for a BOLD-like and
non BOLD-like related component in Fig. 3. The BOLD-like component
has a low-frequency time course and high percent signal change lo-
calized to the middle frontal and inferior parietal regions. There is
clear correspondence between the localization of high percent signal
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
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changes, high ΔR2*, and strong goodness of fit to the ΔR2* model, F
{ΔR2*}. Thresholding ΔR2* by F{ΔR2*} for pb0.05 and alphab0.01
cleanly localizes BOLD-like signal fluctuations. In contrast, there is
no correspondence between the localization of percent signal change
and either ΔS0 or goodness of fit to the ΔS0 model, F{ΔS0}. Threshold-
ing S0 by F{ΔS0} for pb0.05 and alphab0.01 results in an empty map.
κ for the BOLD-like component was 184, and ρ was 15.

The non BOLD-like component has a high frequency time course
with localization along the brain edges. TE-dependence mapping of
the artifact contrasts with TE-dependence mapping of the functional
network. There is little correspondence between the localization of
large percent signal changes and high ΔR2*, and no correspondence
with strong goodness of fit to the ΔR2* model. Thresholding ΔR2* by
F{ΔR2*} results in an empty map. There is good correspondence be-
tween localization of high percent signal change, percent S0 change,
and goodness of fit to the S0 model. Thresholding ΔS0 by F{ΔS0} clearly
localizes the artifact to brain edges. κ for the artifact componentwas 22,
and ρ was 90.

Ranking ME-ICA components by κ

Fig. 4a shows κ score vs the rank according to variance explained
(i.e. ICA rank). This shows that the correspondence between these
two measures is low. Fig. 4b shows κ score vs. the rank according to
κ. The rank ordering of κ scores, (the κ spectrum), show a clear L-
curve behavior with distinct high κ and low κ regimes. Fig. 4c
shows that this distinct behavior is highly reproducible across sub-
jects. Low κ values had mean of 21.9±0.5. High κ scores had a
mean of 91.5±2.9. Fig. 4d shows that the maps corresponding to
the high κ scores appear to be similar to previously identified resting
state network components (Damoiseaux et al., 2006b). The thre-
sholded ΔR2* maps are shown for the top 12 components as ordered
by κ scores. Representative high κ components include the default
mode (IC 23), the sensory network (IC 13), and the motor network
(IC 35). BOLD-like component time courses are not necessarily low
frequency (b0.1 Hz). For example, the time course for IC 30 has a
higher κ score than the time course for IC 13.

Ranking ME-ICA components by ρ

Fig. 5a shows ρ score vs the rank according to variance explained.
This shows that the correspondence between these two measures
higher than that of κ with variance explained. Fig. 5b shows ρ
vs. the rank according to ρ. The rank-ordering of ρ scores, (the ρ spec-
trum), show a clear L-curve behavior with high ρ and low ρ regimes.
Fig. 5c shows that this distinct behavior is highly reproducible across
subjects. Low ρ scores had mean of 24.3±0.8. High ρ scores had a
mean of 53±3.1. Fig. 5d shows thresholded ΔS0 maps for the top
8 components as ordered by ρ scores. Some of the representative
high ρ components have high ΔS0 at brain edges (IC 3, 18, 4) and ap-
pear to be motion related. Some non BOLD-like component time
courses have low frequency (>0.1 Hz) contributions.

Components at the elbow

Most components were unambiguously classified into high and
low regimes for κ and ρ using the elbows of the corresponding spec-
tra. Inevitably, a number of κ values were near the cutoff threshold
(the elbow of the ranking curve). Fig. 6 shows the TE-dependence
maps for the ΔR2* and ΔS0 models for two of these components. IC
2 localizes high ΔR2* to the Circle of Willis and surrounding areas,
and IC 17 localizes high ΔR2* to white matter and/or cerebral spinal
fluid (CSF). The time courses of these components were low frequency.
Comparing component time courses to RVT regressors showed strong
correlation with two of the standard RVT regressors. This indicates
that a component with a near-threshold κ score could reflect ΔR2*
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Fig. 3. TE-dependence maps of ICA components from ME-ICA. (a) A BOLD-like and (b) a non BOLD-like component. For each component (a and b), the left panel shows percent
signal change maps for three TEs 15 ms, 39 ms, 63 ms (above), and the component time course (below). The right panel shows results of fitting to the ΔT2* change model
(above) and the S0 change model (below). Goodness of fit maps, F{ΔT2*} and F{ΔS0}, are used to threshold parameter maps αb0.01 (pb0.05). (a) BOLD-like component: High per-
cent signal change in gray matter scales linearly with TE. The component time course exhibits low frequency fluctuations. (b) non BOLD-like component: High percent signal change
at the edge of brain is constant with TE. The component time course exhibits high frequency fluctuations.
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modulation from respiratory variation or related BOLD-like effects of no
interest. The component with high ΔR2* near the Circle of Willis and
surrounding area, IC 2, was selected as a regressor of no interest on
the basis of having a high ρ score. The component with high ΔR2* in
white matter/CSF was not selected as such due having a low ρ score.

De-noising resting data in a single subject

Fig. 7 shows the use of the ME-ICA nuisance regressors to de-
noising the data. Fig. 7a shows a comparison of time series from the
corresponding single voxels in the center of the red boxes corre-
sponding to the right insula, left hippocampus, and brain stem re-
spectively. The top row of plots has only drifts removed. The second
row shows the plots after drifts were removed, RETROICOR applied,
and RVT and motion regressed out. The third row of plots shows the
above time course with band-pass filtering applied. The fourth row
of plots shows the time courses with drifts and ME-ICA derived
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
(2011), doi:10.1016/j.neuroimage.2011.12.028
nuisance time series (low κ and high ρ) regressed out. Time courses
from these areas after removal of drifts show substantial high frequency
noise and spiking. Standard de-noising by removing RETROICOR, RVT,
and motion regressors reduces high frequency noise. These time
courses are somewhat smoothed by band-pass filtering. ME-ICA de-
noising reduces high frequency noise, spiking, as well as some low fre-
quency fluctuations, without the use of physiological noisemodeling or
band-pass filtering.

Fig. 7b shows seed-based functional connectivity maps obtained
using seed time courses from the de-noised data. R2 correlation
maps show that ME-ICA de-noising, without band pass filtering, re-
veals greater functional connectivity to gray matter clusters than
de-noising with standard noise regressors and band pass filtering.
Axial views of R2 maps for insula and hippocampus connectivity
show that the de-noising methods produce similar connectivity pat-
terns proximal to the seed, but ME-ICA de-noising exposes greater
long distance correlation. With ME-ICA de-noising, the insula shows
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Fig. 4. For a representative subject, κ score vs (a) ICA rank (variance explained), and (b) rank by κ (κ spectrum). The κ spectrum, is an L-curve with two distinct regimes: high κ
(κ>20) and low κ (κb20), with low κ components on a linear tail. (c) κ spectra for 8 subjects. (d) First 12 ME-ICA components ranked by κ for a representative subject. Each
panel shows the time course and thresholded ΔR2* map. Components are annotated with κ-score, ρ-score, and ICA component number. All high κ components are clearly functional
networks.
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Ugreater correlation to premotor and cingulate regions, hippocampus
shows greater correlation to premotor and sensory regions, and
brainstem shows greater correlation to frontal and parietal regions.
T-maps show that T-statistics are much higher for correlation with
ME-ICA de-noising than for correlation with standard de-noising
and band pass filtering.

Application to group level correlation maps

Group-level connectivity was evaluated using one-sample T-tests
of the individual-level correlation maps from standard and ME-ICA
based de-noising. Unthresholded group T-maps for hippocampus
and brainstem connectivity are shown in Fig. 8 for ME-ICA and
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
(2011), doi:10.1016/j.neuroimage.2011.12.028
standard de-noising. The group T-maps based on low κ de-noising
showed much higher T-statistics for connected regions than the
group T-maps based on standard de-noising. This indicated that (Z-
transformed) correlation coefficients based on ME-ICA were more
consistent across subjects than Z-transformed correlation coefficients
based on standard de-noising. Comparing Figs. 7 and 8 shows that for
maps based on ME-ICA de-noising, the regions of higher group T-
value correspond to the regions of higher individual level T-values
from regression analysis (white arrows). Fig. 9 shows thresholded
axial views of the connectivity maps in Fig. 8. The brainstem shows
clear connectivity to putamen and caudate nuclei in the basal ganglia
and to bilateral premotor and parietal cortical areas. The hippocam-
pus shows clear connectivity to bilateral sensory (dorsal and ventral
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Fig. 5. For a representative subject, ρ score vs (a) ICA rank (variance explained), and (b) ρ rank (ρ spectrum). The ρ spectrum, like the k-spectrum, is an L-curve with two distinct
regimes: high ρ (appx. ρ>20) and a linear tail with low ρ (appx. ρb20). (c) ρ spectra for 8 subjects. (d) First 8 ME-ICA components ranked by ρ for a representative subject. Each
panel shows the time course and thresholded % ΔS0 map. Components are annotated with κ-score, ρ-score, and ICA component number. All high ρ components are clearly artifacts.

Fig. 6. Components with κ scores near κ thresholds are correlated to low-frequency RVT time courses. Components are annotated with κ score, ρ score, and ICA component number.
TE-dependence maps for ΔR2* and ΔS0 models show high ΔR2* localized to non-gray matter regions.

8 P. Kundu et al. / NeuroImage xxx (2011) xxx–xxx

Please cite this article as: Kundu, P., et al., Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
(2011), doi:10.1016/j.neuroimage.2011.12.028

http://dx.doi.org/10.1016/j.neuroimage.2011.12.028


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

506

507

508

509

Fig. 7. Signal from three regions of interest from a representative subject: the right insula, left hippocampus, and brainstem. (a) shows de-noising by removing: drifts only; drifts,
physiology, and motion (the standard); drifts and low κ components (ME-ICA). (b) Seed based connectivity measured by R2 and T values, with baseline regression for: motion and
physiology, then band pass filtering for 0.02–0.1 Hz; drifts and low κ components, without band pass filtering. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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postcentral gyrus), temporal, and premotor cortical areas. Thresholding
group-level connectivity maps that were based on standard de-noising
Please cite this article as: Kundu, P., et al., Differentiating BOLD and non
(2011), doi:10.1016/j.neuroimage.2011.12.028
produces empty maps at FDR corrected qb10−4, which is the signifi-
cance level used in Fig. 9.
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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Discussion

The differentiation of BOLD and non-BOLD signal is a fundamental
problem in resting state fMRI analysis. In the past, approaches to this
problem have included regression of temporal models derived from
motion and physiologic signals. Here, an approach is introduced
that involves acquiring resting state data with multi-echo EPI, identi-
fying BOLD-like (high κ, low ρ) non-BOLD-like (low κ, high ρ) compo-
nents directly from the data, and using these non BOLD-like
components to obtain nuisance regressors. This approach to selecting
components and de-noising does not require external physiologic
measures, temporal noise models, or anatomical templates, and is
fully automated. It is based instead on ICA and the principle that the
BOLD signals of resting neural activity are characteristically TE-
dependent.

The current study benefits from previous research on TE-
dependence and multi-echo fMRI. The TE-dependence of activation-
induced signal changes has been demonstrated multiple times since
1992 (Ogawa et al., 1992; Bandettini et al., 1994; Menon et al.,
1995). Speck and Henning mapped T2* and S0 for activation corre-
sponding to visual stimulation (Speck and Hennig, 1998). De-
noising with dual-echo acquisition has been demonstrated in several
instances (Glover et al., 1996; Buur et al., 2008; Beissner et al., 2010,
2011). The TE-dependence of low-frequency resting state fluctuations
was demonstrated with 4-echo acquisition (Peltier and Noll, 2002).
Poser et al. introduced accelerated acquisition of multi-echo EPI
using parallel imaging (Poser et al., 2006), which enabled the acquisi-
tion of whole brain multi-echo fMRI within a conventional TR.

Wu et al. had demonstrated that essentially all fMRI artifacts, re-
gardless of their origins in motion, physiology, or other sources
could be expressed in terms of R2*, S0, and combinations thereof
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Fig. 9. Group maps for subcortical connectivity with hippocampus and brainstem after
removal of drifts and low κ and/or high ρ components. Overlay is map of mean Z-value,
thresholded by T-value corresponding to FDR corrected pb10−4. Underlay is template
brain in Talairach space.
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the classification of ICA components as R2*, S0 or coupled compo-
nents. It also differs from previous approaches such as the estimation
of ΔR2* and/or ΔS0 at each time point to produce parameter time
courses (Speck and Hennig, 1998). Simulations demonstrated that
point wise fits produce ΔR2* time courses with higher levels of
noise than signal time courses of a single echo (Gowland and
Bowtell, 2007). In our approach, regression weights were fit to ΔR2*
and ΔS0 models, which is similar to the approach of Peltier and Noll
(Peltier and Noll, 2002). The robustness of the fits in their study and
in ours is attributed to the averaging effect of using a fluctuation
over time to estimate ΔR2*. Our approach is also similar to that of
Buur et al. (Buur et al., 2008), in which task-related BOLD signal
was separated from co-linear head motion artifact by un-mixing
using ICA with TE-dependence weights. Buur et al. concluded that
combining ICA and linear TE-dependence analysis is more robust
than other methods of extracting BOLD fluctuations from multi-
echo data. Our results show that TE-dependence separates BOLD fluc-
tuations from many kinds of non-BOLD artifacts, including both mo-
tion and physiology. Furthermore, the results observed after ME-ICA
de-noising at the individual level are reflected at the group level.

fMRI artifacts arising via non-R2* mechanisms include S0 fluctua-
tions as well as coupled R2* and S0 fluctuations such as RVT-like com-
ponents. Non-R2* components were clearly distinguished as low-κ
components, and specifically S0 fluctuations were further characterized
with high ρ values. The intermediate κ and ρ values for RVT components
were due to signal changes of these components fitting both R2* and S0
models. Wu et al had previously suggested that some sources of fMRI
artifact would produce coupled R2* and S0 changes (Wu and Li,
2005). The results showed that components of coupled origin could
be identified by their rankings on κ and ρ-spectra.

Prior studies have denoised task-based fMRI by removing ICA
components that have poor correlation to task reference functions
(Thomas et al., 2002). Other studies have proposed de-noising resting
state fMRI by removing those ICA components that do not correspond
to atlases for “functional networks” (De Martino et al., 2007; Perlbarg
et al., 2007). This is a questionable procedure because removing com-
ponents that are neither networks nor obvious artifacts (McKeown
et al., 1998; Beckmann and Smith, 2004b) depends on a circular argu-
ment. We show for the first time using ICA of multi-echo fMRI that
network-like ICA components fit well to a BOLD TE-dependence
model, which would be expected, but also that all other components
fall into a well-defined non-BOLD regime, which is a novel and impor-
tant finding. This separation was remarkably stable across subjects,
enabling fully automated identification of network-like components
and robust time course de-noising without spatial templates or time
course models for noise.

Using data that was de-noised with ME-ICA nuisance regressors in
seed-based correlation analysis resulted in significantly improved
correlation maps in individual subjects and in groups. Studying func-
tional connectivity of subcortical regions is challenging due to low
-BOLD signals in fMRI time series using multi-echo EPI, NeuroImage
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functional contrast-to-noise due to CSF and blood flow pulsatility and
distance from receiver elements. Where standard de-noising showed
no clear correlation patterns for the hippocampal and brain stem
seeds, ME-ICA de-noising revealed robust correlation patterns. The
brain stem seed was localized to the anterior pons that contains cor-
ticospinal (pyramindal) tracts connecting to premotor, parietal, and
motor regions (Kiernan, 2009). This pattern of anatomical connectivity
agrees well with the pattern of functional connectivity exposed after
ME-ICA de-noising. The hippocampus seed was localized to the head
of the right hippocampus that has anatomical connectivity to sensory
regions via temporal and entorhinal cortices (Kiernan, 2009). The pat-
tern of functional connectivity exposed after ME-ICA denoising agreed
with this pattern of anatomical connectivity. These enhancements
can be attributed to the robustness of using information across
both space and TE to extract components and then identifying com-
ponent origin by evaluating goodness of fit to the BOLD TE-
dependence model.

Overall, analysis of ΔR2* and ΔS0 for ME-ICA components was
shown to be a powerful approach to differentiating BOLD and non-
BOLD signal in resting state data for both the seed-based and ICA ap-
proaches to connectivity analysis. In particular, the proposed method
shows considerable promise in removing the pulsatile artifactual sig-
nal in subcortical regions such that subcortical–cortical connectivity
can be studied more effectively. The benefits also extend beyond the
application to resting state data. The improved contrast to noise will
have direct impact on the repeatability and quality of activation-
related fMRI studies. This method will be particularly beneficial for
clinical fMRI of patients who exhibit a high amount of movement. It
also holds potential for reducing the effects of stimulus correlated
motion as in studies of overt speech production.

In the present study, an 8 channel head coil, 3T scanner, and accel-
erated imaging (SENSE factor 2) was used to acquire whole brain im-
ages at 3 TEs with a 3.75 mm×3.75 mm×4.5 mm resolution and a
2.5 s TR. Recent advances in coil technology (Wiggins et al., 2006)
and multi-slice excitation (Feinberg et al., 2010; Moeller et al.,
2010; Setsompop et al., 2011) should allow for substantial increases
in resolution and efficiency. These advances will allow for accelera-
tion factors of 3 in plane and 3 in the slice direction, enabling the ac-
quisition of whole brain images at 3 TEs with a 2 mm×2 mm×2 mm
resolution and a 2 s TR. Acquiring more than 3 TEs for the purposes of
the proposed analysis is a subject of further study. Given the good dif-
ferentiation of components at the current resolution with 3 TEs, the
use of more TEs could be redundant. For lower SNR regimes that are
associated with higher resolution acquisition, acquiring more TEs
could be beneficial. Given a particular TR, however, increasing resolu-
tion competes with acquiring more TEs, so this trade-off defines a
limitation of the proposed approach.

ME-ICA allows for robust assessment of resting state correlation, pro-
ducing maps from individual subjects where multi-subject averaging
was previously required. This increase in functional contrast to noise in
time series will likely lead to more robust clustering and segmentation
of individual subject resting state data (Cohen et al., 2008) and substan-
tially improve the power of multi-subject studies (Biswal et al., 2010).
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