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Human brain functional networks are embedded in anatomical space
and have topological properties - small-worldness, modularity, fat-
tailed degree distributions - that are comparable to many other com-
plex networks. While a sophisticated set of measures is available to
describe the topology of brain networks, the selection pressures that
drive their formation remain largely unknown. Here we consider
generative models for the probability of a functional connection (an
edge) between two cortical regions (nodes) separated by some Eu-
clidean distance in anatomical space. In particular, we propose a
model in which the complex topology of brain networks emerges
from two competing factors: a distance penalty based on the cost
of maintaining long-range connections; and a topological term which
favours links between regions sharing similar input. We show that,
together, these two biologically plausible factors are sufficient to
capture an impressive range of topological properties of functional
brain networks. Model parameters estimated in one set of fMRI data
on normal volunteers provided a good fit to networks estimated in
a second independent sample of fMRI data. Furthermore, slightly
detuned model parameters also generated a reasonable simulation
of the abnormal properties of brain functional networks in people
with schizophrenia. We therefore anticipate that many aspects of
brain network organization, in health and disease, may be parsimo-
niously explained by an economical clustering rule for the probability
of functional connectivity between different brain areas.
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The human brain is a large and complex network, oper-
ating over several decades of scale in space and time

[1, 2]. Its organization defies complete description at a cel-
lular scale [3]; but neuroimaging techniques for whole brain
scanning have been used to describe network organization, or
connectomics, at anatomical scales in the order of mm and
cm [2]. In the language of graph theory, these large-scale hu-
man brain networks have already been shown consistently to
demonstrate a number of key topological properties in com-
mon with other complex networks. For example, human brain
networks have the small-world property of high clustering and
high efficiency (or short path length) [4]; they are also modu-
lar [5] and comprise a number of highly-connected hub nodes
in a fat-tailed degree distribution [6].

It is well-known that the brain overall is expensive, in the
sense of having high metabolic cost relative to its mass [7],
and that cost control or cost minimization is likely to have
been an important selection criterion for the evolution of the
nervous system [8, 9, 10, 11]. One measure of cost in a spa-
tially embedded network like the brain is the physical distance
of connections between nodes: generally, connection costs will
increase with distance [8, 12]. In the nervous system of the
nematode worm C. elegans, which has been mapped com-
pletely at the cellular level of synaptic connections between
neurons [13], most axonal projections are shorter than the av-
erage distance between neurons, as expected in response to an
economical selection pressure [14, 15]. Likewise, in sparsely
connected human brain functional networks, short distance
connections predominate and are typically associated with
greater strength of functional connectivity between regional
nodes [16].

Given these observations on the topologically complex and
anatomically economical aspects of brain networks, we asked
the question: what set of generative factors could explain the
topology of anatomically embedded brain networks? To ad-
dress this question, we consider simple models for the prob-
ability of functional connection (an edge) between two cor-
tical areas (nodes) separated by some Euclidean distance in
anatomical space (∼cm). The simplest (one-parameter) mod-
els specify that connection probability is a function only of dis-
tance between nodes [17, 18], but we show that cost penaliza-
tion alone cannot account for the small-worldness, modularity
and degree distribution of normal human brain functional net-
works. Two-parameter models specify that connectivity is a
function of distance and the topological properties of the con-
nected nodes [19]. We show that a two-parameter model, e.g.
including a “clustering” function of nodal topology, as well as
a power law function of connection distance, is required to em-
ulate many of the key topological and anatomical properties
of normal brain functional networks.

We used resting state functional MRI to measure low fre-
quency neurophysiological oscillations at each of 140 corti-
cal brain regions in the right hemisphere in two groups of 20
healthy volunteers, and 19 participants with childhood onset
schizophrenia (COS). We estimated functional connectivity by
the correlation between each pair of regional time series; and
we thresholded the resulting connectivity matrices to generate
sparse, fully-connected graphs (see Materials and Methods).

Results
For each graph, we measured global efficiency (a measure
of network integration inversely related to path length [20]);
average clustering coefficient (a measure of cliquish inter-
connections between topologically neighbouring nodes); mod-
ularity (a measure of how nearly the network can be decom-
posed into a set of sparsely inter-connected modules each com-
prising several densely intra-connected nodes [21]); the degree
distribution (the probability distribution of degree, or number
of edges per node); and the distance distribution (the prob-
ability distribution of Euclidean distance between connected
pairs of regions); see Figure 1. These data confirmed prior
reports of economical small-worldness, modularity and hub
nodes in human brain networks [2].
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Exponential decay with distance. To investigate the extent to
which the topological profile of the brain networks could be
attributable solely to cost-minimization, we adopted a simple
model for the probability of connection Pi,j between any pair
of regions as a function of the distance between them [17, 18]:

Pi,j ∝ exp(−ηdi,j), [1]

where di,j is the anatomical distance between regions i and j,
and η is the only parameter of the model. Using this exponen-
tial decay model with a range of different values of η, we could
generate networks with variable degrees of cost penalization
dictating the probability of connection between nodes.

We found, for example, that at a certain value of the model
parameter, η ∼ 0.09, the simulated networks had an average
modularity that matched exactly the modularity of the brain
networks. However, these simulated data failed to match the
empirical networks well in terms of global efficiency, clustering
or degree distribution. Indeed it can be shown that there is
no single value of η which will generate networks that are well
matched to brain networks in terms of both modularity and ef-
ficiency (see Supplementary Information [SI]). When η is large
and distance penalization is high, the networks are not as effi-
cient as brain networks, due to the lack of long-distance con-
nections; whereas when η is small the modeled networks are
not as modular as the empirical ones. To find the compromise
value of η that overall best fits the data, we used simulated
annealing (SA) on an energy function based on the P -values
for the difference in clustering, efficiency, modularity and de-
gree distribution between a set of model networks and the
data (see Materials and Methods and SI). As expected, how-
ever, the model-generated networks were not able to match
simultaneously all key network characteristics observed in the
data (Figure 1). Similar results were obtained using other
models of decay in connection probability as a function of dis-
tance, e.g., the power law model Pi,j ∝ (di,j)

−η. In general, it
seems that penalizing connection probability by a function of
distance alone will be insufficient to simulate the topological
properties of brain functional networks (SI Table 1).

Economical preferential attachment. Growth models for the
formation of other real-life complex systems have previously
been more successful by including an additional topological
term in the connection probability function [19, 22], e.g.:

Pi,j ∝ (kikj)
γ(di,j)

−η. [2]

Here Pi,j is the probability of connecting nodes i and j, of
degree ki and kj respectively, that are a distance di,j apart;
η is the parameter of distance penalization, as before; γ is
the parameter of preferential attachment (the exponent of
a power law in the product of the degrees of the connected
nodes). Intuitively, this model trades off the cost minimiz-
ing drive to shorter connection distance against the tendency
to form highly connected hubs. The best-fitting parameters
(estimated by SA) generated better approximations of brain
networks than those simulated by cost penalization alone: the
degree distribution was more realistically fat-tailed; global ef-
ficiency, clustering and modularity were all closer to their ex-
perimental benchmarks (see Figure 1 and SI Table 1).

These results support the general principle that cost mini-
mization is likely to be a necessary but not a sufficient criterion
for formation of brain networks. To more fully account for the
observed characteristics of brain networks, we need to assume
some complementary or countervailing generative factors that
promote the emergence of complex topological features, such
as the existence of hubs.

Economical clustering model. We explored other possible vari-
ants of Eq 2, using various functions of the degrees of the
connected nodes to weight the formation of complex topolog-
ical features, and tested each model against the same set of
experimental benchmark data on human fMRI networks (see
SI Table 1 and Fig 2). The best-fitting of these connection
probability models included a power law distance penalty, as
before, as well as a power law function of a topological term,

Pi,j ∝ (ki,j)
γ(di,j)

−η, [3]

where ki,j is the number of nearest neighbours in common be-
tween nodes i and j; and all other notation is identical to Eq
2. We will refer to this as an “economical clustering” model
which includes a negative bias against high connection cost
and a positive bias in favour of consolidating connectivity be-
tween nodes having nearest neighbors in common.

Optimising the parameters of this economical clustering
model to match the topological profile of brain networks, we
found good correspondence (P > 0.05) between the simulated
and fMRI networks on all the key topological metrics of global
efficiency, clustering, and modularity. Overall, the simulated
networks were significantly more brain-like than either of the
models previously considered (see Figure 1 and SI Table 1).
We found these results to hold for brain networks thresholded
over a range of connection densities, from 4% to 16% of all
possible edges between regional nodes (SI, Table 2). An in-
tuitive understanding of the role of each parameter in this
model can be gained by plotting a phase diagram (Figure 2)
highlighting the regions in parameter space that lead to small-
world and heavy-tailed (skew S > 1) networks. We also plot
schematics of the networks obtained by varying each param-
eter separately, from zero to their experimentally estimated
values (η = 2.63, γ = 3.17). These two sections through pa-
rameter space confirm that variations in η mainly affect the
distance distribution, while tuning γ mainly influences the de-
gree distribution (see also SI Figs 9 and 10).

However, since the model parameter estimation (by sim-
ulated annealing) has minimized the mis-match between an
observed dataset and simulated values of network metrics, one
might argue that it is not so surprising that the fitted model is
able to reproduce these same properties quite accurately. To
address this potential issue of circularity, we did two things.

First, we explored the model’s capacity to simulate brain
network properties that had not been directly used as a basis
for parameter estimation. For example, as shown in Figure
1, we found that the distance distribution in the experimen-
tal fMRI networks was reasonably well-matched by the eco-
nomical clustering model (in comparison to the other models
considered). We also found that annealing without any con-
straints on the degree distribution, resulted in very similar
model parameters to those estimated by annealing over all 4
network topological properties, with correspondingly good fits
to all fMRI network metrics including the degree distribution
(SI Fig 6). And, as shown in Figure 3, we found that the eco-
nomical clustering model (in contrast to Eq 1 and Eq 2) also
captured the statistical distribution of topological measures -
such as the clustering and efficiency - at the local level of in-
dividual nodes in the fMRI networks, although the annealing
process had been constrained only by the global average of
these measures over all nodes in the networks.

Second, we used the generative model parameters esti-
mated from the primary fMRI dataset (N=20 healthy vol-
unteers) to predict the network properties of a second inde-
pendent fMRI dataset (N=12 healthy volunteers). Thus, we
tested the goodness-of-fit of the model on a set of experimental
data that had not been used for model estimation. The eco-
nomical clustering model provided a good account (compared
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to Eq 1 and Eq 2) of the statistical distributions of efficiency,
clustering, modularity, degree and connection distance in this
independent test dataset (SI Figure 5).

Modeling network changes in schizophrenia.We measured
fMRI network properties experimentally in 19 people with
childhood onset schizophrenia (COS) and estimated economi-
cal clustering model parameters from these clinical data. Con-
sistent with prior studies of functional connectivity and func-
tional network organization in schizophrenia, we found that
topological properties of clustering and modularity were some-
what reduced in COS patients [23, 24, 25, 26]. The abnormal
profile of brain network topology in the patient group could be
reasonably well matched by the economical clustering model
(Figure 4, SI Fig 7 and Table 3) but with rather different
model parameters (η = 2.3, γ = 3.33) compared to those esti-
mated in the group of healthy volunteers (η = 2.63, γ = 3.17).
This shift in optimal parameter settings shows that the abnor-
mal organization of brain functional networks in schizophrenia
can be modeled as the outcome of an abnormally biased trade-
off between the generative factors of distance penalization and
topological clustering.

Discussion
We have explored a number of generative models to par-
simoniously simulate the complex topological and anatomi-
cal properties of human brain functional networks. We have
shown that the simplest models considered, which penalize the
probability of a functional connection between brain network
regions as a function of the anatomical distance between them,
cannot satisfactorily account for the complex topological prop-
erties of real brain networks. This result argues against the
position that brain organization can be explained entirely by
the principle of cost minimization. However, we found that
the addition of a topological term to the model, favoring ad-
ditional formation of connections between nodes that already
share nearest neighbors in common, could markedly improve
the simulation of realistic brain network properties. This eco-
nomical clustering model provided a good account of several
network properties that were not included in the process of
model parameter estimation; and, when estimated in one nor-
mal sample, provided a good fit to the network properties of
a second, independent normal sample.

Prior models for formation of brain anatomical networks
have emphasized the importance of controlling or penalizing
connection distance [17, 18]. This is consistent with a large
body of work, dating back to the seminal studies of Ramón
y Cajal in the 19th century, indicating that the material and
metabolic costs of the brain are large in proportion to its mass
and that cost control is an important principle of brain organi-
zation [14]. Since the metabolic cost of a connection between
brain regions increases with increasing anatomical distance,
cost minimization would be expected to drive the formation of
connections between anatomically neighbouring nodes. There
are aspects of adult brain organization that are consistent with
this expectation. For example, the probability distribution of
connection distances in human brain networks is skewed to-
wards shorter distances [27]. The modules of brain networks
also typically comprise brain regions that are anatomical as
well as topological neighbours [28]; so intra-modular connec-
tions, which predominate in highly modular brain networks,
are generally short distance.

Yet it is also clear that brain networks have a high global
efficiency (or short characteristic path length) that is largely
attributable to the existence of long distance connections be-

tween anatomically localized modules [27]. The efficiency of
brain networks is a measure of their capacity for integrated
processing and several studies have shown that greater ef-
ficiency of network topology is associated with higher IQ
[29, 30], greater accuracy of working memory task perfor-
mance [31], or successful performance of more difficult versions
of a working memory task [32]. Thus the topological attribute
of high efficiency seems empirically to be important for cog-
nitive functions of human brain networks, as also anticipated
hypothetically by global workspace theory [33, 34]. This is
clearly difficult to reconcile with the unchallenged primacy of
a cost conservation principle. Indeed, it has been shown by
computational “rewiring” of the anatomical networks of C. el-
egans and the macaque monkey cortex that total connection
distance of both these networks is not strictly minimized in
nature; and when it is strictly minimized in silico there is a
complementary increase in path length (or decrease in global
efficiency) of the minimally rewired networks [35].

The idea that emerges from these and other prior stud-
ies is that brain network formation cannot plausibly be mod-
eled by cost minimization alone but must rather depend on
some “trade-off”, between distance penalization and one or
more other factors, which allow the emergence of realistically
complex network topology [10, 36, 37]. The results presented
here provide some of the first specific examples of how such a
trade-off might be rigorously defined and the considerable im-
provements in accuracy of brain network modeling that ensue
as a result.

We investigated several possible models of competition or
trade-off between a distance penalization term and a second
term weighting formation of particular topological features.
The first model (Eq 2) has been previously used to simulate
the organization of the internet [19]. This economical pref-
erential attachment model increases the probability of a con-
nection between nodes in proportion to their degrees. Thus
high degree nodes or hubs are more likely to form additional
connections, even if separated by considerable distances. Al-
though addition of a preferential attachment term improved
the capacity of the model to capture a range of brain network
properties (compared to the simpler models of distance penal-
ization), we found empirically that alternative two-parameter
models simulated experimental data even more accurately. In
total, we evaluated 12 possible generative models (see Table
1 in SI), varying both the cost penalization and topological
terms, and found that the most accurate model overall (Eq
3) traded-off connection distance against a topological term
favouring the formation of connections between nodes that
already shared nearest neighbours. Besides these empirical
results indicating superior goodness-of-fit for one model in
comparison to others, how else can we justify a preference for
this economical clustering model?

First, we note that both terms of the model have some
degree of face validity as biological mechanisms for brain net-
work formation. Distance penalization, as has previously been
noted [17], could be mediated mechanistically by the fall-off
of concentration gradients of growth factors directing axonal
projections towards target neurons. Enhanced probability of
connection between neurons that already share nearest neigh-
bours was recently observed in the rat somatosensory cortex
[38]. This is also compatible with Hebb’s law, in the sense
that neuronal groups that share common inputs from the same
topologically neighbouring group are more likely to be simul-
taneously activated and therefore to consolidate direct con-
nections. We note that such biologically mechanistic inter-
pretations of model parameters are no more than heuristics,
and require more rigorous testing experimentally; neverthe-
less it is conceptually easier to imagine how local clustering
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might be favoured (by Hebbian mechanisms) than to imagine
how a preferential attachment rule might operate biologically.
Indeed, unlike in engineered systems, it is unclear how any
component of a brain network would have information on the
degrees of all the other nodes in the system.

Second, we note that the economical clustering model,
as well as providing the most accurate simulation of global
and nodal network parameters in fMRI data acquired from
healthy volunteers, was also adaptive to the rather different
network properties of data from people with childhood on-
set schizophrenia. Previous studies have quite consistently
demonstrated a topological profile of “subtle randomization”
in schizophrenia [39], which was confirmed in these data by
somewhat reduced clustering and modularity, and increased
global efficiency. This topological shift towards a more ran-
dom configuration was simulated by a generative model with
an abnormally reduced distance penalization parameter, al-
lowing a greater probability of long distance connections. This
result echoes some prior neuroimaging results, suggesting that
brain networks in schizophrenia may have a greater than nor-
mal proportion of long-distance connections [27, 40], and en-
courages future efforts to use the modeled parameters of net-
work formation to summarise and understand the patterns of
abnormal network topology seen in people with a neurodevel-
opmental disorder such as schizophrenia [41, 42].

This study also raises a number of methodological and
conceptual questions (see SI for further discussion). The brain
networks were constructed from functional MRI time series,
which have good anatomical resolution but insufficiently re-
fined time resolution to allow estimation of high frequency dy-
namics or conduction delays, although these are likely to be
important parameters of brain network performance. More-
over, the functional connectivity between a pair of nodes, e.g.,
as measured by the correlation between time series, cannot be
assumed certainly to indicate that there is direct anatomical
connectivity between them [45]. Thus there are empirical lim-
its on what we can infer from these data about the mechanis-
tic or domain-specific details of human brain network function
and structure. In this context, we have adopted a modeling
strategy that has been widely explored in the context of other
complex networks, but not before so thoroughly developed in
a neuroscientific application. We formulated some relatively
simple generative models and tested their capacity to emulate
the topological properties observed in brain networks. The
existence of a good fit for some of these models, although sta-
tistically robust, does not prove that the brain networks were
naturally selected to optimize the model parameters. The
function(s) (if any) optimized by natural selection of brain
networks are not yet known. So modeling brain networks can-
not certainly begin from an optimality function, as one might
begin to analyze or design an artificial network for which the
desired function was known [46]. However, a stochastic ap-
proach to brain network modeling is both tractable and ar-
guably reasonable, given the stochastic contribution to selec-
tion of brain networks in real life. Our results show that brain
network statistics can be generated quite accurately by simple
(but not the simplest) probabilistic models.

Conclusion
Human brain functional networks have a complex topology,
embedded in anatomical space, which can be modeled as the
outcome of a trade-off between two factors: a constraint on
connection distance and a tendency for clustered connections.
This is consistent with the general principle that cost mini-
mization alone is insufficient to explain brain network orga-

nization and suggests that diverse brain network phenomena,
in health and disease, may be explicable in terms of tradeoffs
between a small number of biologically plausible generative
factors.

Materials and Methods
Sample, image acquisition and analysis. The functional MRI data were acquired

from two groups of healthy volunteers: a primary group (evaluable data on N=20;

mean age = 19.7 years; 11 male) and a secondary group (N=12; mean age = 17.5

years; 6 male). The primary group of 20 healthy volunteers (HV) matched 19 partici-

pants meeting the DSM-IV criteria for childhood onset schizophrenia (COS; mean age

= 18.7; 9 male), recruited as part of an NIH study of COS and normal brain develop-

ment. This study was ethically approved by the local Institutional Review Board and

consent was acquired from all participants as well as their legal guardians. Excessive

head motion during fMRI was an exclusion criterion. There were no significant differ-

ences between the groups in terms of age, gender, or maximum displacement due to

head motion (see SI for details). Participants were scanned using a General Electric

Signa MRI scanner operating at 1.5T, at the NIH Clinical Center in Bethesda, MD.

One anatomical T1-weighted fast spoiled gradient echo MRI volume was acquired:

echo time (TE) 5 ms; relaxation time (TR) 24 ms; flip angle 45 degrees; matrix 256

x 256 x 124; field of view (FOV) 24 cm. Two sequential 3 minute EPI scans were

acquired while the participants were lying quietly in the scanner with eyes closed: TR

2.3 s; TE 40 ms; voxel 3.75 x 3.75 x 5 mm; matrix size 64 x 64; FOV 240x240 mm;

27 interleaved slices.

The images were preprocessed on the high-performance NIH Biowulf Linux clus-

ter (http://biowulf.nih.gov), using AFNI [47] and FSL [48, 49] software. The first

four EPI images were discarded to account for T1 equilibration effects. The data

were then despiked, motion-corrected, skull-stripped and registered to each partici-

pant’s structural scan. Structural scans were registered to the standard stereotactic

space of the Montreal Neurological Institute (MNI), using the MNI adult brain tem-

plate [50, 51]. CSF and white matter were segmented with a probability threshold

of 0.8. The time series for each voxel was regressed against the average CSF and

white matter signals as well as the 6 parameters from motion correction, with all

further analysis based on the residuals. Gray matter areas were defined using FSL’s

cortical Harvard-Oxford probabilistic atlas thresholded at 25%, excluding voxels which

did not provide fMRI coverage in every participant. Voxels were then downsampled

to ∼300 approximately uniform regions [52], maximizing compactness, and under

the constraints that no brain regions spanned hemispheres or cortical lobes or ex-

tended over more than twice the size of the smallest region. We focused on regions

in the right hemisphere to facilitate the approximation of the wiring length by the

Euclidean distance between brain regions [44]. This resulted in 140 regions whose

average time series were used to construct brain functional networks. The maximal

overlap discrete wavelet transform (MODWT) with a Daubechies 4 wavelet was used

to band-pass filter these time series to the frequency interval: 0.05-0.111 Hz (scale

2). These preprocessed data can be downloaded for the primary group of healthy vol-

unteers via: http://intramural.nimh.nih.gov/chp/articles/matlab.html. The link also

provides access to the graphs constructed for both the primary HV and COS group.

Graph construction. Binary graphs were constructed by thresholding the wavelet

correlation matrix estimated for each participant. To ensure that no nodes were dis-

connected from the rest of the network, we used the minimum spanning tree (MST)

as a backbone, then added further edges in order of decreasing correlation strength to

produce binary graphs over a range of connection densities [26], from 4% to 16% of

the maximum possible number of connections betweenN nodes. Networks simulated

by generative models were likewise fully connected and controlled for connection den-

sity. All topological measures were normalized by dividing by the equivalent measures

estimated from random graphs with the same number of nodes and edges.

Network measures. The graphs thus constructed were topologically analyzed using

some of the most widely used graph theoretical network metrics (efficiency, clustering

modularity and degree); we note that these metrics are also directly related or very

similar to some other well-known graph metrics (such as local efficiency, path length,

or the small world ratio of clustering to path length).

The degree, ki, of a node i represents the number of edges connecting it to

the rest of the network. The degrees of all the nodes of a graph G form the de-

gree distribution. The clustering coefficient Ci is defined as the ratio of the number

of triangular connections between the ith node’s nearest neighbours to the maximal

possible number of such triangular motifs. The overall clustering coefficient C(G)
is defined as the average clustering coefficient of all nodes. The path length Li,j
between a pair of nodes i and j is defined as the minimum number of edges that need

to be traversed to get from i to j. More commonly [20], one measures the average

inverse path length, or global efficiency, 0 < E(G) < 1. Many complex networks
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have a modular community structure, whereby they contain subsets of highly inter-

connected nodes called modules. The modularity, Q(G), of a graph quantifies the

quality of a suggested partition of the network into modules by measuring the fraction

of the network’s edges that fall inside modules compared to the expected value of this

fraction if edges were distributed at random [21]. The maximum value, M(G), of

the modularity found for any partition of a given graph into modules yields a measure

of the degree of modularity of the network, as compared to random networks.

Model parameter estimation. The optimal parameters η and γ used for each

model were estimated by simulated annealing on an energy function defined as

En = 1
PC .PE .PM .Pk

where PC is the P -value associated with the t-test

for a difference in the mean clustering coefficients of a set of 20 simulated model

networks versus a set of 20 experimental fMRI datasets (see SI for more details).

Similarly, PE and PM are P -values of t-tests for the difference between efficiency

and modularity in modeled versus experimental data, while Pk is the P -value of

the Kolmogorov-Smirnoff test between the degree distributions estimated from the

simulated and experimental networks. Simulated annealing aims to find the minimum

of the energy function in parameter space, and thus finds the η and γ parameters

that generate model networks which most closely approximate the experimental data

in terms of clustering, efficiency, modularity and degree distribution.
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Fig. 1. Comparison of networks simulated by three generative models versus brain functional networks derived from experimental fMRI data on a group of twenty healthy

volunteers (blue). Both the simple 1-parameter model based on an exponential distance penalty (green) and the 2-parameter economical preferential attachment model (orange)

fail to simultaneously capture several topological characteristics of functional brain networks. In contrast, the economical clustering model (red) yields significantly more realistic

networks by all of the following measures: A. Normalised clustering coefficient, global efficiency and modularity of brain functional networks are all well matched by the

economical clustering model. All values are averaged over twenty instantiations of each network and error-bars represent the 95% confidence interval for the mean. Degree (B)

and distance (C) distributions are shown in solid coloured and dashed black lines for the models and data respectively. Both distributions are better captured by the economical

clustering model (red) than by the exponential decay (green) or economical preferential attachment (orange) models. D-G. Schematic representation of the right hemisphere

of the fMRI brain network for one participant (blue) and of a representative network generated by a single instantiation of each model. To ensure that these networks are

representative, the single participant and the specific model instantiations displayed were each chosen to have the median value of skew in their degree distributions. The size

of each node represents the degree of the corresponding brain region within the network. All networks have an overall connection density of 4%.
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Fig. 2. Phase diagram of the economical clustering model. Most values of η and γ yield

small-world networks (grey area), while only high values of γ yield networks with heavy-tailed

(skew>1) degree distribution (hashed area). The model parameters estimated to minimize

mis-match between simulated and experimental fMRI datasets are shown here for both healthy

volunteers (HV) and participants with childhood onset schizophrenia (COS). The orange (and

purple) arrows show sections through the phase space, varying only η (or γ) respectively, while

the other parameter is held at its optimal value estimated in healthy volunteers. Schematics of

the networks obtained at various points along these sections are also shown (along zoomed-in

versions of the orange and purple arrows).
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Fig. 3. Modeling of network properties not involved in parameter estimation. The exponen-

tial decay model (epxD), economical preferential attachment model (ecoPA) and economical

clustering model (ecoC) are shown in green, orange and red respectively. Of these, only the

economical clustering model generates networks that realistically approximate the experimental

(fMRI; blue) distributions of nodal topological metrics, such as clustering (A) and efficiency

(B), that were not included in the process of model parameter estimation. The P -values from

a Kolmogorov-Smirnov test comparing the cumulative distributions for each parameter between

the modeled and experimental networks are: PexpD = 10−103, PecoPA = 10−20 and

PecoC = 0.04 for nodal clustering. And PexpD = 10−45, PecoPA = 6 · 10−4,

PecoC = 0.035 for nodal efficiency.
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Fig. 4. The economical clustering model is adaptive to fMRI network abnormalities in

children with schizophrenia. Childhood onset schizophrenia (COS; hashed bars) is associated

with shifts in clustering, efficiency and modularity (A-C) of fMRI networks, compared to

the same metrics in fMRI networks of healthy volunteers (HV; solid bars). The bar charts on

the right-hand side of each panel show the corresponding metrics simulated by the economical

clustering model for both groups. See also SI Fig 7 and Table 3.
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