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CHAPTER 9

Analyzing event-related EEG data with multivariate
autoregressive parameters
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Abstract: Methods of spatio-temporal analysis provide important tools for characterizing several dynamic
aspects of brain oscillations that are reflected in the human scalp-detected electroencephalogram (EEG).
The search to identify the dynamic connectivity of brain signals within different frequency bands, in order
to uncover the transient cooperation between different brain sites, converges at the potential of multivariate
autoregressive (MVAR) models and their derived parameters. In fact, MVAR parameters provide a whole
battery of so-called coupling measures including classic coherence (COH), partial coherence (pCOH),
imaginary part of coherence (iCOH), partial-directed coherence (PDC), directed transfer function (DTF),
and full frequency directed transfer function (ffDTF). All of these approaches have been developed to
quantify the degree of coupling between different EEG recording positions, with the specific aim to char-
acterize the functional interaction between neural populations within the cortex. This work addresses the
application of MVAR models to event-related brain processes, including different statistical approaches,
and reviews most relevant findings in the expanding field of coupling analysis. Finally, we present several
examples of coupling patterns associated with certain types of movement imagery.

Keywords: EEG coupling; brain connectivity; event-related oscillations; spatio-temporal analysis;
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Introduction

Oscillations were one of the first phenomena ob-
served in human electroencephalogram (EEG).
The dynamics of these oscillations, like the syn-
chronization and desynchronization of the alpha
rhythm during closed and open eyes, has been al-
ready described and investigated by Hans Berger
in the 1930s. With the advent of digital computers,
digital signal processing methods were applied to
EEG in the late 1960s. Autoregressive parameter

estimation of EEG was among the first methods to
uncover the signals’ spectral characteristics (Lu-
stick et al., 1968; Fenwick et al., 1969, 1970a, b,
1971; Zetterberg, 1969; Gersch, 1970; Pfurtscheller
and Haring, 1972). In order to investigate the dy-
namics of EEG oscillations, a method to quantify
event-related desynchronization (ERD) and syn-
chronization (ERS) patterns was developed
(Pfurtscheller and Aranibar, 1977; Pfurtscheller
and Lopes da Silva, 1999). Essentially, this ap-
proach provides an univariate analysis that uncov-
ers the spectral properties of a single EEG channel
(temporal correlation within the investigated time
series). Even if univariate methods are applied to�Corresponding author. E-mail: alois.schloegl@tugraz.at
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each EEG channel, no information regarding the
correlation between two (or more) channels is ob-
tained. Therefore, any ongoing coupling between
EEG positions that may originate from the oscil-
latory interactions between spatially distant corti-
cal populations remains undetected. Recent
research, however, revealed the crucial importance
of cortical couplings to brain functions, often ad-
dressed as ‘‘long-range synchronization’’ of oscil-
latory activities between distant neuronal
populations. Importantly, this process should be
reflected in the degree of coupling between elec-
trode pairs (Varela et al., 2001; Gruber et al., 2002;
Fiebach et al., 2005; Fries, 2005).

Certainly, coherence is the most traditional ap-
proach proposed to detect cooperative neuronal
activity in electrophysiological signals. Coherence
can be considered as the correlation in the fre-
quency domain between two channels (Gardner,
1992; Varela et al., 2001). High values of coherence
between two EEG signals are often interpreted as
evidence for ongoing cooperation and long-range
synchronization. Unfortunately, this interpreta-
tion of coherence values is distorted by two con-
founding factors, namely, volume conduction and
the influence of common reference electrodes (Nu-
nez et al., 1997, 1999; Florian et al., 1998; Andrew
and Pfurtscheller, 1999; Pfurtscheller and Andrew,
1999). Both factors can cause the recording of the
same signal simultaneously at many electrodes,
which causes large coherence values even in the
absence of any cortical interaction. In the recent
years, several approaches were proposed on the
basis of MVAR modeling (e.g., directed transfer
function (DTF), partial-directed coherence (PDC),
and imaginary coherence (iCOH)) to overcome
these difficulties (Kaminski and Blinowska, 1991;
Kaminski et al., 1995, 1997, 2001; Sameshima and
Baccala, 1999; Baccala and Sameshima, 2001;
Blinowska et al., 2004;Kus et al., 2004; Nolte et
al., 2004). In this study, we present these MVAR-
based coupling measures in detail. To demonstrate
the remarkable potential of the different measures
(power spectrum, phase, ordinary coherence,
iCOH, PDC, and DTF), we present an event-re-
lated time-frequency (T–F) analysis of the entire
set of measures of an EEG data set from a subject
performing imagery hand movements.

The MVAR model and its estimators

An multivariate autoregressive (MVAR) model of
order p is described by the following equation

~Y t ¼ A1 � ~Y t�1 þ A2 � ~Y t�2 þ � � �

þ Ap � ~Y t�p þ ~X t,

whereas ~Y t is the observed EEG data at time t, ~X t

is the innovation process, and Ak are the k-th au-
toregressive parameters. The innovation process ~X t

is a multivariate white noise process with mean ~mX

and covariance matrix SX. The mean ~mY of the
MVAR process is ~mY ¼ ~mX ðIM�M �

Pp
k�1AkÞ

with the identity matrix IM�M of size M�M.
If ~X t has zero mean ~mX ¼~0; ~mY ¼

~0 and vice versa.
If M channels are observed, ~Y t and ~X t are vectors
of length M and Ak ¼ jai;jðkÞj are matrices of
size M�M with elements ai,j(k). The meaning of
the coefficient ai,j(k) is the weighting factor that
characterizes the contribution of channel j with
lag k to channel i according to yiðtÞ ¼ X iðtÞ þPM

j¼1

Pp
k¼1ai;jðkÞyjðt� kÞ with i ¼ 1,y,M. In the

case k40, only time-delayed contributions are
modeled, and therefore, one might understand this
approach as modeling causal relationships. More-
over and equally important, the coefficients ai,j(k)
describe the direction of the connection (from chan-
nel j to i), which certainly can differ from the re-
versed case aj,i(k). Accordingly, the MVAR model
is capable of describing directed causal relationships
between channels. If the covariance matrix

P
X ¼

js2i;jj of the innovation process is a diagonal matrix,
then Xi and Xj are uncorrelated, and expressed as
Si,j ¼ /Xi �XjS ¼ 0 for i6¼j. However, if Xi and Xj

are correlated, an instantaneous (simultaneous)
contribution to several channels exists. Baccala
and Sameshima (2001) distinguished the former and
the latter case as ‘‘Granger causality’’ and ‘‘instan-
taneous Granger causality,’’ respectively.

As the very first step toward characterizing
a given time series ~Y t; the MVAR parameters
ai,j(k) need to be estimated. Several estimation
algorithms have been proposed (Wiggins and
Robinson, 1965; Marple, 1987; Schlögl, 2006).
Wiggins and Robinson (1965) were the first to
propose a multivariate extension of the recursive
Levinson estimator for univariate AR parameters.
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Therefore, this algorithm is also known as the
Levinson–Wiggens–Robinson (LWR) estimator or
multichannel Levinson–Durbin recursion. The un-
ivariate Burg algorithm has been extended for
multivariate AR models by Nuttall and Strand
(Marple, 1987; Schlögl, 2006). More recently, the
least-squares estimator ARFIT has been pro-
posed by Schneider and Neumaier (2001). A de-
tailed comparison of various MVAR estimators
(Schlögl, 2006) revealed that the multivariate Burg
algorithm provides the most accurate estimates.
Software implementations of the estimators men-
tioned above are available from the TSA toolbox
for Octave and Matlab, which is included in
BioSig (see http://biosig.sf.net). These imple-
mented MVAR estimators have a very useful fea-
ture, namely they can handle data with missing
values. Missing values can arise from artifact de-
tection and occur quite often in EEG recordings.
Missing values can be encoded efficiently as
not-a-number (NaN) according to the IEEE 754
standard regarding the encoding of floating point
numbers. The estimation algorithms are imple-
mented so that any NaNs (i.e., missing values) are
ignored. This feature is highly useful for artifact
processing as well as for combining time and en-
semble averages of the MVAR estimates.

Derived measures

In the following, the relation between MVAR pa-
rameters and their derived measures will be ex-
plained briefly. Our discussion includes (auto and
cross) spectra, phase relations, coherency (absolute
coherence and iCOH), partial coherence (pCOH),
PDC, directed transfer function (DTF), and full-
frequency DTF (ffDTF).

If we transform the MVAR model from the
time-domain into the z-domain and the f-domain,
the following transfer functions

HðzÞ ¼ Y ðzÞ=X ðzÞ ¼ I �
Xp

k¼1

ðz�k � AkÞ

$ %�1

and

Hðf Þ ¼ A�1ðf Þ ¼ Y ðf Þ=X ðf Þ

are obtained, where Hðf Þ ¼ Hðz; z ¼ e2pif =f 0 Þ with
z ¼ e2pif =f 0 (given a sampling rate f0). From these

equations, we can derive several multivariate pa-
rameters in the frequency domain:

(a) The multivariate spectral density of ~Y t is
Y(f) ¼ H(f) �X(f) with frequency f and
Y(f) ¼ |Yij(f)|, a matrix with elements
Yij(f). The matrix elements Yij(f). repre-
sent the cross-spectrum between channels
i and j (if i 6¼ j) and the autospectra (in
case i ¼ j). The power spectral density
of ~Y t is given by SY(f) ¼ |Y(f)|2and is
obtained by SY ðf Þ ¼ Hðf ÞSX HHðf Þ: The
superscript indicates the Hermitian oper-
ator (transposed complex conjugate of
matrix H).

(b) The coherency (Nolte et al., 2004) is de-
fined as

Cijðf Þ ¼
Y ijðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y iiðf Þ � Y jjðf Þ

p

and its complex parts can be expressed as

Cijðf Þ ¼ RealðCijðf ÞÞ þ
ffiffiffiffiffiffiffi
�1
p

� ImagðCijðf ÞÞ

¼ jCijðf Þj � e
2p
ffiffiffiffiffi
�1
p

jij ðf Þ

The ordinary coherence is defined as the
absolute value COHij(f)�|Cij(f)|and in
some cases the squared coherence CO-
Hij

2(f) ¼ Cij(f) �Cij
H(f) is used. Interpret-

ing coherence as cortical coupling can be
misleading, because volume conduction
and activity at the reference electrodes can
result in erroneous high coherence values
(Florian et al., 1998; Andrew and
Pfurtscheller, 1999; Pfurtscheller and An-
drew, 1999).

(c) The phase difference between two chan-
nels i and j can be obtained from the
cross-spectrum or the coherency accord-
ing to the following equation:

jijðf Þ ¼ angleðY ijðf ÞÞ ¼ angleðCijðf ÞÞ

¼ arctanðImagðY itðf ÞÞ=RealðY itðf ÞÞÞ

A phase delay between two signals differ-
ent from zero indicates a time delay.
Given that pure volume conduction ef-
fects appear at electrodes with a zero
phase delay, phase information can be
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exploited to identify true cortical propa-
gation. The delay time of the propagation
at a specific frequency f is as follows:

Dtijðf Þ ¼ jijðf Þ=ð2pf Þ.

Based on the above equation, volume
conduction effects can bias the phase de-
lay (as well as the delay in time) toward
zero.

(d) Recently, Nolte et al. (2004) suggested a
solution to the problem of separating vol-
ume conduction from cortical interaction.
They argued that the iCOHij(f), defined
as,

iCOHijðf Þ ¼ ImagðCijðf ÞÞ

¼
ImagðY ijðf ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y iiðf Þ � Y jjðf Þ

p ,

is exclusively caused by the occurrence of
some time delay. In fact, volume conduc-
tion propagates without any time delay
contributing only to the real part of co-
herency. Therefore, the iCOH should rep-
resent solely true cortical interactions, and
is thought to be independent of any vol-
ume conduction influences.

(e) Another approach to remove volume con-
duction effects is to partialize the coher-
ence. Effectively, the pCOH between
channels i and j is the coherence between
channel i and j, removing the (partial)
components common to any other chan-
nel combination (Korzeniewska et al.,
2003; Kus et al., 2004). The pCOHij(f) is
defined as

pCOHijðf Þ ¼
gijðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
giiðf Þ � gjjðf Þ

p ,

whereas gðf Þ ¼ jgijðf Þj ¼ Aðf ÞS�1X Aðf Þ:
The pCOH is symmetric, i.e.,
pCOHijðf Þ ¼ pCOHjiðf Þ; therefore no di-
rectional information is obtained.

(f) In order to obtain directional informa-
tion, the concept of pCOH has been
extended by Baccala and Sameshima
(2001), who developed the PDC measure

defined as

PDCijðf Þ ¼
Aijðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1jAijðf Þj

2
q

¼
Aijðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH
:j ðf ÞA:jðf Þ

q

with A:j(f) being the j-th column of A(f).
The PDC measure was also used to in-
vestigate cortical couplings in the works
of Supp et al. (2004, 2005). The PDC fac-
tor, PDCFij(f) , is given by

PDCFijðf Þ ¼
Aijðf Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AH
:j ðf ÞS

�1
X A:jðf Þ

q .

Both, PDC and PDCF are related to the
concept of ‘‘causality,’’ as defined by
Granger (1969). The difference between
PDC and PDCF is ‘‘[the PDC] portrays
exclusively Granger causality’’, while
‘‘[PDCF reflects a mixture with the] in-
stantaneous Granger causality’’ (Baccala
and Sameshima, 2001, p. 466).

(g) Another measure to uncover directed in-
formation flow is the DTF as defined by
Kaminski and Blinowska (1991) (see also
Kaminski et al., 1997, 2001; Blinowska
et al., 2004):

DTFijðf Þ ¼
jHijðf Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1jH
2
ikðf Þj

q

¼
jHijðf Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hi:ðf ÞH

H
i: ðf Þ

q .

Later, Korzeniewska et al. (2003) and Kus
et al. (2004) developed the ‘‘full frequency
directed transfer function’’ (ffDTF)

ffDTFijðf Þ ¼
jHijðf Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f

Pm
k¼1jH

2
ikðf Þj

q

¼
jHijðf Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f Hi:ðf ÞH

H
i:

q
ðf Þ

,
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which ‘‘assures that the denominator does
not change with frequency’’ and ‘‘shows
peaks mostly for frequencies ... when there
is a net flow’’ (Korzeniewska et al., 2003,
p. 197). In order to characterize only di-
rect connections, Korzeniewska et al.
(2003) proposed to multiply the ffDTF
with the pCOHs and named this new
measure as dDTF:

dDTFijðf Þ ¼ pCOHijðf Þ � ffDTFijðf Þ.

By means of several simulations, Baccala and
Sameshima (2001) could demonstrate that DTF
extracts direct as well as indirect connections,
whereas PDC reveals exclusively direct connec-
tions. However, Kus et al. (2004, p. 1502) de-
scribed the difference between PDC and DTF as
follows: ‘‘yPDC, unlike DTF, y is a ratio be-
tween the outflow from channel j to y i in respect
to all the outflows from channel j (not in respect to
the inflows to the designated channel y in case of
DTF)’’. Hence, it is an open question, which of the
two, DTF or PDC, is more advantageous in de-
scribing directional information.

Statistical significance tests

In order to evaluate whether some differences are
significant or not, statistical tests need to be ap-
plied. Statistical significance tests estimate (explic-
itly or implicitly) some confidence interval around
some estimated mean value. The confidence inter-
val has been derived analytically for spectra and
coherence (Nunez et al., 1997) as well as for iCOH
(Nolte et al., 2004). Surrogate data methods have
been applied by Kaminski et al. (2001) or Babiloni
et al. (2005). Resampling methods such as ‘‘boot-
strapping’’ and ‘‘jackknife’’ represent another in-
teresting approach, since the underlying
probability distribution does not need to be known
a priori (Efron, 1981).

In this work, we apply a jackknife method, using
a trial-based leave-one-out method (LOOM). All
but one trial are concatenated, from which the
MVAR estimates and their derived measures

(COH, PDC, DTF, etc) are estimated. Then, the
next trial is excluded and the parameters are es-
timated again. This procedure is repeated until
each of the m trials has been left out once.
Although the LOOM procedure is computa-
tionally expensive, it provides two advantages:
(i) LOOM obtains the least-biased estimates over
all other resampling methods, and (ii) no a priori
assumption regarding the type of distribution is
needed.

According to the LOOM approach, a sampling
distribution u ¼ Nðmu;s

2
uÞ is obtained. The sample

distribution can be used to estimate the mean mu

(which corresponds to the expectation value) and a
standard deviation su. However, the standard de-
viation was not obtained from m independent tri-
als, only the (m–1)-th part of each ensemble
estimate (one out of m– 1 trials) was independent.
Thus, the true standard error for the estimate û is
su �

ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1
p

(the validity of this approach can be
demonstrated in a simple simulation using m ran-
dom numbers).

In theory, also the single trial estimates could be
used to obtain the mean and the standard error.
However, because of the limited number of sam-
ples within one trial the model order would have to
be very small, otherwise the estimation of a
MVAR model would be impossible. Using ensem-
ble averaged MVAR estimates allows larger model
orders, while still using the advantages of LOOM
for estimating the standard error.

The mean and the standard error are sufficient
for several statistical tests (including the simple t-
test, the paired t-test, and the two-sample t-test).
In the context of this study, a simple t-test can be
used for testing whether a certain coupling meas-
ure (such as COH, PDC, DTF, iCOH, and phase)
is significantly different from zero or not. A paired
t-test is useful for analyzing event-related changes
(reference vs. activation interval) of a certain
measure. For example, the paired t-test applied
on the autospectra will provide the classical ERD
and ERS analysis (Pfurtscheller and Lopes da Si-
lva, 1999). The two-sample t-test can be used for
testing on significant differences of different con-
ditions (e.g., left-hand movement vs. right-hand
movement, etc). In this study, we are using a
two-sample t-test for the event-related analysis
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(see Figs. 1: A, B, C, F, G and H) and the simple t-
test (Figs. D and E) for testing whether a certain
measure is zero or not.

Example: EEG data of motor imagery

Now we exemplify the use of MVAR-based T–F
analysis by presenting several measures derived
from a single experimental data set. The subject
performed a cued motor imagery task, while EEG
was recorded from 60 channels (reference: left
mastoid, ground: right mastoid, sampling rate:
250Hz). The EEG was bandpass filtered between 1
and 50Hz (Notchfilter switched on). During the
experiment, the subject was seated in front of a
computer screen and was guided by arrows ap-
pearing on the screen to perform one of four pos-
sible imaginary movements: left hand, right hand,
foot, or tongue. The cues and therefore the type of
the requested imaginary movements were ran-
domized across the whole experiment that con-
sisted of several runs with 40 trials each. Each trial
started with a blank screen for 2 s. At second 2 a

short beep-tone occurred and a fixation cross
appeared on the screen to indicate the upcoming
appearance of the arrow. The arrow pointing left,
right, up, or down was presented at second 3 for
a whole second. The subject was cued by the di-
rection of the arrow that indicated which type
of movement was requested to imagine. The sub-
ject was instructed to perform the respective
motor imagery until the fixation cross disap-
peared (at t ¼ 7 s). The data set is available
online at http://ida.first.fraunhofer.de/projects/
bci/competition_iii/]datasets (data set IIIa, sub-
ject k3). Some results using univariate analysis
methods have been described by Schlögl et al.
(2005) and Pfurtscheller et al. (2006). For the fol-
lowing we concentrate our investigation mostly on
the data recorded during left-hand motor imagery.
Five EEG positions (Fz, C3, Cz, C4, and Pz) were
selected, and the MVAR parameters and their de-
rived measures for 1-s segments (and 50% overlap)
were estimated. The event-related analysis used
the interval from t ¼ 2 to 3 s as reference. The
T–F maps are displayed for t ¼ 1.5 to 7.0 s,
and f ¼ 0 to 45Hz. Given that five channels are

Fig. 1. Time-Frequency maps of various coupling measures from 5 EEG channels. All coupling measures were estimated by means of

a MVAR(15) model (model order 15) applied on each one-second segment (for a detailed description see text), using an overlap of 0.5

second for illustation purpose. The frequency range 0 to 45Hz is displayed. In general, a t-ttest with a ¼ 0.01 was used for testing the

statistical signifcance. A: Event-related changes of auto- and cross-spectra. The logarithm of the spectral value S(t, f) was tested

whether it was significantly different from the the spectral value S(tref, f) in the reference segment (tref ¼ 2.0–3.0 s). Red and yellow

indicate a significant increase, white means insignificant values and blue indicates a significant decrease of PDC. B: Time-frequency

map of event-related coherence changes. The coherences values are calculated by normalizing the cross-spectra with the corresponding

autospectra. Again, a two-sample-test with a ¼ 0.01 was used for detecting statistically significant changes of the coherence values. The

most significant coherence changes are observed in the alpha and beta frequencies between Fz-C3, C4-Fz, and C4-C3, although the

cross-spectra for these channels do not show many statistical significant changes. C: Time-frequency map of the imaginary coherence

(iCOH). While the coherence is also influenced by volume conduction, the iCOH represents only coupling with a time-delay. The iCOH

is closely related to phase (see E:) A t-test was applied in order to test whether iCOH is zero or whether iCOH is significantly different

from zero. D: Event-related changes of the imaginary coherence. A two-sample t-test was applied in order to test whether iCOH(t,f) is

significant different to iCOH(tref,f) in the reference interval tref ¼ 2.0–3.0 s. E: Time-frequency maps of the phase differences between

channels. A t-test was used to test whether the phase is significantly different than zero (a ¼ 0.01). Warm colors (yellow and red)

indicate a phases significantly larger than zero, cold colors (green and blue) indicate negative phases. The time-frequency maps of the

phases are very similar to the maps of the imaginary coherence (see Fig. 1-C). F: Time-frequency maps of the directed transfer function

(DTF). Similar to PDC, the DTF provides another measure for the ‘‘causality’’ or information flow between channels. Here, DTF was

tested with a simpe t-test (a ¼ 0.01) whether DTF(t, f) is significantly larger than zero. G: Event-related partial directed coherence of

left hand motor imagery. The PDC shows causal relationships between pairs of channel. Accordingly, leading and following channels

can be distinguished, and the direction of the ‘‘information flow’’ can be obtained. By means of a two-sample t-test was tested whether

the PDC(t, f) at time t was significant different from PDC(tref, f) at the reference interval tref ¼ 2.0–3.0 s. Significant PDC changes are

seen in beta and gamma range from C4 to all other channels, as well as in Fz-4C4. H: Event-related partial directed coherence during

right hand motor imagery. In this case, most interesting, PDC reveals a dominant coupling increase within the beta/gamma frequency

range leading from Fz to C3. The homologue phenomenon can be observed during left hand motor imagery (Fig 1-G).

141



investigated, 5� 5 T–F maps are shown for each
channel pair.

(a) Event-related log S: The main diagonal
(Fig. 1-A) contains all time-varying auto-
spectra (or power-spectra) for each single
recording position (channel), while the
cross-spectra can be found off-diagonal.
The event-related autospectra show which
recording positions measured frequency-
specific increases or decreases in relation to
the baseline interval. A relative power de-
crease in the low frequency range (p7Hz)
can be found at all five positions over most
parts of the whole trial. The most promi-
nent, event-related decreases in the alpha
and beta range are found at position C3
and C4. The power decrease at C4 starts by
second 3 in the alpha (frequency peak
around 11Hz) as well as in the beta fre-
quency band (frequency peak around
27Hz). The decrease of alpha power at
C3 (around 11Hz) begins around second 3,
while the weaker decrease in the beta fre-
quency appears slightly later around sec-
ond 4. Some more significant decreases can
be mentioned: at channels Fz and Cz a
weaker beta decrease and at channel Pz a
stronger but temporally very restricted al-
pha power decrease around second 3.

(b) Event-related COH: Most prominently, the
coherence results (Fig. 1-B) indicate a
broad-banded coupling increase within
the alpha and beta frequency between
C4–Fz, C4–C3, and C4–Cz. However, a
short look on the cross-spectra (see Fig. 1-
A) delivers a very different picture on this
matter. Importantly, the cross-spectra of
C4–Fz, C4–C3 do not change at all in al-
pha and beta frequency bands. Only the
cross-spectrum of C4–Cz shows a signifi-
cant attenuation in the beta frequency.
Therefore, the significant changes between
C4–Fz and C4–C3 can be explained by the
decrease of alpha and beta power at C4
(see autospectrum of C4). Thus, in this case
the coherence change between C4 and Cz is
due to cross-spectral changes, whereas the

coherence changes between C4–Fz and
C4–C3 are just side effects of the massive
power decrease at C4.

(c) Event-related iCOH: Evaluating the event-
related results of the iCOH (Fig. 1-C), sig-
nificant changes are present in the beta
frequency between C4–C3, C4–Cz and,
temporally more restricted, between
C4–Cz starting around second 3.5. In all
three pairs there are significant changes of
iCOH toward more positive values (red-
dish colors) in respect to the baseline in-
terval. From this event-related perspective,
the changes on the three channel pairs look
similar.

(d) iCOH: This figure provides the absolute
values of the iCOH (Fig. 1-D) reached in
the course of all time windows. For the
channel pairs C4–C3 and C4–Cz, the
event-related iCOH analysis revealed sim-
ilar patterns in the beta frequency. How-
ever, by inspecting the absolute iCOH
values it becomes apparent that the event-
related change results from different mag-
nitudes of iCOH present during the base-
line interval. Since for C4–C3 the absolute
magnitude of the phase shift is close to zero
during the baseline interval, the phase shift
increases during the movement imagery.
For the channel pair C4–Cz, there is a high
level of negative phase shifts during the
baseline that vanishes during movement
imagery (magnitude becomes smaller, get-
ting close to zero). However, from the per-
spective of the event-related analysis both
patterns result in a significant increase of
the phase shifts between C4–C3 and
C4–Cz.

(e) Phase S: The phase (Fig. 1-E) is symmetric
in the sense that jijðf Þ ¼ �jjiðf Þ: As easily
recognizable, the results of the phase are
very similar to iCOH. In fact, the results of
the statistical test are (almost) equal.
Moreover, we can estimate the time delay
from the phase; a phase of 0.25 rad (e.g.,
C3–Cz and C3–C4) at about 25Hz corre-
sponds to a time delay of 1.6ms. This time
delay analysis could be applied for the
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whole T–F map, accordingly the time delay
for each frequency component and each
time segment can be obtained.

(f) Event-related DTF: The DTF (Fig. 1-F)
reveals a different pattern of results com-
pared to all findings presented before, be-
cause DTF differentiates between forward
and backward coupling. In the present
case, coupling patterns as revealed by DTF
are similar to the patterns provided by
PDC (Fig. 1-G). In addition to the PDC
changes, a significant coupling increase
from C3 to C4 around the 10 and 22Hz
can be observed. Given that DTF is sen-
sitive not only to direct but also to indirect
linkages, this divergent C3–C4 coupling
pattern might be due to the representation
of indirect couplings.

(g) Event-related PDC: The PDC provides a
similar picture (see Fig. 1-G) than DTF
(Fig. 1-F) because PDC can differ between
forward and backward direction. The PDC
level changes most prominently in channel
pairs involving C4. Starting from C4, there
is an evident decrease of PDC toward Fz
and Cz around the 20–25Hz frequencies.
Increases of PDC are present above 30Hz
from C4 directed to C3, Cz, and Pz, while
C4 receives stronger input from Fz.

As a matter of fact, the oscillatory connectivity
patterns associated with channel C4 (close to the
contralateral primary motor areas) seem to be
particularly engaged during left-hand motor im-
agery. This is in agreement with the knowledge of
contralateral recruitment of somatotopical sec-
tions of the primary motor cortex during actions
and motor imagery (e.g., Jeannerod, 1994; Neuper
and Pfurtscheller, 2001; Ehrsson et al., 2003; Mi-
chelon et al., 2006). Primary motor areas are under
control of higher order motor areas located more
frontally (such as portions of the premotor cortex,
the cingulate motor zones, or the supplementary
motor area). Interestingly, our PDC and DTF
analyses revealed a dominant event-related in-
crease of information transfer, directed from the
frontal position Fz toward C4, within the beta/
gamma frequency band. This pattern fits to the

one we might expect, if feed forward coupling
from the more frontally located higher motor ar-
eas (such as pre-SMA or premotor cortex) is
transmitted to the contralateral primary motor
area associated with the imagined hand move-
ment. We have also analyzed the right-hand motor
imagery task (Fig. 1-H), and we can find a hem-
ispheric homologous pattern during right-hand
movement imagery. That is, PDC and DTF reveal
a respective coupling increase within the beta/
gamma frequency range from Fz to C3. These re-
sults indicate the potential usefulness and the pos-
sible physiological meaning of EEG coupling
measures. By means of the multivariate approach,
the interacting activity between different brain ar-
eas can be investigated in more detail, with the
high time-resolution of the EEG.

Practical issues

In order to apply MVAR methods, some param-
eters, such as model order, segment length,
number of trials, and number of channels, have
to be fixed a priori. In fact, the MVAR estimates
can be degenerated if these parameters are set in-
correctly. This problem can be avoided if some
simple rules are taken into account.

(a) the model order p.
Various criteria have been proposed for
the model order selection (Marple, 1987;
Herrera et al., 1997). The difficulty of
these criteria is that a wide variety of pos-
sible model orders are suggested, thus, no
consistent model orders are obtained and
in practice these criteria are not very help-
ful. Moreover, slight modification of the
model hardly changes the spectra. Alto-
gether, the importance of the model order
selection seems to be often overestimated.
As an alternative we recommend to use a
fixed model order and to select the model
order so that all points below are con-
sidered.
It is also known that the model order de-
termines the number of modeled fre-
quency components and in this sense it
determines the ‘‘frequency resolution.’’ As
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a rule of thumb, the number of frequency
components is half of the model order p.
In case of multivariate analysis M � p/2
frequency components (there are M � p

roots of the characteristic polynomial
det(A(z))), these components are distrib-
uted among M channels. Therefore, p/2
frequency components are observed be-
tween each channel pair.

(b) Window length DT.
The longer the time window is, the more
samples for estimating the MVAR are
available. On the other hand, a longer
time window means also a lower time res-
olution. A pragmatic solution is choosing
the window length DT in such a way that
it resembles roughly the expected time
scale of interest. In this study, an imagi-
nary hand movement task lasting for 4 s
was used. Thus, we have chosen a time
window of the length of 1 s (i.e., 250 sam-
ples).

(c) A general limitation of any T–F analysis is
the principle of uncertainty between the
time and frequency domain (Priestley,
1981). According to the uncertainty prin-
ciple, the product of the time resolution
DT and the frequency resolution DF is al-
ways DT �DF4c larger than some con-
stant c. For the single trial case is c ¼ 1, in
case of ensemble averaging of m trials is
c ¼ 1=

ffiffiffiffiffiffi
ðm

p
Þ: It is reasonable to assume

that the frequency resolution is approxi-
mated by DF ¼ Fs/p, the sampling rate
divided by the model order. Hence the
following equation should be fulfilled:
DT � F s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmÞ4p

p
: A violation of this re-

quirement will cause large estimation er-
rors in the T–F results, hardly any
statistically significant result can be ob-
tained.

(d) Estimation theory shows that the number
of samples should be larger than the
number of estimates. In case of MVAR
estimation, we have M2

� p estimates and
M �N �m sample values (N ¼ DT �Fs is the
number of samples per trial), hence the
ratio (M �N �m)|(M2

� p) ¼ (N �m)/(M � p)

must be larger than 1 (Kus et al., 2004).
As a rule of thumb, a ratio of 10 or larger
is recommended. If this rule is not ful-
filled, the error in the MVAR estimates
will become large.

If someone needs to select the above parameters,
one should take care that each point is fulfilled. If
any of these recommendations are violated, it is
likely that the MVAR analysis will fail (e.g., in the
case that the number of samples is to small, no
robust estimates can be obtained). Ideally, these
parameters should be already fixed in the course of
the experimental design.

In this study, M ¼ 5 channels, a model order of
p ¼ 15, a window length of DT ¼ 1 s, a sampling
rate Fs ¼ 250Hz, and m ¼ 90–1 ¼ 89 trials (be-
cause of LOOM) were used. Accordingly, up to 32
frequencies might be resolved, for each channel
pair up to seven frequency components in the
range of 0–125Hz are available. The recommen-
dation derived from the uncertainty principle DT �

F s

ffiffiffiffiffiffiffi
ðmÞ

p
¼ 250 �

ffiffiffiffiffi
90
p
¼ 23724p ¼ 15 is fulfilled.

This is also true for the ratio between the number
of sample values and the number of estimates, ðN �
mÞ=ðM � pÞ ¼ 250 � 90=ð5 � 15Þ ¼ 300� 1; which is
much larger than 1. Hence, in this work the rec-
ommendations mentioned above are fulfilled.

Summary

This study describes the use of MVAR parameters
and their derived coupling measures in the context
of event-related EEG analysis. We addressed the
issue of statistical significance tests and, specifi-
cally, we considered the application of resampling
methods used for estimating confidence intervals.
To obtain group statistics it is computationally
even less demanding, since this case makes resam-
pling superfluous. The confidence interval can be
simply obtained from the standard error of the
group.

A general problem associated with classical co-
herence is that it is incapable of distinguishing be-
tween true cortical interactions and volume
conduction (Florian et al., 1998; Andrew and
Pfurtscheller, 1999; Pfurtscheller and Andrew,
1996). The phase is often thought to be independ-
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ent of volume conduction. Nevertheless, a large
volume conduction effect can cause a bias towards
zero phase. The pCOH removes volume conduc-
tion effects, but does not provide a direction of
information transfer. Only PDC (Baccala and
Sameshima, 2001), DTF (Kaminski et al., 2001;
Korzeniewska et al., 2003), and iCOH (Nolte et
al., 2004) provide the direction of information
transfer and are not influenced by the volume
conduction effect. Therefore, PDC, DTF, and
iCOH are the most interesting measures for de-
scribing couplings between EEG signals.

It is noteworthy that PDC and DTF (including
PDCF, ffDTF, and dDTF) describe a property
that is qualitatively different from phase or coher-
ency (including classical coherence, phase, and
time delay). Even though the phase information
and the iCOH provide directional information, the
phase between channels i and j has the same mag-
nitude than in the reverse direction (from channel j

to i), only the sign changes. The same is true for
the iCOH. In contrary, PDC and DTF are not
symmetric at all: the forward connection can yield
a large value (e.g., close to 1), whereas the back-
ward connection can be almost zero. Thus, PDC
and DTF describe different properties from co-
herency and can hardly be compared to phase or
iCOH.

Baccala and Sameshima (2001) claimed that
PDC is superior to DTF because it provides large
values only for the case of a ‘‘direct connection.’’
This claim implicitly assumes that all ‘‘sources’’
are recorded (provided that the sources originate
from the cortex and can be detected by EEG elec-
trodes). Mathematically, the differences between
DTF and PDC correspond to different terms of
normalization: since PDC is calculated with re-
spect to all outflows, DTF is normalized by all
inflows (see Kus et al., 2004). PDC and DTF are
attractive measures, since they are capable of de-
scribing couplings in forward and backward di-
rection in the context of causality analysis.
However, one must be aware that an analysis on
causality is only reasonable if the activity of all
sources is recorded. Kus et al. (2005, p. 221) re-
ported that ‘‘pairwise estimates — bivariate
Granger causality y may give totally confusing
results’’. This warning is equally valid for any

other case, where sources are not directly available
(sources not covered by EEG electrodes or sources
originating from some lower brain areas, e.g.,
thalamic sources). Hence, the importance of this
limitation has still to be assessed. In the case that
all major sources reside in the cortex and are cap-
tured by EEG channels, this limitation becomes
invalid and so we gain the advantage of assessing
the information flow between positions in forward
and backward direction through PDC.

In conclusion, the MVAR-based methods pro-
vide a powerful set of tools for investigating the
various aspects of multichannel spectral properties
of EEG. From a general point of view, the MVAR
approach can be seen to bridge two different areas
of signal processing. On the one side, classical
phase analysis as obtained equally by methods of
deterministic signal processing, on the other side,
methods that use the field of causal analysis in the
context of stochastic time series analysis (TSA).
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Supp, G.G., Schlögl, A., Fiebach, C.J., Gunter, T.C., Vigliocco,

G., Pfurtscheller, G. and Petsche, H. (2005) Semantic mem-

ory retrieval: cortical couplings in object recognition in the

N400 window. Eur. J. Neurosci., 21: 1139–1143.
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