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Abstract: In this work, we investigate the feasibility to estimating causal interactions between brain
regions based on multivariate autoregressive models (MAR models) fitted to magnetoencephalographic
(MEG) sensor measurements. We first demonstrate the theoretical feasibility of estimating source level
causal interactions after projection of the sensor-level model coefficients onto the locations of the neural
sources. Next, we show with simulated MEG data that causality, as measured by partial directed coher-
ence (PDC), can be correctly reconstructed if the locations of the interacting brain areas are known. We
further demonstrate, if a very large number of brain voxels is considered as potential activation sources,
that PDC as a measure to reconstruct causal interactions is less accurate. In such case the MAR model
coefficients alone contain meaningful causality information. The proposed method overcomes the prob-
lems of model nonrobustness and large computation times encountered during causality analysis by
existing methods. These methods first project MEG sensor time-series onto a large number of brain loca-
tions after which the MAR model is built on this large number of source-level time-series. Instead,
through this work, we demonstrate that by building the MAR model on the sensor-level and then projec-
ting only the MAR coefficients in source space, the true casual pathways are recovered even when a
very large number of locations are considered as sources. The main contribution of this work is that by
this methodology entire brain causality maps can be efficiently derived without any a priori selection of
regions of interest. Hum Brain Mapp 00:000–000, 2012. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The importance of studying interactions between speci-
alized areas in the human brain has been increasingly
recognized in recent years [Schnitzler and Gross, 2005a,b;
Schnitzler et al., 2000; Schoffelen et al., 2005, 2008]. Magne-
toencephalography (MEG) is particularly suited for con-
nectivity studies as it combines a good spatial resolution
with high temporal resolution. The high temporal resolu-
tion affords the investigation of transient coupling and is a
prerequisite to study frequency dependent coupling. A
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large number of measures for the quantification of neural
interactions have been introduced over the years. For these
various measures it is custom to distinguish between func-
tional and effective connectivity. Functional connectivity
measures assess interactions by means of similarities
between time series (e.g., correlation and coherence) or
transformations of these time series (e.g., phase synchroni-
zation and amplitude correlation). In contrast, effective
connectivity methods are used to study the causal effect of
one brain area on another brain area.

Besides the distinction between functional and effective
connectivity one has to be aware that connectivity analysis
can be performed at the sensor-level or the source-level. In
the first case, connectivity measures are evaluated on the
time series recorded by MEG/EEG sensors. In the second
case, connectivity measures are evaluated on time series
that represent the activity of individual brain areas.
Unfortunately, the interpretation of sensor connectivity
results is difficult because of the complex and often diffuse
sensitivity profiles of MEG/EEG sensors [Schoffelen and
Gross, 2009]. Significant connectivity between (even dis-
tant) sensors cannot be easily assigned to underlying brain
areas, may be spurious, and can be affected by power
modulations of nearby or distant brain areas [Schoffelen
and Gross, 2009]. These negative effects can be reduced
(though not abolished) by performing connectivity analysis
in source space. Most MEG/EEG source connectivity
methods are based on functional connectivity measures
such as coherence or phase synchronization [Gross et al.,
2002; Hoechstetter et al., 2004; Jerbi et al., 2007; Lachaux
et al., 1999; Lin et al., 2004; Pollok et al., 2004, 2005; Tim-
mermann et al., 2003]. Effective connectivity in source
space has been studied with dynamic causal modeling
(DCM) [David et al., 2006; Kiebel et al., 2009] or Granger
causality [Astolfi et al., 2005; Gómez-Herrero et al., 2008].

Here, we present and test a new efficient method for
Granger causality analysis in source space. Granger causal-
ity is a concept from economics that quantifies the causal
effect of one time series on another time series. Specifi-
cally, if the past of time series x improves the prediction
of the future of time series y time series x is said to
granger-cause y. Classically, Granger causality is defined
in the time domain, but a frequency domain extension has
been proposed [Geweke, 1982]. Granger causality has also
been extended from its original pairwise form into a multi-
variate formulation in both the time and frequency
domains, known as conditional Granger causality [Chen
et al., 2006, 2009; Geweke, 1984]. This methodology is com-
parative in the sense that in a multivariate system if one
investigates if y is causing x, then a model of x based on
every variable including y is compared with a model of x
based on every variable excluding y. In simple terms if
inclusion of y reduces significantly the variance of the
model of x as compared to the variance of the model of x
when y is excluded then y is assumed to cause x. Several
other multivariate metrics derived from Granger causality
have been suggested, such as partial directed coherence

(PDC) [Baccalá and Sameshima, 2001] and directed trans-
fer function [Kaminski and Blinowska, 1991]. These met-
rics are estimated in the frequency domain and are thus
frequency specific. One of their main differences with con-
ditional Granger causality is that they are not comparative
methods but they are computed directly from the multi-
variate model built based on all the variables in the
system.

Source space Granger causality analysis is typically per-
formed in the following way. First, regions of interest
(ROIs) are selected. Second, the activation time series are
computed for all ROIs. Third, a multivariate autoregres-
sive model is computed for these time series and measures
of Granger causality are computed. The most significant
drawback of this approach is that a large number of poten-
tial activation sources correspond to a large number of
projected activation time-series. This is prohibitive for the
derivation of numerically robust MAR models without the
assumption of sparse connectivity. [Haufe et al., 2010;
McQuarrie and Tsai, 1998; Valdés-Sosa et al., 2005] For
example, dividing the brain volume into a regular 6 mm
grid leads to roughly 10,000 voxels. In addition, Granger
causality computation for a different set of ROIs requires
time consuming computations because Steps 2 and 3 in
the procedure mentioned earlier need to be repeated. The
computational complexity precludes a tomographic map-
ping of Granger causality.

To bypass these limitations, we investigate an alterna-
tive approach, which entails the derivation of the MAR
model directly on MEG sensor data and its projection into
the source space. In this method the modeling process is
performed in sensor space, which has moderate dimen-
sionality as compared to the high-dimensional source
space. This leads to greater model robustness as well as
significantly reduced computation times. Feasibility of a
similar approach for EEG data has already been shown in
[Gómez-Herrero et al., 2008], where the multivariate model
was projected onto a small number of locations in source
space identified by independent component analysis (ICA)
of the residuals of the MAR model and localized by
swLORETA [Palmero-Soler et al., 2007]. Causality was
inferred using the directed transfer function metric (DTF).
In our work, we demonstrate the feasibility of the method-
ology when the MAR model is projected in the entire
brain volume without any a priori assumption or estima-
tion of the activity locations.

The main advantage of this approach is that all the vox-
els inside the brain volume can be investigated in terms of
causality, something not practical with the traditional
approach. This method also offers benefits in terms of data
compression as the elements that need to be projected are
the coefficients, which are typically significantly less than
the data points used to derive them and which would be
projected in the traditional case. Another advantage is that
the derivation of the MAR model at the sensor space is
much more robust, because of the moderate number of
variables, than the derivation of the MAR model on
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projected time-series in a very large number of brain loca-
tions. Additionally, even if different ROIs are recursively
selected to examine different network topologies in the
brain, the sensor space MAR model is always the same
and the only thing that changes is the locations where the
model is projected. In the traditional approach, one would
have each time to project the sensor time-series in the new
set of brain locations and then build the MAR model
again. Finally, due to the computational efficiency of this
methodology, application of statistical inference methods
on entire brain causality maps from MEG data is feasible.

To infer causality, PDC and the coefficients of the MAR
model themselves are used. Although, conditional Granger
causality would be, in terms of theory, a more robust
choice because of its intrinsic normalization, its computa-
tional load for a very large number of considered source
locations makes its use problematic. In a traditional
approach, if 10,000 voxels are considered, 10,001 multivari-
ate models must be computed. One including all the
10,000 projected voxel time-series and 10,000 models, each
one with one voxel time-series excluded. In the proposed
methodology, where the model is built on the sensor level
and only the coefficients are projected, in order to imple-
ment conditional Granger causality, again 10,001 models
must be built at the sensor level. One on the original sen-
sor data and 10,000 models, each with the effect of one
voxel extracted through the derived inverse solution. Then
the coefficients of these 10,001 models must be projected
in source space. This imposes a heavy computational load.

Also, due to the fact that in each of the 10,000 models the
effect of one voxel is extracted through the derived inverse
solution, under the condition that the number of sensors is
much smaller than the number of voxels, the projected ac-
tivity will be diffused around the voxels of actual activity.
This simply means that even if one voxel’s activation effect
is excluded from the sensor data, in the context of
Geweke’s measures computation, the causal pairing will be
modeled by the effect of the neighboring voxels.

Another issue regarding the conditional Granger causal-
ity in the frequency domain is that is based on the transfer
function of the model, which is the inverse of the z-trans-
form of the MVAR coefficients across model order. For
each of the 10,000 models the size of this matrix is 9,999 �
9,999(10,000 � 10,000 for the entire brain model). Inversion
of such a large matrix, given also the colinearities because
of the projection through the inverse solution, can be very
problematic and can lead to singular inverse matrices.

PDC has the implementational advantage that it is com-
puted directly from the coefficients of one MAR model
with all the variables included and that it does not require
any inversion. Thus, only one model needs to be built at
the sensor level, and after the coefficients are projected in
source space, PDC can be efficiently computed for a wide
range of frequencies. However, due to its semiarbitrary
normalization it can only confidently be used to compare
causality between voxel pairs that have the same causal
voxel [Baccalá and Sameshima, 2001].

Because of this drawback of PDC, also the projected
MAR model coefficients are examined directly without
any normalization. The fact that no normalization is
applied means that in this approach causality is not
bounded. Also when a continuous linear system with lin-
ear coefficients matrix A is periodically sampled with sam-
pling frequency f, the resulting discrete linear coefficients
are approximated as eAð1=f Þ. This means that the discrete
coefficients change in amplitude according to the sampling
frequency. Nevertheless the aim of examining the MAR
model coefficients is to examine if within the same dataset
the causal information is correctly represented in the MAR
model coefficients when they are derived at the sensor-
level and then projected to a very large number of voxels
inside the brain. This examination of the coefficients is
only performed in the time-domain. This approach is used
to identify areas inside the entire brain, which are
involved in causal interactions. These specific brain areas
could then be separately examined with theoretically more
robust causality metrics such as the conditional Granger
causality.

First, our proposed approach is investigated theoreti-
cally. Subsequently, the method is validated by simula-
tions where pseudo-MEG data with added noise,
uncorrelated, and spatiotemporally correlated, is produced
from simulated neural activity in a small number of prede-
fined locations inside the brain with specified causality
structure. We show that the PDC reconstructed from the
source projection of the MAR model coefficients, is very
similar to the PDC, extracted from the simulated source
signals directly.

The second part of this work is concerned with the
investigation of the causality information that can be
derived in the case when a very large number of voxels
are considered as potential sources. First, the causality in-
formation recovered by PDC is investigated. Then the cau-
sality information recovered directly from the MAR model
coefficients is investigated. The motivation for the latter
comes from the fact that PDC, due to the way it is normal-
ized, is very sensitive to the Signal-to-Noise ratio and may
not be suitable for applications with very large numbers of
voxels [Baccalá and Sameshima, 2006; Faes et al., 2010;
Schelter et al., 2006, 2009]. Here the feasibility of using the
model coefficients directly is investigated and it is demon-
strated that causality information can be extracted more
precisely than with PDC, when a very large number of
voxels is considered. Within this context a preliminary
evaluation of this methodology is performed with real
data from a simple motor planning experiment.

METHODS

Among the many variants of source localization techni-
ques, linear inverse solutions represent an important class
of methods because of their efficient computation and nu-
merical stability. These methods are typically used to per-
form the linear transformation of sensor time series into
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source space [Baillet et al., 2001; Gross and Ioannides,
1999; Hämäläinen, 1992]. However, these linear transfor-
mations can also be applied to other measures such as the
cross-spectral density to perform tomographic mapping of
power or coherence [Gross et al., 2001]. The method sug-
gested here follows a similar logic.

In a first step, a multivariate autoregressive model is
computed for the recorded signals of all MEG sensors. The
result is a very compact and efficient representation of the
data as an NxNxP-matrix (N: number of channels, P:
model order). In a second step, the covariance of all chan-
nel combinations is computed and the coefficients of a
spatial filter are computed for each volume element in the
brain. These coefficients are used in the third step to esti-
mate the MAR-model for volume elements in the brain.
The new MAR-model (that corresponds to brain areas and
not MEG sensor signals) can be used to compute power,
coherence, or causality measures (like PDC or DTF) for a
given frequency. Interestingly, the computation of these
measures given the MAR model is very fast.

In summary, the method is based on the computation of
a multivariate AR model using the sensor signals followed
by the efficient transformation of the model from the sen-
sor-level to the brain areas. Once the model (represented
by the model coefficients) is defined a large number of
measures can be computed that quantify coupling strength
and direction of information flow between brain areas.
This technique could possibly overcome most of the afore-
mentioned limitations. It is very fast and efficient in terms
of memory use and computational load. Because of the
fast computation it is ideally suited for randomization
techniques that can be used to establish significance levels
for the results. Information about directionality is readily
available for all volume elements and several partly com-
plementary measures such as PDC and DTF can be easily
computed and compared.

Multivariate Modeling of MEG Data

If s(t) is the column vector of all the activation signals in
brain space at time t and x(t) is the column vector of the
sensor measurements in the sensor space at the same time
t, then the following relationship holds:

xðtÞ ¼ K � sðtÞ (1)

where K is the leadfield matrix or forward operator.
In the same fashion the inverse projection can be

described with the use of an inverse operator. The source
signals inside the brain can be described as projections of
the sensor signals as:

sðtÞ ¼ U � xðtÞ (2)

where U is the inverse operator.
Assuming that one could measure the activation time-

series of an arbitrarily large number of potential activation

sources symbolized by s(t), a multivariate model built on
them would have the form:

sðtÞ ¼
Xp

s¼1

BðsÞ � sðt� sÞ þ eðtÞ (3)

where P is the model order across time lags, s is the time
lag, B(s) is the model coefficients matrix for lag s, and e is
the model residual column vector.

Combining Eqs. (1), (2), and (3) gives the following
expression for the multivariate model in the sensor space:

xðtÞ ¼
Xp

s¼1

KBðsÞU � xðt� sÞ þ K � eðtÞ (4)

In the above derivation it is assumed that UK ¼ I. This
is evident if Eq. (1) is used in Eq. (2) to derive
sðtÞ ¼ UK � sðtÞ. This means that if a source activation sig-
nal is projected through its leadfield to sensor space and
then back to source space through the inverse solution, the
recovered signal should be the same as the original.
Because of the nonuniqueness of the inverse solution the
product UK deviates from the identity matrix. This form
of deviation depends on the inverse method used. For
beamformers UK ¼ I is satisfied for each voxel individu-
ally, as this is the constraint used for the inverse solution
for each brain location. When the leadfields and spatial fil-
ters for all voxels are entered in product UK, then the off-
diagonal components deviate from 0. Similar deviation
from the identity matrix is also occurring with minimum
norm solutions. However, as there is no unique solution to
the inverse problem by these methods, it is assumed that
by projecting the sensor data through the inverse solution,
the original activation signals are recovered and not a dis-
torted version of them (as there is no way to eliminate this
distortion due to the nonuniqueness). This assumption is
described by Eq. (2). By combining again Eqs. (1) and (2)
to give sðtÞ ¼ UK � sðtÞ, it is seen that this assumption is
translated in the assumption UK ¼ I.

Because of the typical spatial proximity of MEG sensors
and to the structure in the leadfield operator, it is expected
that there will be colinearity between different sensor
time-series and a model derived directly on these time-se-
ries would provide a poor solution. This can be avoided
by applying principal component analysis (PCA) [Jolliffe,
2002] to the time-series, and additionally selecting only the
principal components corresponding to the largest eigen-
values (typically those that explain 99% of the variance).
Then the MAR model is built on these components. In this
way colinearity is largely reduced and components repre-
senting mainly noise are omitted. The projection from sen-
sor space to the principal component space is performed
through the matrix of selected feature vectors [Jolliffe,
2002] for the principal components as:

xPCAðtÞ ¼ V � xðtÞ (5)
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where V is the matrix of feature vectors mapping from the
original recorded time-series to the reduced PCA-space.

The number of significant components, explaining the
99% of data variance, is lower than the number of sensors
due to the presence of noise. Assuming that the excluded
components represent noise, and assuming that the
Moore-Penrose pseudo-inverse of V exists, the following
assumptions can be made:

VVþ � I (6)

VþV � I (7)

where 1 denotes the Moore-Penrose pseudo-
inverse.Consequently:

xðtÞ ¼ Vþ � xPCAðtÞ (8)

Then combining the model in Eqs. (4) and (5) gives the
MAR model in principal component space:

xPCAðtÞ ¼
Xp

s¼1

VKBðsÞUVþ � xPCAðt� sÞ þ VK � eðtÞ (9)

If a MAR model of the form:

xPCAðtÞ ¼
Xp

s¼1

AðsÞ � xPCAðt� sÞ þ gðtÞ (10)

is developed directly on the principal components of the
MEG sensor measured time-series, it is evident from Eq.
(9) that for each time lag s up to the model order, the
MAR coefficients B(s) in source space can be estimated
through:

BðsÞ ¼ UVþAðsÞVK (11)

and the MAR model residual time-series in source space
can be estimated through:

eðtÞ ¼ UVþ � gðtÞ (12)

For completeness, the data and noise covariance in
source space can be derived from the ones in principal
component space through:

Cs ¼ UVþ � CPCA � UVþð ÞT (13)

Ns ¼ UVþ �NPCA � UVþð ÞT (14)

where Cs,Ns are the data and noise covariance in source
space, respectively and CPCA,NPCA in principal component
space, respectively.

As the projection of the multivariate coefficients is per-
formed through the use of the spatial filters and the lead-
field matrices, it is important to mention how the inverse
solution affects the projection.

If we denote the model coefficients matrix at the sensor
level for lag s as C(s) then from Eq. (11) it can be seen that:

CðsÞ ¼ VþAðsÞV (15)

and

BðsÞ ¼ UCðsÞK (16)

If we consider just the coefficient from source j to source
k inside brain then:

bkjðsÞ ¼
XN
r¼1

XN
q¼1

ukqcqrðsÞkrj (17)

where ukq is the spatial filter weight from sensor q to
source k, krj is the leadfield weight from source j to sensor
r, cqr(s) is the multivariate model coefficient from sensor r
to sensor q for lag s, N denotes number of sensors, and r,
q denotes sensor index with values 1 to N.

In this representation it can be seen that the terms that
dominate the sum are the ones in which all three compo-
nentsukq; cqrðsÞ; krjhave significant values. These three
terms can be depicted in Figure 1 where three activated
sources i, j, and k are shown

cqris the MAR coefficient from sensor r to sensor q.
According to the dipoles’ orientation of the actual acti-
vated brain sources that have a causal relationship, causal-
ity should be also present between the sets of sensors

Figure 1.

Visualization of the effect of mixing during the projection of

coefficients from sensor space to source space. i, j, k: activated

sources, r, q: MEG sensors, ukq:spatial filter weight from sensor

q to source k, krj: leadfield weight from source j to sensor r,

cqr(s): multivariate model coefficient from sensor r to sensor q.

Source j is causing source k but not source i. If the spatial filter

weight uiq has a value other than zero then true causality

between sources j and k can be misrepresented as causality

between sources j and i.
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where the magnetic fields from the activated sources con-
verge to local-maxima and -minima.

ukq depends only on the caused source k and krj depends
only on the causal source j. The double sum in Eq. (17) iter-
ates through all the possible sensor pairs. In Figure 2 are
shown the histograms of the leadfield and spatial filter
weights to and from all sensors for six simulated active
sources and six inactive sources inside the brain. The lead-
fields and the spatial filters have been combined with the
estimated dipole orientation from the inverse solution,
which was derived through an LCMV beamformer.

From Figure 2 it can be seen that the leadfield and the
spatial filter weights for active sources have distributions
with heavier tails than these for the inactive sources. The
significantly higher positive and negative values at the
tails correspond to the sensors that are located in the vicin-
ity of the local-maxima and -minima of the magnetic fields
produced by the activated sources.

In the case of two sources with actual causal relation-
ship like sources j and k in Figure 1, if it is assumed that
sensor r is located at the local maximum of the magnetic

field produced by source j and sensor q is located at the
local maximum of the magnetic field produced by source
k, then the coefficient cqr(s) of the MAR model at the sen-
sor level will be significant representing the underlying
causal relationship. In this case, the product ukqcqrðsÞkrj
will attain a high value. The further away sensors r and q
are from the local maxima (or minima) of the actual acti-
vation dipoles, the lower will be the above product. Con-
sequently, the sum in Eq. (17) is dominated by the factors
that correspond to the sensors that are located in the vicin-
ity of the local maxima and minima of the actual activated
dipoles, which represent the true causality at sensor level.

From Figure 1 it is also evident that the spatial filterweights
have much wider distribution away from 0 for the active
sources as compared to inactive sources, than in the case of
the leadfield weights. This means that for sensors away from
the local maxima and minima. While the leadfield weights
decrease sharply, the spatial filter weights decrease more
smoothly. This can result inmixing of causality information.

In the case that there is another activated source with no
causal interaction with the other activated sources, like

Figure 2.

Histograms of leadfield and spatial filter weights to and from all the MEG sensors respectively,

for six activated and six nonactivated sources. For the activated sources the leadfield and espe-

cially the spatial filter weights have a much wider distribution than the nonactivated sources. The

values at the tales correspond to sensors in the vicinity of the local maxima and minima of the

magnetic field generated by the activated dipole.
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source i in Figure 1, then mixing of causal information can
result if the spatial filter weights for source i have a wide
distribution. This can be seen if in the computation of the
coefficient bkj(s) from Eq. (17), the term uiqcqrðsÞkrj is exam-
ined. As discussed earlier, the product cqrðsÞkrjwill have a
high value due to the underlying true causality between
sources j and k. If uiq has also a value different from zero
then it is evident that a portion of the true causal relation-
ship between sources j and k will be erroneously projected
also between sources j and i.

This mixing affects mostly activated sources for which
the spatial filter weights have wider distributions. As non-
activated sources have a much narrower distribution of
spatial filter weights, causality information is less likely to
be represented in nonactivated areas.

As mixing depends mostly on the distribution of the spa-
tial filter weights, the inverse solution used for deriving
them plays a central role on the extend and pattern of mix-
ing. Beamformers (LCMV, DICS) cannot separate highly
correlated sources (i.e., auditory activations) and tend to
represent two such sources with one source located in-
between. In this case, causality information would be pro-
jected in erroneous nonactivated locations. Another factor
that affects beamformers is the use of a regularization pa-
rameter. This regularization parameter is used to make the
inverse solution wider so that actual activated sources situ-
ated between grid points will not be missed. The use of
high regularization values creates spatial filter weights
with wide distributions and thus the level of causality in-
formation mixing will be higher. In the case if minimum
norm solutions the main disadvantage is that they tend to
assign observed activity to cortical areas because they are
closer to the sensors and thus they fit better to the mini-
mum norm constraint. This has the consequence that even
inactive cortical voxels attain spatial filter weights with
wider distributions than in the case of beamformers.

Consequently, in order to minimize the effect of mixing
in this work, an LCMV beamformer is used with no regu-
larization. When the entire brain is considered with no a
priori selection of brain locations, a fine grid of 6 mm reso-
lution is used (8,942 voxels).

Using the above formulation, in this work we investi-
gate the feasibility of building the MAR model in the Prin-
cipal Component space of sensor data and projecting it
into source space, as described earlier, where causality is
estimated from the model coefficients. Here we quantify
causality by means of PDC.

Partial Directed Coherence

Partial directed coherence (PDC) is a metric aimed to
identify causal relationships between signals at different
frequencies in a multivariate system [Baccalá and Same-
shima, 2001]. It belongs to a family of methods that ana-
lyze the coefficients from MAR models. Another widely
used metric is the DTF [Kaminski et al., 2001] but it has

been shown [Astolfi et al., 2005] that PDC is superior over
DTF in correctly identifying both direct and indirect causal
pathways. The PDC from voxel j to voxel i at frequency f
is given by the following equation:

pij ¼
�Aijðf Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�aHj ðf Þ � �ajðf Þ
q (18)

where

�Aijðf Þ ¼
1� Pp

s¼1

aijðsÞ � e�i2p f
Fs
s; if i ¼ j

�Pp
s¼1

aijðsÞ � e�i2p f
Fs
s; if i 6¼ j

8>><
>>:

(19)

are the elements of matrix :

�A ¼ I �
Xp

s¼1

AðsÞ � z�s

�����
z¼e

�i2p
f
Fs
s

¼ �a1; �a2; � � � ; �aN½ � (20)

where f is the frequency, Fs is the sampling frequency, s is
the model time lag, H is the Hermitian transpose.

As it can be seen from Eq. (19) for a given voxel pair i�j
and frequency, the element �Aijðf Þ is in effect the z-trans-
form of the MAR coefficients series across time lags aij(s),
modeling the effect of voxel j on voxel i. The vectors �aj,
contain the elements of the jth column of matrix �A and
they contain all elements �Aijðf Þ from voxel j to all voxels
i 2 N. Consequently, it is straightforward to see that the
denominator in Eq. (18) is the norm of vector �aj. Thus,
PDC is normalized with respect to the transmitting voxel.
This means that PDC values between different voxel pairs
are comparable only for the same transmitting voxel and
comparison between pairs of different transmitting voxels
is not feasible. It is also evident that if the activity between
two voxels is highly correlated, then the norm will be
dominated by the PDC of this pair, and the PDC of all
other pairs will be down-weighted. It is also natural to
infer that if, because of poor signal-to-noise ratio, the
MAR coefficients contain modeled noise, then it is highly
probable that this will dominate the PDC and real causal
pairs will be down-weighted. Finally, the norm depends
on the number of voxels, and for a very large number of
voxels, the normalization factor increases and conse-
quently the PDC values decrease to low-levels and become
more sensitive to erroneous or random correlations.

RESULTS

Investigation 1: Small Number of Voxels with

Known Causality Structure

As a first step to evaluate the feasibility of building the
MAR model on the principal component space of the sen-
sor data and then projecting it into source space where
causality is inferred, the following process has been used.
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Six simulated signals with predefined causality were
generated to represent activity of six sources inside a typi-
cal brain volume segmented in a 6 mm grid (8,942 voxels
in brain volume).The ‘Ideal’ PDC was computed directly
from the simulated signals. Through, the forward solution
pseudo-MEG sensor time-series were derived. Noise was
added to the sensor data. A MAR model was built on the
principal component space of the pseudo-MEG sensor
data. Spatial Filters and dipole orientations were estimated
by a Linearly-Constrained Minimum Variance beamformer
for the six known locations of dipole activity. The MAR
model coefficients were then projected onto the six known
locations. PDC was computed from the coefficients of the
projected MAR model and compared to the ‘Ideal’ PDC.
Tolerance of the method with respect to white Gaussian
sensor noise, model order and number of samples is inves-
tigated. Additionally, tolerance of the method with respect
to spatiotemporally background noise is investigated. Con-
fidence intervals of PDC are examined by a jackknife
method.

Simulated brain dipole

MEG sensor data was simulated. Six activation signals
inside the brain volume were generated from MAR equa-
tions approximating damped oscillators [Baccalá and
Sameshima, 2001]:

s1ðtÞ ¼ 1:3393 � s1ðt� 1Þ � 0:5823 � s1ðt� 2Þ þ w1ðtÞ
s2ðtÞ ¼ 0:5 � s1ðt� 2Þ þ w2ðtÞ
s3ðtÞ ¼ 0:4 � s1ðt� 3Þ þ w3ðtÞ
s4ðtÞ ¼ �0:5 � s1ðt� 2Þ þ 0:25

ffiffiffi
2

p � s4ðt� 1Þ
þ 0:25

ffiffiffi
2

p � s5ðt� 1Þ þ w4ðtÞ
s5ðtÞ ¼ �0:25

ffiffiffi
2

p � s4ðt� 1Þ þ 0:25
ffiffiffi
2

p � s5ðt� 1Þ þ w5ðtÞ
s6ðtÞ ¼ �0:25

ffiffiffi
2

p � s6ðt� 3Þ þ 0:25
ffiffiffi
2

p � s6ðt� 4Þ þ w6ðtÞ
(21)

where wn(s) are zero-mean uncorrelated white Gaussian
noise processes with identical variance.

The causality structure between the simulated source
signals is shown in Figure 3. The activation signals were
designed with a nominal frequency of 8 Hz (Alpha band)
(Fig. 4) and the time courses were sampled with a sam-
pling frequency of 100 Hz. Time-series were organized in
20 trials with each trial having a duration of 1 s. Source 6
has no causal interaction with the other sources and has
the highest power. This source was chosen in order to
investigate if a strong source unconnected to the rest of
the network will significantly affect the estimation of
causality.

The locations of the six dipoles were defined with
respect to the head coordinate system (x-axis pointing to
nasion, y-axis pointing to left preauricular point, and z-
axis point up) and can be seen in Figure 5. The orienta-
tions of the dipoles were chosen to be random unit vec-
tors, orthogonal to the line connecting the center of mass

of the brain volume to each activation point. For reference,
the locations and orientations of the six dipoles are given
in Table I.

The overall magnetic field generated by these brain
sources was simulated by multiplying the simulated acti-
vation signals with their corresponding leadfields, and
white Gaussian noise representing noisy environment
processes was added. The simulation of the activation
sources and the computation of the corresponding mag-
netic field were performed in MATLAB with the use of
the Fieldtrip toolbox [Oostenveld et al., 2010].

PDC deviation from ‘Ideal’ with respect to

environment noise, N of samples and model order

We investigated the deviation of PDC from the ‘ideal’
for different values of environment noise level, number of
samples per trial and MAR model order.

For the environment noise investigation spatially and
temporally uncorrelated white Gaussian noise was added
to simulated MEG data. The amplitude of the noise was
defined relative to the rms value of the MEG sensor
pseudo-measurements, resulting only from the simulated
activation signals. The investigated range was 1–20. The
above type of noise was chosen because it is the simplest
type and usually represents sensor noise. It suitable to
investigate the effect of noise that in spatially and tempo-
rally uncorrelated. In section ‘‘PDC deviation from ‘Ideal’
for spatiotemporally correlated noise" the same investiga-
tion is repeated for spatiotemporally correlated noise.

For the investigation of number of samples per trial, 20
trials were used. The investigated range was 500–4,000
samples/trial. For the investigation of the MAR model
order, the number of time lags used in the model was var-
ied. The investigated range was 5–100 lags.

Figure 3.

Predefined causality of simulated activation signals. Sources 1 to

5 are part of a causal network while there is no causal interac-

tion between source 6 and the rest of the sources.
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The objective here was to investigate average PDC devi-
ation from ‘Ideal’ PDC for the above parameters, around
the frequency of the activation signals (8 Hz) and sepa-
rately for causal and noncausal pairs. For this purpose two

metrics were used. The first metric is defined as the mean
(PDC of Projected MAR Model-’Ideal’ PDC) for frequency
range 7–12 Hz, averaged for the causal pairs 2-1, 3-1, 4-1,
5-4, and 4-5. The second metric is the same as the first one
but for noncausal pairs.

PDC deviation from ‘Ideal’ for spatiotemporally

correlated noise

In the previous investigation, the added noise at the sen-
sor-level was white Gaussian. Although, this investigation
is valuable in examining the effect of different levels of
uncorrelated noise into the recovery of causal information,
in reality it mostly represents MEG sensor noise. If one
wants to represent realistic brain background noise, ema-
nating from within the brain, it is more realistic to model
the noise as spatially and temporally correlated [Bijma
et al., 2003; de Munck et al., 2002; Jun et al., 2002; Lüt-
kenhöner, 1994]. We have evaluated the performance of
PDC for different rms levels of spatiotemporally correlated
noise when the activity locations are known.

For creating the spatial noise correlation, an approach
similar to Lutkenhoner [1994] and Jun et al. [2002] has
been followed. Dipoles (2,184) locations were selected, uni-
formly distributed within the brain volume. In each of
these locations a dipole with random orientation was
actuated.

For creating the temporal noise correlation, an approach
similar to Bijma et al. [2003] and Nolte et al. [2008] was
followed. Each of the 2,184 noise dipoles was activated by

Figure 5.

Simulated sources topology. On the left the sources are viewed from a top view while on the

right from a right sagittal view. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

Figure 4.

Spectrum of simulated activation signals. All the signals have

peak power around 8 Hz. Sources 1 to 5 which are part of the

same causal network have similar spectra. Source 6 which is not

part of the causal network has in general more power in all

frequencies above 10 Hz. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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a pink noise signal. This is due to the fact that it is well
known that the background noise is not white but has a
1/f characteristic [de Munck et al., 2002]. Each pink noise
signal was derived by passing a white Gaussian signal
through a third-order low-pass filter designed with an 1/f
frequency spectrum characteristic and with cut-off fre-
quency of 15 Hz providing most spectrum power in the
alpha-range Bijma et al. [2003].

The designed filter has the following autoregressive
representation:

yðtÞ ¼ 2:5yðt� 1Þ � 2:02yðt� 2Þ þ 0:52yðt� 3Þ þ 0:05xðtÞ
� 0:1xðt� 1Þ þ 0:05xðt� 2Þ � 0:005xðt� 3Þ ð22Þ

where here y(t) is the output of the filter (temporally corre-
lated pink noise) and x(t) is the input (white Gaussian
noise). As it can be seen for this equation, the autocorrela-
tion of the resulting pink noise is temporally extended to
three time lags. Through this process the output noise sig-
nal had both an 1/f spectrum characteristic and a tempo-
ral auto-regression extended to three time lags in the past.
The 2,184 noise dipole time-series where not temporally
cross-correlated similarly to Nolte et al. [2008]. As the pink
noise signal is derived from random white Gaussian
Noise, the phase of the temporal correlation is also
randomized [Bijma et al., 2003].

The rms level of actuation was selected to be the same
for all sources. The pseudo MEG sensor measurements
were derived by projecting all the 2,184 activation dipole
time-series through the leadfield matrices. The instant spa-
tial correlation and the lagged temporal correlation for
each sensor is higher with the neighboring sensors and
diminishes with distance from the sensor.

The resulting noise at the sensor level was adjusted in
magnitude in order to investigate noise levels 1–20 times
the rms value of the sensor time-series from the six actual
activation sources, similarly to the evaluation for the white
Gaussian noise in section ‘‘PDC deviation from ‘Ideal’
with respect to environment noise, N of samples and
model order’’. The evaluation was also performed with the
same metrics, which is the mean deviation of PDC from
‘ideal’ PDC for the causal and the noncausal pairs
separately.

Statistical inference of PDC

As PDC depends on the spectrum of the estimated
MAR model coefficients for each pair, which are random
for signals containing no causality, it is instructive to be
accompanied by statistical inference of significance. The
statistical significance of the PDC causality results was
accessed through a jackknife method, the trial based leave-
one-out method (LOOM) [Schlögl and Supp, 2006].

One trial is excluded from the sensor data set. The data
from all trials is then concatenated and the MAR model is
built. Then the MAR coefficients are projected through the
inverse solution into the six known simulated source loca-
tions inside the brain volume and PDC is computed for
the frequency range 1–50 Hz. Then the next trial is
excluded from the sensor data set and the procedure is
repeated. This procedure is repeated until each of the trials
has been left out once.

The LOOM approach provides two main advantages
[Schlögl and Supp, 2006]. Firstly, LOOM obtains the least-
biased estimates over all other resampling methods. Sec-
ondly, no a priori assumption regarding the type of distri-
bution is needed.

Through the LOOM procedure, a sampling distribution
Nðlu;r2

uÞ is obtained for the PDC for each of the fre-
quency bins considered with mean lu and standard devia-
tion ru. However, the standard deviation is not derived
from N independent trials. Only the (N�1)th part of each
concatenated data vector was independent (one out of
N�1 trials). Consequently, the true standard error is
ru

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
[Schlögl and Supp, 2006].

The mean and the standard error are used in a simple t-
test for testing whether the PDC at a specific frequency
bin is significantly different from zero or not. From this t-
test, the 95% confidence limits of the mean can be com-
puted according to:

lu � tðp=2;N � 1Þ � ru

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
ffiffiffiffi
N

p (23)

where p is the significance level, N: is the number of trials,
t(p/2, N21) is the upper critical value of the t-distribution
with N21 degrees of freedom, and significance level p. In

TABLE I. Location inside brain volume and orientation of the 6 simulated activation sources

Source no

Location (cm) Orientation (normalized so norm ¼ 1)

x y z x y z

1 1.3027 0.1034 11.6434 0.8461 �0.5329 0.0119
2 �2.7540 3.8043 10.4273 0.1262 0.8494 �0.5124
3 �2.6379 �3.5436 10.3444 0.9562 �0.1412 0.2565
4 6.3504 �3.1215 8.6962 �0.7524 0.1079 0.6498
5 5.7133 3.7076 8.8705 �0.6381 �0.3040 0.7074
6 �7.1710 0.8328 6.0670 0.0169 0.8770 �0.4802
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this investigation for each frequency bin, N 20 and p 0.05
(95% confidence), which yields to confidence limits com-
puted by

lu � 2:093 � ru

ffiffiffiffiffi
19

p
ffiffiffiffiffi
20

p ¼ lu � 2:04 � ru (24)

These confidence limits have been calculated for each of
the 36 investigated voxel pairs and for each integer fre-
quency in the range 1–50 Hz.

Investigation 1:results

’Ideal’ reference PDC was calculated directly from the 6
simulated activation signals. It is shown in Figure 6a for
all possible pair combinations between signals. The pairs
that show distinct PDC are in agreement with the expected
causal pairs from the configuration of the simulated acti-
vation signals. These pairs are: 2-1, 3-1, 4-1, 5-4, and 4-5.
Then the PDC was calculated from MEG sensor data.

PCA was applied to the sensor data. Twenty-one of the
components explained 99% of the variance so the remain-
ing principal components were discarded. The MAR
model was built on the principal components using the
Yule-Walker method [Schlögl and Supp, 2006]. Through
Akaike’s criterion [McQuarrie and Tsai, 1998] the model
order was selected as six.

After the MAR model was built on the principal compo-
nents of MEG sensor time-series, it was projected to the 6

dipole locations with the spatial filters and orientations esti-
mated by a LCMV beamformer for the precise known loca-
tions of the activated dipoles. The spatial filters and the
dipole orientations were computed in MATLAB with the
use of the Fieldtrip toolbox [Oostenveld et al., 2010]. The
derived PDC is shown in Figure 6b. PDC calculated from
the projected MAR model in approximating the ‘ideal’ ref-
erence PDC from the activation signals. This means that a
MAR model built from MEG data in the sensor space and
projected in the source space preserves causality informa-
tion for the underlying generating activation processes. Ex-
amination of the levels of PDC shows that it is
distinguishably high for the causal pairs when compared to
all the rest noncausal pairs. Maxima occur around 8 Hz, the
nominal frequency of the activation signals.

Subsequently, we examined the average deviation of the
reconstructed PDC from ‘ideal’ with respect to environ-
ment noise, N of samples, and model order, averaged
across the causal and noncausal source pairs. In Figure 7
the 2 metrics described in section ‘‘PDC deviation from
‘Ideal’ with respect to environment noise, N of samples
and model order" are shown in a comprehensive way
describing the variation of all three investigated parame-
ters. Each subplot presents the two metrics for a particular
combination of N Samples/Trial, environment noise level,
and MAR model order. Up to noise levels four times the
strength of the dipoles the deviation of the PDC for the
causal pairs remains low. In the presence of higher noise,
PDC is deviating significantly from the ideal PDC. When a

Figure 6.

(a) ‘Ideal’ PDC directly from activation signals (b) PDC from MAR Model projected through the

spatial filters of LCMV beamformer. In (b) the coefficients have been projected to the precise

known locations of the simulated activation signals.
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small number of samples is used, combined with high
model order, PDC for both causal and noncausal pairs is
inconsistent relative to the ideal. In such cases, one cannot
distinguish between causal and noncausal pairs. The num-
ber of coefficients in the MAR model is p �N �N where p is

Figure 7.

Average deviation of PDC from ‘Ideal’ for causal and noncausal

pairs. Causal pairs are represented by green color, noncausal

pairs by red. In each subplot PDC is plotted versus N Samples/

Trial. Each subplot corresponds to a different combination of

environment noise level and MAR model order. For low N sam-

ples/Trial and high MAR model order (top right), PDC fails to

capture causality correctly and non-causal pairs appear to have

significant causality. For higher N samples/Trial and lower model

order (bottom left) PDC recovers information much more

consistently and non causal pairs do not appear to have signifi-

cant causality. In such cases it can be seen that for noise levels

below five times the rms value of the brain signals, the average

deviation of both causal and noncausal pairs from the ‘Ideal’

PDC remains low. For noise levels above five the average

deviation of the causal pairs seems to systematically increase.

[Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Figure 8.

Average deviation of PDC from ‘Ideal’ for causal and noncausal

pairs for different levels of spatiotemporally correlated noise

added at the sensor-level. The same deviation is shown for the

same levels of white Gaussian noise for comparison. As spatio-

temporally correlated noise level increases the noncausal pairs

appear in fault to have significant causality. Up to noise level

four times the rms of the actual brain signal, deviations from

ideal remain low. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]



the model order and N is the number of variables in the
model. When a small number of samples per trial is com-
bined with a high model order, then this means that the
number of data points per trial is only a modest multiple
of the number of estimated parameters. As seen in Figure
7 in such cases the performance of PDC becomes
detrimental.

The next investigation was the average deviation of the
reconstructed PDC from ‘ideal’ for different levels of spa-
tiotemporally correlated noise as described in section ‘‘PDC
deviation from ‘Ideal’ for spatiotemporally correlated
noise’’. According to the previous investigation with white
Gaussian noise, a robust combination of number of samples
per trial and model order was chosen, specifically 2,000
samples per trial and model order 5. The results are shown
in Figure 8 where also the same evaluation for the white
Gaussian noise case is shown for comparison. In the case of
the spatiotemporal noise, the causal pairs seem to be more
robust to higher noise levels, as the average deviation from
the ideal is lower as compared to the white Gaussian Noise.
For the noncausal pairs the average deviation from ideal
increases consistently with noise level. This is different
from the white Gaussian noise where the average deviation
after a noise level of 8, seemed to stabilize around a certain
level. The above observations show that because of the spa-
tial and temporal correlation of the noise, PDC for the
causal pairs has a tendency for higher rate of correct detec-
tion and for the noncausal pairs a higher rate for false
detections. These results are in agreement with Nolte et al.
2008, where Granger causality appeared to behave in the
same way for high noise levels. Another observation from
these results is that up to a noise level four times the rms
value of the actual brain signal, the mean deviation of PDC
from the ‘ideal’ remains in low-levels and is similar for
white Gaussian and spatiotemporally correlated noise.

Finally, the confidence intervals for PDC were evaluated
by the LOOM method as described in section ‘‘Statistical in-
ference of PDC’’. As it can be seen in Figure 9, the 95% PDC
confidence limits for the pairs that have an actual causal
relationship are significantly different from 0, especially for
the lower frequency range where the most spectral power of
the simulated signal is contained. For the pairs that have no
actual causal relationship the confidence intervals system-
atically encompass 0. These results show that the PDC com-
puted from the projected MAR coefficients into the six
known source locations is robust and consistent with the
actual simulated causality configuration. If the locations of
the actual activated sources are known then the PDC can
provide consistent representation of the causal interactions
within the network of these sources.

Investigation 2: Consideration of All Voxels in

Brain Volume as Potential Activation Sources

Investigation 1 showed that if the actual activation loca-
tions inside the brain are known then the methodology of

building the MAR model in the principal component space
of sensor data and projecting it into the source space cor-
rectly reconstructs the causality structure by PDC. How-
ever, though this scenario serves as a good demonstration
of the theoretical feasibility of the methodology, it is unre-
alistic as in real experiments the number and location of
activated brain sources are not known and have to be
identified. To evaluate the methodology in such a realistic
scenario a similar approach to investigation 1 was fol-
lowed as described in section ‘‘Investigation 1: Small
Number of Voxels with Known Causality Structure.’’ The
noise used in this investigation was spatiotemporally cor-
related noise, as described in section ‘‘PDC deviation from
‘Ideal’ for spatiotemporally correlated noise’’, scaled to
two times the rms value of the pseudo-MEG measure-
ments from the simulated dipoles. The main difference in
this investigation is that the MAR model coefficients were
projected into all voxels inside the brain volume through
the beamformer spatial filters (8,942 locations). Then PDC
was computed from the coefficients of the projected MAR
model.

In Investigation 1, as only six voxels were considered it
was easy to visualize PDC results for all pairs and fre-
quencies simultaneously. Here, as there are 8,942 voxels, it
is impossible to visualize all combinations for all frequen-
cies simultaneously. As it is known that the ‘Ideal’ PDC
has a peak around 8 Hz, PDC was visualized only for this
frequency. The method of visualization chosen was a
sliced topological plot of PDC Maps.

Four different types of PDC maps were constructed.
First the map of PDC to all voxels from each of the known
activity sources (Receive direction). Second the map of the
mean of PDC received by each voxel from all voxels
(Receive direction). Third the map of PDC from all voxels
to each of the known activity sources (Transmit direction).
Fourth the map of the mean of PDC transmitted by each
voxel to all voxels.

The first case was investigated in order to see if causal-
ity information for each of the known simulated sources is
preserved when the MAR model is projected in the entire
brain volume. Because in this case we still know the loca-
tions of actual activity, the second case was investigated as
a potential way of identifying causal areas inside the brain
without any a priori knowledge about potential source
locations. This comes naturally from the fact that PDC is
normalized relative to the causal voxel. In the contrary
averaging the PDC in the causal direction is not a feasible
method due to this semiarbitrary normalization. To dem-
onstrate this fact, cases 3 and 4 have been used.

All four cases represent maps of caused and causal ac-
tivity in the entire brain either from or to a seed or as an
average. These maps can provide a very useful initial view
of the causality patterns within the entire brain. Such
maps of causality have already been used with fMRI data
[Roebroeck et al., 2005]. Deriving such maps also from
MEG data with a high spatial resolution scan grid offers
the advantage that causality maps for the same
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phenomenon can be derived and compared between these
two modalities for the entire brain. The causality recov-
ered by fMRI is typically in a timescale of seconds while
the causality recovered by MEG is in a timescale of milli-
seconds. Combing causality in these two different time-
scales can prove very useful in understanding how low-
frequency causal networks modulate high frequency
causal networks and vice versa.

Investigation 2: Results

For a clearer interpretation of Figures 10 and 11 one
should first get familiar with the topology of the simulated
sources inside the brain shown in Figure 5 and with the
causality configuration of those signals shown in Figure 3.

In Figure 10 the following are presented. Subfigures (a–
f) present the PDC maps from the known sources 1–6 to
all voxels. Subfigure (g) presents the mean PDC caused to

each voxel. Subfigure (h) presents the actual locations of
the simulated sources with spheres of 1.5 cm radius for
ease of reference. Subfigure (i) present the original causal
configuration between the six sources. The position of
each source represents coarsely its expected location in the
topographic maps. Depth information is encoded in the ra-
dius of each source with bigger radius corresponding to
sources closer to the top of the head. This diagram has
been included in order to assist the reader to infer the
results in the PDC maps.

From these plots the following can be observed. Source
1 is in reality causing sources 2, 3, and 4 and itself through
autoregression. This is well represented in Figure 10a,
where also source 5 appears to be caused by 1. Sources 2
and 3 in reality do not cause any activity in any voxel.
However, in Figure 10b,c PDC appears to be prominent to
voxels 1, 2, 3, and 4 for both cases. It seems that PDC from
source 2 and 3 is a ghost of the PDC from source 1 which

Figure 9.

Ninety-five percent confidence limits of PDC derived by the LOOM method. PDC has been

computed by projecting the sensor-level MAR model into the six known locations of the simu-

lated brain sources. The causal and noncausal pairs can be confidently distinguished.
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causes these 2 sources. The PDC map values for these two
sources remain significantly lower from all other voxels. In
Figure 10d, source 4 appears to be causing source 5 and
itself which is in accordance with the real causality. In Fig-

ure 10e, source 5 appears to be causing source 4 and itself,
which is in accordance with the real causality. In Figure
10f, source 6 appears to be caused only by itself, which is
also in accordance with reality. An important observation

Figure 10.

PDC sliced maps for f ¼ 8 Hz. PDC to all voxels from source

(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) map of mean PDC

caused to each voxel, (h) map indicating the location of the

simulated sources with spheres of 1.5 cm radius, and (i) original

causal configuration between the six sources. The position of

each source represents coarsely its expected location in the

topographic maps. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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is that in Figure 10a–e for sources 1–5, source 6 does not
appear to interfere in the recovered causality maps. To
summarize, firstly, PDC seems to indicate the correct areas
where real causal connections exist. Secondly, PDC does
not seem to always correctly reconstruct the individual

causal pathways, and ghosts of real connections appear in
other voxels of the causal network. Ghost connections do
not appear in locations without activity.

Averaging all the maps of PDC from each voxel to all
other voxels, provides a map on which are highlighted all

Figure 11.

PDC sliced maps for f ¼8 Hz. PDC from all voxels to source

(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) map of mean PDC

caused by each voxel, (h) map indicating the location of the

simulated sources with spheres of 1.5 cm radius and (i) original

causal configuration between the six sources. The position of

each source represents coarsely its expected location in the

topographic maps. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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areas that are on average caused. This map is presented in
Figure 10g. The sources that are actually caused by other
sources are 2, 3, 4, and 5. Sources 1 and 6 are auto-corre-
lated. All these sources appear on this map which could
serve as an initial indicator of the areas that are involved
in a causal functional network. Local maxima or cluster
centers could then be selected, at which the MAR model
would be projected and PDC (or any other causality met-
ric) would be recalculated only for these points.

In Figure 11 the following are presented. Subfigures a–f
present the PDC maps from all voxels to the known sour-
ces 1 to 6 Subfigure (g) presents the mean PDC caused by
each voxel. Subfigure (h) presents the actual locations of
the simulated sources with spheres of 1.5 cm radius for
ease of reference. Subfigure (i) present the original causal
configuration between the six sources. The position of
each source represents coarsely its expected location in the
topographic maps.

Following the analysis in the same fashion as before, it
can be seen that in this case, as expected, that PDC from
all voxels to a single voxel cannot serve as a useful causal-
ity map because PDC is normalized with reference to the
causal voxel. So each PDC value from every voxel to a sin-
gle voxel has been differently normalized. This is evident
in the plots, where causality maps fail to resemble the real
causality connections. This is a very significant drawback
of using PDC in cases when the entire brain volume is
considered as potential activity sources. Using the map of
mean PDC received by each voxel, one can create a map
representing the areas that are in generally caused and in
which causal areas might also appear due to mixing. How-
ever, a similar map of causal areas cannot be constructed
based on PDC.

Investigation 3: Using the MAR Model

Coefficients Directly for Causality Identification

In Investigation 2, it was seen that when a very large
number of voxels is considered as potential source loca-
tions, PDC can provide a map of causal areas in which
also caused areas might appear because of ghost causality
connections identified by PDC. Also it was seen that a
map of caused locations cannot be constructed on account
of the way PDC is normalized. The above limitations have
instigated the interest to investigate if causal connections
can be recovered directly from the MAR model coefficients
without the use of PDC.

The simplest metric that could be used for such a pur-
pose is the norm of the MAR model coefficients across
time lags of the model. This can be represented as:

Ncoef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

s¼1

a2ijðsÞ
vuut (25)

The main advantage of using this metric is that all MAR
model coefficients are derived simultaneously for all voxel

pairs, and thus relative comparison between different
voxel pairs within the same model is feasible. Addition-
ally, the norm of the coefficients is not normalized relative
to causal or caused voxel and thus both causal and caused
maps can be constructed from this metric. A similar metric
has already been used to infer causality in MEG data
[Ramirez and Baillet, 2010].

The main disadvantage of this metric is that it is not fre-
quency-specific and if frequency-specific information is
needed then the most feasible solution would be to build a
model on a narrowband filtered version of the data. An
additional disadvantage is that because the norm of the
coefficients is not normalized, comparison between differ-
ent conditions (MAR models for different data sets) on the
relative causality strength cannot be confidently performed
only by this metric.

The evaluation of this methodology followed a similar
approach to investigation 2 as described in section ‘‘Inves-
tigation 2: Consideration of All Voxels in Brain Volume as
Potential Activation Sources’’. The noise used in this inves-
tigation was spatiotemporally correlated noise, as
described in section ‘‘PDC deviation from ‘Ideal’ for spa-
tiotemporally correlated noise,’’ scaled to two times the
rms value of the pseudo-MEG measurements from the
simulated dipoles. The main difference in this investiga-
tion is that the MAR model coefficients were projected
into all voxels inside the brain volume through the beam-
former spatial filters (8,942 locations). Then, Ncoef was
computed from the coefficients of the projected MAR
model for all voxel pairs.

Four different types of Ncoef were constructed. First the
map of Ncoef to all voxels from each of the known activity
sources (Receive direction). Second the map of the mean
of Ncoef received by each voxel from all voxels (Receive
direction). Third the map of Ncoef from all voxels to each
of the known activity sources (Transmit direction). Fourth
the map of the mean of Ncoef transmitted by each voxel to
all voxels (Transmit direction).

Investigation 3: results

In Figure 12 the following are presented. Subfigures (a–
f) present the Ncoef maps from the known sources 1–6 to
all voxels. Subfigure (g) presents the mean Ncoef caused to
each voxel. Subfigure (h) presents the actual locations of
the simulated sources with spheres of 1.5 cm radius for
ease of reference. Subfigure (i) present the original causal
configuration between the six sources. The position of
each source represents coarsely its expected location in the
topographic maps. Depth information is encoded in the ra-
dius of each source with bigger radius corresponding to
sources closer to the top of the head. This diagram has
been included in order to assist the reader to infer the
results in the PDC maps.

In this case when the metric represents the caused vox-
els, similar observations as for the PDC can be made. For
sources 4, 5, and 6 causality is correctly reconstructed
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while for the other three known sources, ghost causal con-
nections appear in the maps in addition to the correct con-
nections. Again source 6 does not seem to interfere with
the causality maps of the other sources. By examining the
map of mean Ncoef received by each voxel one can see that

all areas that have auto- or cross-correlated activity are
highlighted similarly to PDC.

In Figure 13 the following are presented. Subfigures (a–
f) present the Ncoef maps from all voxels to the known
sources 1–6. Subfigure (g) presents the mean Ncoef caused

Figure 12.

Ncoef sliced maps: Ncoef to all voxels from source (a) 1, (b) 2, (c)

3, (d) 4, (e) 5, (f) 6, (g) map of mean Ncoef caused to each voxel,

(h) map indicating the location of the simulated sources with

spheres of 1.5 cm radius and (i) original causal configuration

between the six sources. The position of each source represents

coarsely its expected location in the topographic maps. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

r Michalareas et al. r

r 18 r



by each voxel. Subfigure (h) presents the actual locations
of the simulated sources with spheres of 1.5 cm radius for
ease of reference. Subfigure (i) present the original causal
configuration between the six sources. The position of

each source represents coarsely its expected location in the
topographic maps.

These maps represent the areas from which activity is
caused. Source 1 seems to be caused only by itself which is

Figure 13.

Ncoef sliced maps: Ncoef from all voxels to source (a) 1, (b) 2, (c)

3, (d) 4, (e) 5, (f) 6, (g) Map of mean Ncoef caused by each voxel,

(h) map indicating the location of the simulated sources with

spheres of 1.5 cm radius and (i) original causal configuration

between the six sources. The position of each source represents

coarsely its expected location in the topographic maps. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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in accordance with reality. Sources 2 and 3 appear correctly
to be caused by source 1. Source 4 seems correctly to be
caused by itself and source 5 but not from source 1. Source 5
seems also correctly to be caused by sources 4 and 5. Source
6 is also correctly appearing to be causing itself and not
interfering with the causal maps of the other voxels. In sum-
mary, the causal activity maps highlighted the areas where
caused activity was actually present. Most of the recovered
individual causal connections were correctly recovered.

When plotting the map of the mean Ncoef caused by
each voxel, the correct locations are highlighted. The fact
that a consistent causal connectivity map is available in
addition to the caused connectivity map, is a significant
advantage of using the MAR coefficient norm metric.

By using these two maps from Figures 12g and 13g one
could infer that areas around sources 1, 4, and 5 are the
main causal hubs and areas around sources 1, 2, 3, 4, 5,
and 6 are caused hubs, which corresponds to reality. This
is a very significant advantage as compared to the infer-
ence about causality one could make by only looking at
the PDC map in Figure 10g.

By selecting voxels at the centers of these hubs and exam-
ining the individual Ncoef maps could lead to ghost connec-
tivity being identified as real. Probably a more consistent
approach would be to project the MAR model only into
these selected hub centers and recompute Ncoef and PDC.

Local Maxima

Causality information as recovered by the MAR model
coefficients is represented in maps as hubs of activity. The
most obvious choice for quantifying how accurately the
locations of actual activity are recovered by these hubs, is
to estimate the local maxima.

The local maxima of mean Ncoef caused by and to each
voxel were computed using multidirectional derivation
with the MinimaMaxima3D toolbox in MATLAB [Pichard,
2007]. The distance between the actual sources of activity
and the corresponding hub maxima were computed and
presented in Table II. The accuracy is in most cases better
than 1 cm and in one case it exceeds 3 cm.

Real Data

To do a preliminary indicative evaluation with real data,
datasets for 2 subjects from the following experiment were
used. A cue indicating left or right was presented to the
subject, and after 2 s a ‘go’ cue indicated to the subject to
press a button with the cued hand. The actual data sets

used here are from the interval 0–500 ms, from the onset
of the left–right visual cue. Within this interval, areas
involved in motor planning should be activated.

The sampling frequency for the measurements was 500
Hz. For subject 1, 146 trials were selected and for subject
2, 162 trials were selected after removal of artifacts. The
subjects’ brain volumes were segmented in 6 mm grids.
By applying PCA it was found that for subject 1, 24 princi-
pal components and for subject 2, 27 principal components
explained 99% of the variance.

To introduce statistical inference in the estimation of
causality maps, a LOOM approach similar to the one
described in section ‘‘Statistical inference of PDC" was
used. One trial was removed from the sensor data. The
spatial filters and dipole orientations were estimated
through an LCMV beamformer. The MAR model was built
on the selected principal components of the sensor data by
the Yule-Walker method and the coefficients were pro-
jected in source space. Akaike’s criterion instructed a
model order of 14 time lags. The projected Ncoef for each
voxel pair was computed and the caused and causal maps
of its mean were computed. Then the next trial was
excluded from the sensor data set and the procedure was
repeated. This procedure was repeated until each of the
trials has been left out once.

Because of the fact that the coefficient norm is always
greater than zero a similar LOOM approach was used to
derive the level of random causality against which the
observed causality was compared. A randomized data set
was derived by randomly shuffling data in each channel
across all data points and then reslicing it in trials. Then
the procedure was the same as above, excluding one trial
and repeating until each trial has been excluded once.

Welch’s t-test for samples with different variances and
with P-value 0.05 was used in each voxel for both the
caused and causal maps in order to estimate if the mean
Ncoefis above the randomized case. The voxels for which
the null hypothesis (estimated causality same as random-
ized causality) was not rejected were assigned a causality
metric of zero.

The resulting maps of mean Ncoef caused by and to each
voxel were plotted on a 3D mesh of each subject’s cortex.
The causal maps have a distinct maximum on the visual
cortex for both subjects. This is shown in Figure 14a,c
where the posterior view for both subjects is shown. The
caused map had two local maxima both on the sensory
motor areas. These are shown in Figure 14b,d where the
dorsal view for both subjects is shown.

For this relatively simple motor planning task, one
should expect to identify activated areas involved mainly

TABLE II. Distance of local maxima from actual activation points in centimeters

Mode Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

Caused 0.7952 0.9351 1.2368 0 0.5351 0.1612
Causal 0.5733 – – 0 3.2342 –
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in the dorsal visuomotor stream as the specific action is
underlain by a ‘goal-directed’ rather than a ‘matching’ rep-
resentation [Milner and Dijkerman, 2002; Prinz and Hom-
mel, 2002]. The dorsal stream is considered to emanate
from the primary visual cortex and terminates on the
motor cortex by projections through the premotor areas
[Hoshi and Tanji, 2007; Prinz and Hommel, 2002]. Indeed
by using the maps of Ncoef mean, the visual cortex has
been identified as the causal area and the motor cortex as
the caused area. The results of this preliminary investiga-
tion show that the use of the MAR coefficients directly
provides a meaningful functional network of causality.

CONCLUSIONS

In this work it was investigated how feasible it is to
build a MAR model on the principal components of the
MEG sensor data, then project the model coefficients

through an inverse solution to brain locations and derive
from it meaningful causality information. Theoretically,
the projection is feasible and the main uncertainty factor is
the mixing resulting from the nonuniqueness of the vari-
ous inverse solutions. The feasibility of this approach was
investigated through three different investigations with
simulated MEG data from known activity locations inside
the brain. From these three investigations the following
conclusions were drawn:

Investigation 1: Six dipoles with predefined causality con-
figuration were simulated as a network of dumped oscilla-
tors with nominal frequency of 8 Hz. Causal connections
existed between sources 1–5. Source 6 had the highest
power but no causal connections to any of the other sour-
ces. It was used to infer if the presence of a strong uncon-
nected source can affect the recovery of causality between
the other sources.

When such a small number of known activity locations
are considered, projecting the MAR model from sensor

Figure 14.

Real data: mean Ncoef (a) from each voxel to all voxels for subject 1—Posterior view (b) from all

voxels to each voxel for subject 1—Dorsal view (c) from each voxel to all voxels for subject

2—Posterior view (b) from all voxels to each voxel for subject 2—Dorsal view. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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principal component space to these locations and using
PDC as causality metric, correctly recovers the causality
information between different pairs. In this case, it was
shown that this methodology is quite tolerant of sensor
noise (white Gaussian) and background brain noise (spa-
tiotemporally correlated) up to levels of four times the
rms value of the brain signal, but can suffer when low-
sampling rate is combined with high model order, in
other words when the total number of sampling points is
low with respect to the number of coefficients that have
to be estimated. It was also shown that significance levels
estimated by a jackknife method (LOOM) can be used to
distinguish significant PDC values. Investigation 2: When
the method is used with a very large number of voxels
considered as potential activity locations, PDC seems to
indicate the correct areas where real causal connections
exist but does not seem to correctly reconstruct the indi-
vidual causal pathways and ghosts of real connections
appear between other voxel pairs. Maps of the mean of
PDC caused to each voxel seem to provide an acceptable
initial indication of the causal areas in which also caused
locations might show up because of ghost connections.
Maps of the mean of PDC caused by each voxel are not
feasible as PDC is normalized with reference to the
causal voxel.Investigation 3: When the method is used
with a very large number of voxels, a new causality met-
ric was investigated. This is the norm of MAR model
coefficients across time-lags, termed here as Ncoef. The
norm metric can be used to construct maps of both
causal and caused connections due to the fact that the
MAR model coefficients between different pairs are com-
parable within the same model. The causal and caused
maps of the norm metric for individual voxels seem to
indicate the correct areas where real causal connections
exist but again ghost connections might appear. How-
ever, maps of the mean of norm metric from each voxel
to all voxels, and from all voxels to each voxel, showed
that ghost connections are weak relative to the real con-
nections and both the causal and the caused maps seem
to correctly resemble reality.

In an attempt to quantify the accuracy of the Ncoef maps
with respect to the known locations of the six simulated
dipoles, the local maxima were computed and their dis-
tance from the actual locations was calculated. The local
maxima accuracy was in most cases in the order of 1 cm
and in one case 3 cm.

From the above three investigations it was concluded
that the MAR model coefficient Norm metric is more
appropriate to be used when a very large number of vox-
els is used as potential activity sources and when no a pri-
ori assumptions are made about activity locations. This is
due to the fact that PDC employs a semiarbitrary normal-
ization based on the causal voxel. This means that pairs
with different causal pairs cannot be compared in terms of
PDC. The MAR coefficients contain the linear weights
between variables at different time lags. The higher the
coefficient values are, the strongest the linear interaction.

The main issue regarding the coefficients is that they are
not normalized and thus they are not bounded. But within
the same model the coefficients are scaled according to the
strength of linear interactions. The MAR coefficients
although unbounded, do not have the normalization prob-
lem of PDC and that is why their maps are much more
consistent.

Maps of Ncoef from each voxel to all voxels, and from all
voxels to each voxel, can provide a good initial indication
of the causal and caused hubs inside the brain. Such maps
based on PDC appear to be less reliable. On the basis of
these maps the hub or cluster centers can be selected, so
that few voxels will represent the functional network to-
pology. Then the MAR model can be projected in only
these few locations of activity and the PDC can then be
used to infer causality, as in such cases of few activated
areas, the use of PDC was shown to be relatively robust.
Also in such cases confidence intervals of PDC can be
used to estimate significant levels. From all three investi-
gations it was also observed that source 6 did not appear
in the caused and causal maps for each of the other five
sources. This means that causality recovered by PDC and
Ncoef for each of the five connected sources was not signifi-
cantly affected by the unconnected source 6, although it
had the highest power.

To further demonstrate the feasibility of the Ncoef maps,
real data for two subjects from a simple motor planning
MEG experiment was used. Through the Ncoef maps, the
visual cortex was identified as the causal end of the func-
tional network and the sensorimotor cortex as the caused
end. This seems to be in agreement with the functional
structure of the dorsal stream, which is activated during
such goal-directed visuomotor tasks.

On the basis of the above conclusions, the methodology
of building the MAR model in the sensor space and
projecting it, even in a very large number of voxels, inside
the brain in order to estimate causality is a feasible
approach and can be used to provide entire brain maps of
causality.
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