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This note describes an extension of Bayesian model inversion procedures for the Dynamic Causal Modeling
(DCM) of complex-valued data. Modeling complex data can be particularly useful in the analysis of multivariate
ergodic (stationary) time-series. We illustrate this with a generalization of DCM for steady-state responses that
models both the real and imaginaryparts of sample cross-spectra. DCMallowsone to infer underlying biophysical
parameters generating data (like synaptic time constants, connection strengths and conduction delays). Because
transfer functions and complex cross-spectra can be generated from these parameters, one can also describe the
implicit system architecture in terms of conventional (linear systems) measures; like coherence, phase-delay or
cross-correlation functions. Crucially, these measures can be derived in both sensor and source-space. In other
words, one can examine the cross-correlation or phase-delay functions between hidden neuronal sources using
non-invasive data and relate these functions to synaptic parameters and neuronal conduction delays. We
illustrate these points using local field potential recordings from the subthalamic nucleus and globus pallidus,
with a special focus on the relationship between conduction delays and the ensuing phase relationships and
cross-correlation time lags between population activities.
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Introduction

This technical note describes a dynamic causal or generative model
for time-series, under ergodic assumptions. It is based on a linearization
of mean-field models of coupled dynamical systems; in our case,
neuronal subpopulations. Under the assumption that the system is
driven by exogenous fluctuations with known (or parametric) spectral
densities and uniform phase-distributions, it is possible to predict the
coherence and phase-differences observed among system responses; in
our case electrophysiological measurements. This enables the model to
be optimized using empirical measures of (complex) cross-spectral
densities and thereby access hidden parameters governing the data-
generating process (e.g., coupling parameters and rate constants). We
validate this model using simulations and illustrate its application using
real local field potential (LFP) data.

The contributions of this work are threefold. First, it generalizes
variational Bayesian techniques (Variational Laplace: Friston et al.,
2007)used to invertmodels of empirical data so that they canbe applied
to complex data. This generalization can be applied in any setting that
uses variational Laplacian schemes to select and optimize models. It is
illustrated here in the context of Dynamic Causal Modeling of steady-
state responses in electrophysiology. Second, we use the generalization
to showhowconventional time-seriesmeasuresof activity and coupling
in the frequency domain can be derived from Dynamic Causal Models
that have a biophysically plausible form. Finally, we show how this
enables the computation of conventional measures, such as coherence
and phase-delay functions, between hidden states; in other words,
between sources as opposed to sensors.

Current applications of Dynamic Causal Modeling have been used to
explain real-valued data features, including evoked transients, induced
responses and power spectra (Kiebel et al., 2008a,b), using biologically
informed mean-field models of coupled dynamical systems. The ability
tomodel complex-valued data features offers two key advantages. First,
while current DCMs can estimate conduction delays, the estimates do
not have access to phase information. In principle, models that can
predict or generate complex data enable the phase relationships among
observed responses to inform and constrain estimates of model
parameters, like conduction delays. More importantly, the extension
to complex valued data bridges the technical divide between model-
based and model-free analyses (Brown et al., 2004; Kay and Marple,
1981), as we hope to show.

The generalization to complex data was motivated by DCM for
steady-state responses, as applied to electrophysiological time-series
acquired under particular brain states (Moran et al., 2007, 2008). Our
focus here is on the potential importance of complex-valued data
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features and the implications for the inversion or optimization ofmodels
of those features. We try to illustrate the potential of this scheme by
looking at how precisely axonal conduction delays can be estimated,
when fitting complex cross-spectra, in relation to real-valued cross-
spectra. More generally, we anticipate that this DCM will provide a
useful link between the generative modeling of biological time-series
and conventional (linear systems) characterizations (e.g. Kay and
Marple, 1981) that predominate in electrophysiology. This link rests
upon the fact that conventional measures (e.g., coherence, phase-delay
and auto-correlation functions) are caused by neuronal circuits with
particular biophysical parameters (e.g., synaptic efficacy, time constants
and conduction delays). This means that biophysical parameter
estimates can be used to create conditional estimates of coherence and
cross-correlation functions. In turn, this means that it is possible to infer
which biophysical parameters are responsible for observed coherenceor
phase-delays. Conceptually, the difference between DCM and conven-
tional measures of coupling (i.e., functional connectivity) lies in the fact
thatDCMappeals to an explicit generative or forwardmodel of howdata
features are caused (i.e., effective connectivity). In this instance, the data
features are provided by the spectral behavior of observed time-series
that are, usually, the end point of conventional analyses. The advantage
of having an underlying generative model is that one can estimate the
spectral behavior and relationships, not just among observed sensors or
data channels, but between the neuronal sources generating those data.
Furthermore, one can map quantitatively between the underlying
biophysical parameters and spectral summaries.Wewill illustrate these
points using simulated and real data.

Dynamic Causal Modeling for steady-state responses has been used
to make inferences about hidden neuronal states and parameters using
both invasive and non-invasive data. There has been a considerable
effort to validate this approach using simulations, developmental
manipulations and psychopharmacological interventions (Moran et al.,
2008, 2009). There is nowa large literature onDynamic CausalModeling
in electrophysiology (Chen et al., 2008; Daunizeau et al., 2009; David et
al., 2006a,b;Kiebel et al., 2007) and, inparticular,models for steady-state
activity (Moran et al., 2007, 2008, 2009, 2011).We take DCM for steady-
state responses as the starting point for the causalmodeling of complex-
valued data. This is because this current scheme uses the absolute value
of the cross-spectrum between channels. However, the cross-spectrum
is a complex quantity, whichmeans that it has the attributes ofmodulus
(absolute value or amplitude) and argument (angle or phase). This
means that one is throwing away information when using absolute
measures to invert or fit generative models. In what follows, we look at
the advantages of using both amplitude and phase information.

The phase of the cross-spectrum is usually taken to indicate
something about systematic lags or delays between two signals. If one
signal appears in the other, after a constant time lag, then the phase-
difference scales with frequency. In practice, this notion has been used,
for example, in epilepsy research where authors have used phase
differences between signals from different intracerebral electrodes or
EEG channels to estimate conduction or propagation delays (Brazier,
1972; Gotman, 1981). A regression of the phase-difference on frequency
is also oftenused to estimate temporal delays over a particular frequency
range (Rosenberg et al., 1989).More generally, one candivide thephase-
difference by frequency to quantify time lags as a function of frequency.
A further advantage ofworkingwith the complex cross-spectrum is that
its inverse Fourier transform provides the cross-correlation function
between two time-series. If the correlation structure is dominated by a
single time delay, the latency of this delay can often be inferred from the
timing of a peak in the cross correlation. In short, a generative model of
complex-valued data features (e.g. cross-spectra) provides a more
complete model of data and provides conditional estimates of
coherence, phase-delay and cross-correlation functions that are implic-
itly constrained by the functional architectures inducing those correla-
tions. The examples in this paper attempt to illustrate this in a practical
fashion.
This note comprises four sections. In the first, we consider the
nature of cross-spectra and their relationship to coherence and phase-
delays. This section is used to frame conventional measures of
coupling in terms of the underlying transfer functions between
sources generating data. Crucially it shows that although coherence is
sensitive to the dispersion of phase-differences between two sources
or sensors, coherence does not provide a complete picture of coupling,
because it is insensitive to phase-delays per se. As indicated above, a
more comprehensive summary rests upon the complex cross-spectra
that include both real and imaginary parts that embody phase-delays.
However, the phase-delay does not report the time-delays between
two signals directly and can only be interpreted in relation to a model
of how time-delays are manifest in data. The models we use here are
biologically plausible (neural mass) models, based on delay differen-
tial equations that make time-delays an explicit model parameter.
This section concludes with a brief description of these neural mass
models that constitute a generative model for steady-state responses.
The second section briefly reviews the inversion of thesemodels, with a
special focus on constructing free-energy bounds on model log-
evidence for complex-valued data. In the third section, we present an
illustrative analysis of simulated data, in which we know the coupling
strengths and time-delays among a small number of neuronal
populations. These simulations are used to verify that the various
conditional estimates of coupling, in time and frequency space, can
recover the true values in a reasonably precise way. Our special interest
here is in the direction of coupling and conduction delays, as inferred
through the conditional distribution over time-delays and how they
manifest inphase-delayand cross-correlation functions. There aremany
interesting aspects of the mapping between model parameters
(effective connectivity) and spectral characterizations (functional
connectivity): we have chosen conduction delays as one of the more
prescient. This is because there is a non-trivial relationship between
(axonal) conduction delays and delays that manifest in terms of phase-
delays and cross-correlation lags. In the final section, we repeat the
analysis of the third section but using real data from local field potential
recordings in rats.

Coherence and causal modeling

In this section, we look at the nature of conventional measures of
functional connectivity from the point of view of phase-differences
and their distribution. The main points made in this treatment are:
(i) Coherence is a function of the absolute value of the cross-spectra
and, as such, provides an incomplete picture of spectral dependen-
cies among stationary time-series. (ii) Furthermore, even if we
consider complex cross-spectra, their phase information cannot be
interpreted in terms of time-delays, unless we know (or model) how
they were caused. Specifically, when the coupling between two
sources of data is bidirectional, there is no straightforward corre-
spondence between phase and time-delays. The resulting ambiguity
can only be resolved by reference to a model of how phase-
differences are generated. This section concludes by briefly reprising
the generative models used in DCM of steady-state responses that
resolve this ambiguity.

Theoretical background

Notation and preliminaries
Where possible, we will denote Fourier transforms by upper case

letters such that Si(ω)∈C is the Fourier transform of a stationary time-
series si tð Þ∈R. We will also make a crucial distinction between the
observed or sample cross-spectrum gij(ω) (referred to as the sample
cross-spectrum) and a cross-spectrum gij(ω, θ) predicted by a model
with parameters θ (referred to as the modeled cross-spectrum).
Unless used as a subscript, j =

ffiffiffiffiffiffiffiffi
−1

p
.
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Coherence and phase-synchronization
The complex coherence function between two wide-sense station-

ary signals si(t) and sj(t), is equal to their cross power spectrum gij(ω)=
〈SiSj*〉∈C divided by the square root product of the two auto power
spectra (Carter, 1987; Priestley, 1981). The magnitude-squared coher-
ence (Carter, 1987),Cij ωð Þ∈R (herein referred to as simply ‘coherence’)
is given by:

Cij =
jgij ωð Þj2

gii ωð Þgjj ωð Þ ∈R 1

The coherence can be factorized into the correlation between the
signal amplitudes and the (circular) dispersion of their phase-
differences (e.g. Priestley, 1981; Friston et al., 1997, (Eq. A3)):

Cij =
〈αiαj〉

2

〈α2
i 〉〈α2

j 〉
× Φij

Φij = ∫
π

−π
p δij
� �

sin δij
� �

dδij

 !2

+ ∫
π

−π
p δij
� �

cos δij
� �

dδij

 !2

2

Here, αi=|Si| corresponds to signal amplitude and ϕi=arg{Si} to
phase (where radial frequency is ω : = ˙ϕi). Eq. (2) shows that
coherence depends on a function of the density p(δij) over phase-
differences: δij=φ i−φ j. This function Φ(ω)ij is called the phase-
synchronization index (Mardia and Jupp, 1999; Pascual-Marqui, 2007)
and reflects the circular variance or dispersion of phase-differences.
Eq. (2) means that coherence is effectively the normalized absolute
value of the cross-spectrum, while phase-synchronization is the
absolute value of the cross-spectrum when derived from normalized
Fourier transforms (see Pascual-Marqui, 2007 for a generalization to
multivariate time-series). The key thing to note here is that coherence
does not change with the average phase-difference, only its dispersion;
that is, coherence reflects the stability of the phase difference.

Inwhat follows,wewill be concernedwith generativemodels of data
features that disclose themappingbetween some exogenous (neuronal)
fluctuations or innovations uk tð Þ∈R with Fourier Transform Uk(ω)∈C
and observable signals si tð Þ∈R, under ergodic assumptions. Under
linear assumptions, this mapping is specified by a kernel, κik(τ, θ)=∂si
(t)/∂uk(t−τ), whose parameters θ we wish to estimate. Usually, one
would associate each innovationwith a neuronal population or source of
signals (although there may be others, like common input). The kernels
are then defined by a model of how the innovations are transformed by
synaptic processing in connected sources and the physical transmission
of source activity to one or more sensors. Hence, the parameters of the
model (or the kernels) include the effective connectivity among sources
(with time-delays) and the parameters of any mapping from sources to
channels (e.g., an electromagnetic forward model for EEG data).

The cross-spectral density is the sum of cross-spectra induced by
each innovation, where there is an innovation for each source of activity
that contributes to observed signals. The cross spectrum due to the k-th
innovation is simply the product of the transfer functions (Fourier
transforms) of the corresponding kernels, Ki

k(ω, θ) and the spectral
density, γk(ω)=〈|Uk||Uk|〉 of (statistically independent) innovations

gij ω; θð Þ = 〈
P

kl jKk
i j jKl

j j·exp j ϕk
i −ϕl

j

� �� �
· jUk j jUl j·exp j ϕk−ϕl

� �� �
〉

= ∑kl jKk
i j jKl

j j·exp j ϕk
i −ϕl

j

� �� �
·〈 jUk j jUl j·exp j ϕk−ϕl

� �� �
〉

= ∑k jKk
i j jKk

j j·exp j ϕk
i −ϕk

j

� �� �
·〈 jUk j jUk j〉

= ∑k jKk
i j jKk

j j·exp j ϕk
i −ϕk

j

� �� �
·γk

= ∑k g
k
ij ω; θð Þ

gkij ω; θð Þ = jKk
i j jKk

j j·exp j ϕk
i −ϕk

j

� �� �
·γk = Kk

i ·K
k�
j ·γk

Kk
i ω; θð Þ = ∫ κk

i t; θð Þe−jωtdt

3

Here, ϕi
k=arg{Ki

k} is the phase-delay induced by the kernel
mapping the k-th innovation to the i-th channel. Eq. (3) just means
that the predicted cross-spectrum is a linear mixture of cross-spectra
induced by each innovation. This mixture depends on the mapping
fromeach innovationor source to the channels in question. For example,
in local field potential recordings, the number of innovations and
channels could be the same. However, in non-invasive electromagnetic
studies, thenumber of channels canbemuchgreater than thenumber of
sources.

Eqs. (2) and (3) provide a generative model of sample cross-
spectra. We have exploited this sort of model for steady-state
responses extensively, when trying to infer the neuronal architectures
generating local field potentials and other electromagnetic signals
(Moran et al., 2007, 2008). However, these models used real-valued
cross-spectra gij ωð Þ∈R, which ignore systematic phase-differences.
So how do phase-differences induced by the transfer functions appear
in complex cross-spectra? Eq. (3) shows that the cross-spectrum is a
mixture of complex components due to each innovation, where the
phase-differences δijk=ϕi

k−ϕj
k caused by each innovation are weight-

ed by the amplitudes |Ki
k| · |Kj

k| of the associated transfer functions.
This means the phase of the cross-spectrum is a complicated mixture
of phase-differences that is related to the average phase-difference
between channels. The average phase-difference, induced by all the
innovations together is:

〈δij〉 = ∫δijp δij
� �

dδij = ∫δij Uð Þp Uð ÞdU
δij Uð Þ = arg Sif g−arg Sj

n o
: mod2π

Si Uð Þ =
X

k
jKk

i j· jUk jexp j arg Ukf g + ϕk
i

� �� �
p Uð Þ =

Y
k
p Ukð Þ

p Re Ukð Þð Þ = N 0;γkð Þ
p Im Ukð Þð Þ = N 0;γkð Þ

4

This is a rather complicated integral to evaluate (involving Gauss
hypergeometric forms; see Lee et al., 1994). Fig. 1 (left panel) shows
the implicit density over phase-differences for a simple example with
asymmetries in how innovations drive the signals. It can be seen that
the density peaks at the phase-difference induced by each innovation.
If we now plot the phase-delay function arg{gij(ω, θ)} against the
average phase-difference (the numerical integral in Eq. (4)), we see
that the two are closely related (but are not the same because the
phase of an average is not the average of a phase). Fig. 1 (right panel)
shows the relationship (dots) between the phase of the cross-
spectrum and the average phase-difference; this relationship was
disclosed by varying the relative power of the two innovations, where
ln γ2/γ1∈ [−8, 8], while keeping the time-delays fixed.

Fig. 1 illustrates the key problem with interpreting phase-delays
in terms of time-delays, when the sources of data are reciprocally
coupled: the phase-delay function arg{gij(ω, θ)} is zero for certain
combinations of power. However, the time-delays did not change.
Put simply, the phase-delays induced by different innovations can
cancel each other out. Only when the power of one innovation
predominates is the symmetry broken. In this situation, the phase-
delay function reflects the time-delays associated with the larger
innovation. This means that the phase-delay function is a lower
bound on the phase-delays caused by each innovation (that depend
on the time-delays between sources). This can be seen in the right
panel of Fig. 1, which shows that phase-delays are bounded by the
phase-differences induced by the two innovations. This means that
the strength and time-delay of connections among distributed
sources of data cannot be recovered from cross-spectra (or phase-
delay functions) in the absence of a generative model that specifies
how sources are connected.



A B

Fig. 1. Phased distribution functions and expected phase-differences. Panel A shows the distribution over phase-differences between two channels or sources. In this (toy) example,
we have introduced an asymmetry in the amplitude of the innovations driving each source (and the coupling between them). This results in a rather complicated distribution with
two peaks corresponding to the phase-delays induced by the innovations at each source respectively. Panel B shows the relationship between the phase-difference of the (complex)
cross-spectrum and the mean of the phase-difference. This relationship (dots) was disclosed by varying the relative amplitude of the innovations driving the sources. The lower
panel details the simple form of the transfer functions assumed for this illustrative example.
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Summary
In summary both the real and imaginary parts of cross-spectra

contain useful information about the underlying system. Themodulus
relates to the measure of coherence, while the argument (phase or
angle) is a complicated function of phase-delays induced by
exogenous fluctuations (innovations). However, neither provides a
unique or complete description of how data are generated andmay be
better thought of as data features that have yet to be explained by a
generative model. In what follows, we will therefore consider the key
data feature the sample cross-spectra gij(ω) and treat both its real and
imaginary parts on an equal footing. We will use conditional
predictions of |gij(ω, θ)|, arg{gij(ω, θ)} and FT−1{gij(ω, θ)} to report
the coherence, phase-delay and cross-correlation functions for pairs
of hidden neuronal states and observed signals. To generate these
predictions we need the system's kernels, κik(τ, θ). These are specified
in a straightforward way by the form of the model and its parameters,
as described next.

From models to kernels

The kernels obtain analytically from the Jacobian I = ∂f = ∂x
describing the stability of flow ẋ = f x;u; θð Þ of hidden neuronal states,
x(t) and a mapping (forward model) s(x, θ) :x→ s that couples hidden
states to observed signals (channel data). For channel i, and
innovation k, the kernel (which can be evaluated numerically) is

κk
i τ; θð Þ = ∂si tð Þ

∂uk t−τð Þ

=
∂si tð Þ
∂g tð Þ

∂g tð Þ
∂x tð Þ

∂x tð Þ
∂x t−τð Þ

∂x t−τð Þ
∂˙x t−τð Þ

∂˙x t−τð Þ
∂uk t−τð Þ

=
∂gi
∂x exp Iτð ÞI−1 ∂f

∂uk

5

This means the kernels are functions of the model's equations of
motion and output mapping. The output mapping may be a simple
gain function (for LFP data) or an electromagnetic forward model (for
EEG and MEG data). The use of the chain rule follows from the fact
that the only way past inputs can affect current outputs is through
hidden states. The particular equations of motion used here
correspond to a neural-mass model that has been used extensively
in the causal modeling of electromagnetic data (David and Friston,
2003; Jansen and Rit, 1995; Moran et al., 2008). These equations
implement a simple but biologically motivated (alpha-function
based) model (Jansen and Rit, 1995) that captures the key aspects
of synaptic processing; fast excitation and inhibition in layered
cortical sources (Moran et al., 2011). The equations for a single source
are summarized in Fig. 2.

Endogenous inputs
In a DCM comprising N sources, firing rates provide endogenous

inputs from subpopulations that are intrinsic or extrinsic to the source
(see Fig. 2). These firing rates are a sigmoid function of depolarization,
which we approximate with a linear gain function (evaluated at the
system's fixed point; Moran et al., 2007). Subpopulations within each
source are coupled by intrinsic connections (with a conduction delay
of 4 ms: Lumer et al. (1997)), whose strengths are parameterized by
γ={γ1, …, γ5}⊂θ. These intrinsic connections can arise from any
subpopulation. Conversely, in accordancewith cortical anatomy, extrinsic
connections arise only from the excitatory pyramidal cells of other
sources. The strengths of these connections are parameterized by the
forward, backward and lateral extrinsic connection matrices; AF∈RNxN ,
AB∈RNxN and AL∈RNxN respectively, with associated conduction delays
Δ∈RNxN .

Exogenous fluctuations
The innovations correspond to exogenous fluctuations u tð Þ∈RNx1

that excite the spiny stellate subpopulation in the granular layer. We



Fig. 2. Equations of motion for a single source. This schematic summarizes the equations of motion or state equations that specify a neural mass model of a single source. This model
contains three sub-populations, each loosely associated with a specific cortical layer; corresponding roughly to spiny stellate input cells, deep pyramidal output cells and inhibitory
interneurons. Following Felleman and Van Essen (1991), we distinguish between forward connections (targeting spiny stellate cells in the granular layer), backward connections
(with slower kinetics and targeting pyramidal cells and inhibitory interneurons in both supra- and infragranular layers) and lateral connections (targeting all subpopulations). The
output of each source is modeled as a parameterized mixture of the depolarization of each subpopulation (primarily the pyramidal cells). The second-order differential equations
describe changes in (vectors of) hidden states x(t) (e.g., voltage and current) that subtend observed local field potentials or EEG signals. These delay differential equations effectively
mediate a linear convolution of presynaptic activity to produce postsynaptic depolarization v(t). Average firing rates within each sub-population are then transformed through a
nonlinear (sigmoid) voltage-firing rate function σ(·) to provide inputs to other populations. These inputs are weighted by connection strengths. Here, v(t−Δ) represents a vector of
(primarily) pyramidal depolarization in all sources, delayed by a connection-specific time-lag. Intrinsic connection strengths γi: i=1, …, 4 are shown connecting the different
populations in different layers. When these equations are linearized around the system's fixed point, they specify the systems transfer function, and implicitly, the complex cross-
spectra mapping from exogenous neuronal fluctuation or innovations u(t) to observed responses s(t). These functions depend on the parameters of the model that include the
extrinsic connection strengths and other parameters like Hj, τj: j∈ {i, e} that control post-synaptic responses of inhibitory and excitatory populations. Under assumptions about the
spectral form of the innovations, this constitutes a generative model of observed cross-spectra over multiple channels.
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parameterize their spectral density, γ(ω), in terms of white and pink
spectral components; where these power law terms are ubiquitous
features of neuronal noise (Freeman et al., 2003; Stevens, 1972):

γk ωð Þ = αu +
βu

ω
6

As noted above, one innovation is associated with each neuronal
node or source.

Neuronal responses
The observer function is a mapping from N sources to observed data

features expressedatM channels: s x; θð Þ = L ηð Þ x̃,where x̃ tð Þ∈RNx1 is a
mixture of the depolarizations over subpopulations in each source. For
invasive LFP recordings (that are obtained close to neuronal sources)
this mapping can be reduced to a simple gain matrix, L=diag(exp(η1,
…, ηN)) where the parameters model electrode-specific log-gains. In
EEG and MEG (electro- and magnetoencephalography) the mapping is
specified with a gain matrix of lead-fields, L ηð Þ∈RMxN , with unknown
spatial parameters, η⊂θ, such as source location and orientation.
Generally, this matrix rests upon the solution of a conventional
electromagnetic forward model.

This completes the description of the neuronal model and,
implicitly, the generative model for modeled cross-spectra. This
model contains unknown parameters θ⊃ {γ, A, Δ, α, β, η, …}
controlling the strength and delays of intrinsic and extrinsic
connections, the auto-spectra of innovations and the electromagnetic
forward model. These parameters define the kernels and associated
cross-spectra in Eq. (3). To complete our specification of a generative
model, we presume the data (sample cross-spectra) to be a mixture of
the predicted cross-spectra, channel noise and Gaussian prediction
error (see Moran et al., 2009 for details)

gij ωð Þ = gij ω; θð Þ + αs +
βs

ω
+ εij ωð Þ

Re εij
� �eN 0;Π ωð Þ−1

ε

� �
Im εij
� �eN 0;Π ωð Þ−1

ε

� � 7

The channel noise, like the innovations, is parameterized in terms
of (unknown) white (α) and pink (β) components, which can include
channel-specific and non-specific components. Please see Moran et al.
(2009) for more details.

Summary
This section has motivated the use of complex cross-spectra as

data features that summarize the behavior of ergodic time-series. We
have seen that only the absolute values of cross-spectra are used to
form measures of coherence. Although coherence depends upon the
dispersion of phase-differences, it is not sensitive to the expected or
systematic phase-differences that could be introduced by neuronal
dynamics or conduction delays. A simple solution to this is to use a
generative model of both the real and imaginary parts of the cross-
spectra and fit these predictions to sample cross-spectra. To do this we
need a Bayesian model inversion scheme that can handle complex-
valued data.
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Inverting models of complex-valued data

In this section, we consider a generalization of the variational
scheme (Friston et al., 2007) used to invert Dynamic Causal Models
that can handle complex-valued data. In what follows, we will briefly
summarize the overall principles of model inversion and list the
special differences that attend the analysis of complex-valued data.

Almost universally, the fitting or inversion of Dynamic Causal
Models uses a variational free-energy bound on the log-evidence for a
model m (see Friston et al., 2007 for details). This bound is optimized
with respect to a variational density q(θ) (which we assume to be
Gaussian) on unknown model parameters. By construction the free-
energy bound ensures that when the variational density maximizes
free-energy, it approximates the true posterior density over param-
eters: q(θ)≈p(θ|y, m). At the same time, the free-energy itself
F y; qð Þ≈ lnp y jmð Þ becomes a bound approximation to the log-
evidence of the data. The (approximate) conditional density and
(approximate) log-evidence are used for inference on parameter and
model spaces, respectively.

Usually, onefirst compares differentmodels (e.g., with andwithout
particular connections) using their log-evidence and then turns to
inferences on parameters, under the model selected (for an overview
of procedures for inference on model structure and parameters in
DCM, see Stephan et al., 2010). Here, we focus on the use of the
conditional density, given a single model, which we assume has a
Gaussian form q θð Þ = N μ;Σð Þ. This density is quantified by the
maximum a posteriori (MAP) value of the parameters μ (corresponding
to their conditional mean or expectation) and their conditional
covariance Σ (inverse precision) that encodes uncertainty about the
estimates and their conditional dependencies. Crucially, the condi-
tionalmean μ orMAP estimate of the parameters implicitly defines the
conditional estimate of the system's transfer functions κik(τ, μ) and
through these, the modeled cross-spectra gij(ω, μ) and associated
functions. In otherwords, having optimized themodel and parameters
with respect to free-energy, we can recover all the conventional
spectral characterizations, such as coherence, phase-delay and cross-
correlation functions. However, these are not descriptive character-
izations, but are mechanistically interpretable (in the context of the
model). To access these summaries, we need to express the free-
energy of the variational density in terms of complex-valued data.

The free-energy of complex-valued data

The free-energy is the average of the log-likelihood and log-prior
of themodel under the variational density and its entropy (see Friston
et al., 2007; Kiebel et al., 2008a,b). For nonlinear models, under
Gaussian assumptions about the variational density and observation
noise, this has a very simple form:

F = 〈lnðp g ωð Þ; θð Þ−lnq θð Þ〉q

= G μð Þ + 1
2
ln j∂μμGj

G = −1
2
Re εð ÞTΠεRe εð Þ−1

2
Im εð ÞTΠεIm εð Þ

−1
2
υTΠνυ +

1
2
ln jΠε j +

1
2
ln jΠν j

ε = g ω; μð Þ−g ωð Þ

ν = μ−υ
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Here, g(ω, μ) represents any nonlinear prediction or mapping from
model parameters to data features (cf, Eq. (6)) and ε(μ)∈C are the
corresponding prediction errors (i.e., discrepancies between the
sampled and predicted cross-spectra). Similarly, v(μ)∈C are prediction
errors on the parameters, in relation to their prior density
p θ jmð Þ = N υ;Π−1

ν

� �
. For complex-valued data, we have to separate

the real and imaginary parts of the implicit sum of squared prediction
error in Eq. (8). This is because the sum of an absolute value is not the
absolute value of a sum. This means the sum, implicit in the linear
algebra above, has to be performed separately for real and imaginary
parts. In a similar vein, the partial derivatives of the Gibb's energy G μð Þ
with respect to the parameters are again separated into real and
imaginary parts:

∂μG = −Re ∂με
� �T

ΠεRe εð Þ−Im ∂με
� �T

ΠεIm εð Þ−Πνυ

∂μμG = −Re ∂με
� �T

ΠεRe ∂με
� �

−Im ∂με
� �T

ΠεIm ∂με
� �

−Πν
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The gradients in Eq. (9) are used in a Gauss-Newton scheme to
optimize the parameters iteratively, until the free-energy has been
maximized. In practice, things are a little more complicated because
one often makes a mean-field assumption when estimating parame-
ters of the model and the noise precision, Πε (inverse covariance). In
otherwords, the precision of the prediction error is usually assumed to
be conditionally independent of the parameters. The gradient ascent
then becomes a coordinate ascent that optimizes the conditional
expectations of the model and precision parameters respectively. This
is called Variational Laplace, which reduces to classical expectation
maximization under some simplifying assumptions. A full description
of these schemes, and their relationship to each other, can be found in
Friston et al. (2007).

Summary
In this section, we have considered the central role of the free-

energy bound on log-evidence used in model selection and inversion.
The only thing we have to worry about, when dealing with complex-
valued data, is to separate the real and imaginary parts of the data (and
implicitly prediction errors), when evaluating the free-energy and its
gradients. Having done this, we can then use standard schemes to
optimize the parameters of any Dynamic Causal Model and select
among competing models to find the one that has the highest free-
energy (log-evidence).Wenow illustrate the application of this scheme
using simulated data.

Simulations and validation

In this section, we use simulated data from four sources, with known
directed connections and delays, to establish the face validity of the
inversion scheme of the previous section. Our particular focus here is on
the improvement in the precision of parameter estimates, when
including the phase information in complex cross-spectra. To illustrate
this we will look closely at the conditional density over conduction
delays.Wewill thenbe in aposition to compare theseestimateswith true
values and how these conduction delays translate into phase-delays and
time-lags at the level of simulated population dynamics.

Simulations

To simulate data, we used the (David and Friston, 2003) neural mass
model above to simulate four sources, organized into two pairs. The
sourceswithin each pairwere coupledwith lateral connections,whereas
therewas an asymmetric directed coupling between thefirst and second
pair. This allowed us to look at predicted and estimated cross-spectra
within and between pairs and illustrate the consequences of reciprocal
connections between sources. The data were generated using the
model parameters estimated from the empirical data of the next section.
The only difference was that we suppressed backward connection to
enforce an asymmetric (directed) coupling between the two pairs. The
dataweremodeled as arising frompairs of sources in theGlobus pallidus
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(GP) and subthalamic nucleus (STN). The connections from theGP to the
STNconstitute the forward (GABAergic) connectionsof the indirectbasal
ganglia pathway, while the reciprocal (glutamatergic) connections are
from the STN to the GP. To suppress these backward connections we set
them to a half, while the forward connectionswere given a value of four.
The lateral connections were given intermediate values of one. This
means our forward connections were 2×4=8 times stronger than the
backward connections (i.e., the first pair of sources drove the second).
The conduction delays were as estimated from the empirical data. See
Fig. 3 (left panels) for a schematic of this small network of sources.

Simulating spectra
Data were simulated over 4 s with time bins of 4 ms. Cross-spectra

were generated directly in frequency space, assuming that each source
was driven by random fluctuations and that LFP data were observed
with a signal to noise ratio of about 10%. The spectral characteristics of
the innovations and channel noisewere controlled bymixingwhite and
pink noise components (see Eqs. (6) and (7)), using the conditional
parameter estimates from the empirical analysis reported in the next
section.

An example of these simulated data (sample cross-spectra) is
shown in Fig. 3 (right panels) and illustrates the characteristic beta
coupling seen in patients with Parkinson's disease and animal lesion
models thereof (Lehmkuhle et al., 2009; Silberstein et al., 2005). These
simulated cross-spectra were then used to invert the neural mass
model described. Because connections strengths and time delays (and
other model parameters) are nonnegative quantities, their prior mean
A B

Fig. 3. Estimated and predicted cross-spectra. Panel A shows the network or graph of sources
and lateral connections with strengths chosen to enforce directed (forward) connectivity. The
the globus pallidus and subthalamic nucleus (shown figuratively on a coronal section of th
cross-spectral data and the corresponding absolute values or modulus of these data (lower
(colored) lines. The predicted cross-spectra, following optimization of the model paramete
is scaled by a free parameter with a log-normal distribution. We refer
to these as the log-scale parameters, such that a log-scaling of zero
returns the prior mean. Priors, p θ jmð Þ = N υ;Π−1

ν
� �

(Eq. (8), above)
are specified in terms of their prior mean η and variance ζ (as detailed
in Moran et al., 2008 Table 1 and available in SPM8 http://www.fil.ion.
ucl.ac.uk/spm). The prior variance determines how far the scale-
parameter can move from its prior mean. Parameters, like the
maximum excitatory potential and channel time constants have a
prior variance of ζ=1/8:{ζ∈Πν

−1}, allowing for a scaling up to a
factor of about four. In contrast, relatively flat priors are used for
effective connectivity measures (the parameters of interest) to allow
for an order of magnitude scaling (with a prior variance of ζ=1/2).
This ensures that their posterior estimates are determined primarily
by the data. In other words, the scheme will optimize the strength of
all connections in the model, both intrinsic to each source (Fig. 2) and
extrinsic between sources (Fig. 3). There is no bias in the estimates;
however, the prior variances of the extrinsic parameters are larger
than those of the intrinsic parameters, allowing for greater divergence
from their prior mean in posterior estimation (c.f. Eq. (8)). We have
chosen to highlight these extrinsic connectivity estimates in Fig. 4
because these quantify inter-regional coupling and determine the
delays, coherence and phase at the source and sensor levels.

Parameter estimates and their cross-spectra

Fig. 3 (right panels) shows the simulated sample cross spectra, in
terms of their real and imaginary parts (upper panels) and the
used to simulate spectral data. Two pairs of sources are connected by forward, backward
se simulated sources correspond to the sources of empirical LFP data (analyzed later) in
e human brain). B: Estimated and predicted cross-spectra for complex (upper panels)
panel). The auto and cross-spectra are shown for all four simulated channels as dotted
rs, are shown as solid lines and illustrate the accuracy of model inversion.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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Fig. 4. True and predicted parameters of the DCM. The upper panel (A) shows the true
and prior values of key coupling parameters in the DCM of the previous figure, while the
lower panels show the posterior or conditional densities after fitting the model to
complex (B) and absolute (C) cross-spectra from four regions. Only the extrinsic
(forward, backward and lateral) connection strengths (first twelve) and associated
conduction delays (second twelve) are shown. These were the key model parameters
that define the network architecture. The blue crosses are the true values and the pink
bars correspond to 90% confidence intervals (prior confidence in A and posterior
confidence in B and C). The conditional means are depicted as gray bars. These are the
expected log-scale parameters that scale the connection strengths and delays. The true
values disclose the asymmetry in this directed connectivity, which we hoped would
reveal substantive phase-delays. A priori, the connection strengths and delays have log-
scaling parameters of zero (i.e., are equal to their prior mean). The curved line
highlights a conduction delay that is the focus of the next figure.
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corresponding absolute values or modulus (lower panel). The auto
and cross-spectra for all four simulated channels are shown as dotted
(colored) lines. Following optimization of the model parameters, the
modeled cross-spectra are shown as solid lines and illustrate the
goodness of fit or accuracy of model inversion (they are barely
distinguishable in many cases). The key thing to take from this example
is the pronounced cross-spectral density in the beta range (20 Hz) that
canbe seen inboth the real and imaginaryparts. The relative contribution
of the complex part is only about 10% of the real part but is concentrated
in the frequency ranges over which coherence induced by coupling
among the sources is expressed. The imaginarypart of the complex cross-
spectra (upper right panel) contains information that enables the
estimation of phase-delays. These predicted cross-spectra are based on
the conditional means of the parameters shown in the next figure.

The upper panel of Fig. 4 shows the true and prior values of the key
coupling parameters in this DCM (for clarity, only the strengths and
conduction delays of the extrinsic connections among sources are
shown). The lower two panels show the posterior or conditional
densities afterfitting themodel to complex (middle panel) and absolute
(lowerpanel) cross-spectra fromthe four regions. Theseestimates allow
us to quantify any improvement in the accuracy or precision of
parameter estimates, in relation to the true values, when inverting
complex data relative to absolute data (Moran et al., 2009). The model
comprises four forward connections (AF) from the GP to STN (Fig. 3),
four backward connections (AB) from the STN to GP, and four lateral
connections (AL). Given the conditionaldensities over theseparameters,
we can not only assesswhether the complex schemeprovides estimates
that are closer to the true parameter values than the corresponding
modulus-based estimates, but alsowhether the conditional precision or
confidence increases. In theupper panel,we see that a priori all log-scale
parameters are zero; these priors regularize the estimates and induce a
“shrinkage” effect on the posterior estimates. The pink bars correspond
to the prior 90% confidence interval. The true values of the simulated
parameters are shown as blue crosses. The true strengths disclose the
asymmetry in this directed connectivity, which we hoped would
subtend substantial phase-delays.

Conditional densities over extrinsic connections
First we consider the first twelve parameters corresponding to the

connections strengths, AF, AB and AL. These are shown in the lower
panels, where the gray bars report the posterior mean and pink bars
denote 90% posterior confidence intervals. In the middle panel of
Fig. 4, one can see that the asymmetry in the GP-STN network has
been detected using the complex spectra, with larger values for the
forward connections than for the backward connections. However,
the shrinkage priors have precluded the forward connections from
attaining their true values of log(4). Interestingly, the inversion has
failed to decrease the backward connections to their true value of
−log(2). These posterior densities should be compared with the
lower panel in Fig. 4, illustrating the equivalent densities obtained
after fitting the absolute cross-spectra. In this example, the condi-
tional estimates using the complex and modulus schemes are roughly
the same.

Conditional densities over conduction delays
However, Fig. 4 reveals a greater improvement in the estimation of

the delays (Δ) for the complex compared to the modulus-data scheme.
These are the second set of twelve parameter estimates. In particular, we
observe that the 90% confidence intervals encompass the true simulated
values in tenof the twelveparameters in the complex-scheme, compared
to only seven of twelve parameters in themodulus scheme. Crucially, the
estimates of the delays are more uncertain for conventional modulus-
based schemes than when using complex-valued data. We now look at
this more closely.

The upper panel of Fig. 5 shows the posterior uncertainty
(covariance) for all (127) unknown or free parameters in this DCM.
Here, we have plotted the conditional uncertainty after fitting the
modulus data against the equivalent uncertainty when using complex
cross-spectra. As might be anticipated, the uncertainties about
estimates that are informed by the modulus only are higher than
when both real and imaginary parts are used. These differences are
particularly marked for the estimates of conduction delays (marked
by red dots). In some instances, there has been more than a doubling
of the conditional precision or certainty when using complex data.
This is exactly the sort of behavior we hoped to observe and reflects
the improvement afforded by generative models of complex data. The
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Fig. 5. Conditional densities and conduction delays. Panel A shows the posterior
uncertainty (covariance) for all (127) unknown or free parameters in this DCM. Here,
we have plotted the conditional uncertainty (after fitting the absolute cross-spectra)
against the equivalent uncertainty using complex cross-spectra. As might be
anticipated, the uncertainties in the estimates are (in general) reduced when fitting
complex-valued data features; i.e., most dots are above the identity line. These
differences are particularly marked for the estimates of conduction delays, marked by
the red dots. The bottom panel (B) provides the full conditional density on the
conduction delays for one connection (the connection from the third source to the last).
This is the parameter that showed the greatest change in conditional covariance under
the two inversions. The true value of the condition delay was about 5 ms and falls
within the posterior density, using complex-valued data (blue line). This is very distinct
from the (broader) prior density shown in red. Interestingly, the posterior density
obtainedwhen using the absolute data has an intermediate value but fails to include the
true value within its 90% confidence interval.
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bottom panel provides the full conditional density on the conduction
delay for one lateral (within pair) connection (the connection from
the third source to the last). This is the parameter that showed the
greatest change in conditional covariance under the two inversions
(indicated by the connecting line in Fig. 4). The true value of the
conduction delay was about 5 ms and falls within the posterior
(shown in blue) when using complex-valued data. This is very distinct
from the broader prior density shown in red. Interestingly, the
posterior density obtained when using the modulus data has an
intermediate value and fails to include the true value within its 90%
posterior confidence interval. These results illustrate the increased
accuracy and precision of posterior inferences, particularly on delay
parameters, that are afforded by using complex-valued data with both
real and imaginary parts.

We now turn to the implicit coherence, phase-delay and cross-
correlation functions predicted by the parameter estimates. In what
follows, we will actually use the cross-covariance functions to present
quantitatively, the shared variance in two signals. Furthermore, we will
divide the angular phase-delay by frequency and display it in units of
milliseconds.

Predicted coherence and phase-delay functions

The upper right panels in Fig. 6 show the sample (dotted lines) and
modeled (solid lines) coherence among the four simulated channels.
The panels below the leading diagonal show the corresponding
phase-delay functions in milliseconds. The leading diagonal panels
(pertaining to auto-spectra) have been omitted, because the associ-
ated phase-delay is zero and the coherence is one for all frequencies.
Note that the coherence between one channel and another is the same
(calculated as the angular phase-delay divided by frequency). There
are two important points to be made using these results. First, there is
a relatively poor correspondence between the sample and modeled
coherence. This is because coherence (defined in Eq. (1); technically
the magnitude squared coherence) is a highly nonlinear function of
the original data features (the complex cross-spectra). From Eq. (1)
we can see that the nonlinearity results from normalizing the absolute
squared cross-spectra by the product of the auto-spectra from the two
channels (Carter, 1987). It is possible that the large gamma coherence
(~0.4 in some cases) observed from the channel data and not
capitulated in our estimate result from unstable ratios at frequencies
with low power in the auto-spectra. This contrasts with the modeled
coherence based upon the modeled cross-spectra, which was
produced by a biologically-motivated model (the DCM). The second
point to note here is that the phase-delay functions are not constant
over frequencies, despite the fact that the conduction delays were
fixed during data generation. Like the coherences, the most
interesting excursions are contained within the (beta) frequencies
mediated by simulated interactions among the underlying sources.
However, these are not estimates of conduction delays; as shown in
the previous sections, they are lower bounds. For example, in the
highlighted panel in Fig. 6 we see how the phase-delay function
would suggest that this lateral (within-source pair) connection has a
conduction delay of 5 ms, even though the reciprocal connections
have different time-delays (5 ms for the connection from source 3 to
4, and 16 ms for the connection from source 4 to 3). This illustrates
that there is no one-to-onemapping between the phase-delay and the
underlying conduction delay. One can see this immediately by noting
that in general the phase-delay (at any frequency) between two
nodes is by definition anti-symmetric (a sign-reversal), even though
there may be a greater conduction delay from one source to a second,
compared with the conduction delay from the second to the first. The
bottom line here is that it is extremely difficult to infer the direction of
coupling or delays from phase-delay functions in the setting of
reciprocal connections. In contrast, the conditional estimates of the
parameters of the DCM afford an unambiguous characterization of
conduction delays. We will pursue this in the next section but in the
context of coupling among hidden sources, as opposed to channels.

Frequency specific indices of coupling among channels and sources

To highlight the distinction betweenmeasures of coupling in channel
and source space we will focus on a forward connection (between the
first and fourth regions). Fig. 7 reports on this coupling between channels
(left panels) and sources (right panels). For this pair of channels (resp.
sources) the first panel shows the sample and modeled covariance as a



Fig. 6. Observed and predicted coherence and phase-delays. The upper right panels show the observed (dotted lines) and predicted (solid lines) coherence among the four simulated
sources. The panels on the lower left show the corresponding phase-delay functions in milliseconds. The coherence between one channel and a second is the same as the coherence
between the second and the first. Conversely, the reciprocal phase-delay functions have the opposite sign.
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functionof lag inmilliseconds (noting that the covariance function canbe
recapitulated in terms of a cross-correlationmeasure). The second panel
shows the corresponding sample andmodeled coherenceas a function of
frequency and the third panel shows the sample and modeled phase-
delay in milliseconds as a function of frequency. Finally, the fourth panel
shows the conditional density over its conduction delay. In all panels, the
solid blue lines represent the true values used to generate the simulated
data. The thin blue lines correspond to the conditional expectation,while
the gray regions correspond to 90% posterior confidence intervals. The
modeled covariance, coherence and phase-delay functions are all
functions of the modeled cross-spectra, which depend upon the
parameters of the generative model. In other words, there is a direct
mapping from any set of parameter values to a particular covariance,
coherence or phase-delay function. This means that we can compute the
posterior confidence intervals simply by sampling parameters from the
posterior or conditional density to produce a density on these functions.
We have shown the conditional densities in channel and source space
side by side to emphasize some key points.

The channel space characterizations include both specific and
nonspecific instrumentation or channel noise that has both white and
colored components (see Eq. (7)). In contrast, the source-space
functions arewhatwould have been observed in the absence of channel
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Fig. 7. Indices of coupling among channels and sources. The panels on the left (A) describe the coupling between the first and fourth channels whereas the corresponding panels on
the right (B) describe the same coupling between the first and fourth sources. For this pair of channels (resp. sources) the first panel shows the sample and modeled covariance as a
function of lag in milliseconds. The second panel shows the corresponding coherence as a function of frequency and the third panel shows the phase-delay in milliseconds. Finally,
the fourth panel shows the conditional density over the conduction delay associated with this connection. The solid blue lines represent the true (sample) values, the thinner blue
lines correspond to the modeled values while the gray regions correspond to 90% confidence intervals and the vertical in the fourth panel is the true conduction delay. The
covariance, coherence and phase-delay functions are all functions of themodeled cross-spectra, which depend upon the conditionalmeans of the parameters of the generativemodel
shown in previous figures. The functions in channel or sensor space (A) include both specific and nonspecific channel noise that has both white and colored components. In contrast,
the source space functions are what would have been seen in the absence of noise (and unit gain on virtual LFP electrodes). This means the characterizations in source space are a
mixture of neuronal and non-neuronal spectral features, whereas those on the right reflect the components or coupling due only to neuronal fluctuations or innovations.
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noise (and with unit gain on the LFP electrodes). This means the
characterizations in channel space (left panel) are amixture of neuronal
and non-neuronal spectral features, whereas the source space results in
the right panel reflect the components or coupling due only to neuronal
fluctuations or innovations. Specifically, one can see that the modeled
cross-covariance function in channel space is higher, tighter and
estimated with a greater conditional confidence than the corresponding
modeled and sample covariance function in source space. This is because
the channel data contain a substantial amount of white noise that is
common to all electrodes, resulting in a more peaked cross covariance
function.When removed, one can seemore clearly the underlying cross-
covariances due to the neuronal fluctuations. These have a clear
oscillatory pattern in the beta range (note the peaks around delays 50
and −50 ms) that has been shaped by the neuronal transfer functions
associated with each source. Similarly, the modeled and sample
coherence in channel space are much smaller than in source space. This
is due to the channel-specific noise component, which disperses the
phase-differences and suppresses coherence. When this effect is
removed, the coherence increases markedly, particularly at higher
frequencies. In terms of phase and conduction-delays it can be seen
that the modeled phase-delay increases, when considering sources in
relation to channels. This effect can be explained in terms of nonspecific
channel noise that changes the distribution of phase-differences, so that
most of its probability mass is centered at zero lag. This means the
(average) phase-delay shrinks towards zero (Daffertshofer and Stam,
2007). The implication here is that the phase-delay between channels
represents a lower bound on the neuronal phase-delay between sources.
For example, in the range 20–30 Hz, the phase-delay between channels
does not exceed 5 ms, whereas it is nearly 10 ms between sources.
Crucially, this is not the conduction delay (which would be the same for
all frequencies). The true conduction delay in this example was ~15 ms
and was estimated to be about 20 ms. Happily, the true value fell within
the 90% conditional confidence interval (note that the conduction delays
are the same for sensors and sources because they are an attribute of the
underlying systemnot itsmeasurement). It is also important to note that
one could not deduce the conduction delay frompeaks in themodeled or
sample cross-covariance functions (zero and the conduction delays are
shownas vertical lines). Although there is a small peak in the (sample and
modeled) cross-covariance function between the two channels, there is
no hint of such a peak in themodeled cross-covariance between sources.
This speaks to the complicated relationship between the true (conduc-
tion)delay andhowit is expressedboth in termsofphase-delay functions
and cross-covariance (and cross-correlation) functions (for an example
from cortico-muscular recordings see Williams and Baker, 2009).

Summary

In summary, we have used simulations to show that it is possible to
recover the biophysical parameters of a reasonably realistic model of
distributed responses from complex-valued data, summarized in terms
of their sample cross-spectra. We have also seen that some parameters
(especially conduction delays) are estimated more precisely when one
uses complex cross-spectra, as opposed to itsmodulus. By identifying the
system in terms of its parameters, one can derive coherence, phase-delay
and other functions used in conventional measures of functional
connectivity. However, it can be difficult tomap back from these spectral
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characterizations to the architectures that caused them. In the next
section, we consider an analysis of real data.

Analyses of real data

In this section, we apply the analysis of the previous section to real
data to demonstrate the reconstruction of conditional estimates of
conventional measures of coupling among hidden sources and to
highlight the complex relationship between these measures and
underlying conduction delays. It should be noted that we are not
presenting this analysis to draw any neurobiological conclusions but
just to illustrate some technical points (an analysis of these data can be
found in Mallet et al., 2008a,b). These data were acquired from adult
male (6-OHDA-lesioned) Sprague–Dawley rats (Charles River, Margate,
UK) in accordance with the Animals (Scientific Procedures) Act, 1986
(UK). Briefly, anesthesia was induced with 4% v/v isoflurane (Isoflo™,
Schering-Plough Ltd., Welwyn Garden City, UK) in O2, and maintained
with urethane (1.3 g/kg, i.p.; ethyl carbamate, Sigma, Poole, UK), and
supplemental doses of ketamine (30 mg/kg, i.p.; Ketaset™, Willows
Francis, Crawley, UK) and xylazine (3 mg/kg, i.p.; Rompun™, Bayer,
Germany). Extracellular recordings of LFPs in the, external GP and STN
were made simultaneously using ‘silicon probes’ (NeuroNexus Tech-
nologies, Ann Arbor, MI). Each probe had one or two vertical arrays of
recording contacts (impedance of 0.9–1.3 MΩ measured at 1000 Hz;
area of ~400 μm2). Neuronal activity was recorded during episodes of
spontaneous ‘cortical activation’, defined according to ECoG activity. For
the present paper, we used 4 s of data (downsampled to 250 Hz) from a
single rat, comprising two (arbitrary) channels from the GP and STN
probes. The cross-spectrawere constructed from these time series using
a vector autoregressive model (with order p=8 chosen to reflect the
order of the neural state-space used in DCM seeMoran et al., 2008).We
A
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Fig. 8. Parameter and state estimates using empirical data. A: Schematic showing the condi
shown connections with a posterior probability (in brackets) of exceeding their prior mean w
(left) and imaginary (right) predicted and observed data features (complex cross-spectra)
examples in Fig. 3 (using simulated data) the accuracy of these predictions is extremely high
cross-spectra (with the exception of high frequencies). C: These panels shows the conditi
connections respectively (in the left, middle and right panels: The numbers over each panel
globus pallidus source to the second subthalamic nucleus source. In terms of backward conne
source. The corresponding predictions of this architecture, in terms of absolute cross-spect
then treated these empirical data in exactly the same way as the
simulated data, i.e., we inverted the model with the same structure and
priors as above. The results of this analysis are shown in Figs. 8 to 11,
using the same format as for the simulated data.

Spectral and parameter estimates

Fig. 8 shows the estimated extrinsic connections strengths and
predicted data features (cross-spectra) using the real data from the four
LFP channels described above. The free-energy objective function
maximized during estimation (Eq. (8)) ensures maximum accuracy
under complexity constraints, where complexity is the divergence
between the prior and posterior densities (Penny et al., 2004). In other
words, to avoid over-fitting, themodel is constrained by priors over the
parameters. In the present analyses, it is noteworthy that despite these
constraints, the predictions in Fig. 8 are very accurate, capturingmost of
the salient features in both the real and imaginary parts of these cross-
spectra (with the exception of frequencies above 50 Hz). The images
(lower panels) show the conditional estimates of the extrinsic coupling
strengths for forward, backward and lateral connections respectively
(on the left, middle and right). The connection strengths and the
posterior probability of exceeding their prior mean (of 32, 16 and 4
[arbitrary units] for forward, backward and lateral connections,
respectively) are displayed alongside the connections in the left panel:
The strongest connection was from the second pallidal source to the
second subthalamic nucleus source. In terms of backward connections,
the most prominent was from the first subthalamic to the second
pallidal source (although both backward connectionswereweaker than
their forward homologues). The most salient aspect of the ensuing
architecture is a predominantly forward connectivity from GP to STN
sources. This is consistent with the role of these connections in the
tional estimates of coupling strengths among the four sources analyzed. We have only
as about 80%. This panel uses the same format as Fig. 3. B: These panels shows the real

using the real data from the four LFP channels described in the main text. As with the
and captures most of the salient features in both the real and imaginary parts of these

onal estimates of the extrinsic coupling strengths for forward, backwards and lateral
specify the range of the grayscale used). The strongest connection was from the second
ctions, the most prominent was from the first subthalamic to the second globus pallidus
ra are shown in the next figure.
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indirect pathway. The predictions of this architecture, in terms of
absolute cross-spectra, are shown in Fig. 9.

Fig. 9 shows the modeled (solid lines) and sample (dotted lines)
absolute cross-spectra among the four channels. The auto-spectra along
the leading diagonal are gathered together on the lower left. In these
data, we see a pronounced spectral peak at 20 Hz in most channels;
although relatively suppressed in the cross-spectra involving the fourth
channel. The corresponding modeled coherence and phase-delay
functions among the underlying sources are shown in Fig. 10. This
figure follows the same format as Fig. 6 but presents the modeled
coherence and phase-delay functions in source space (as opposed to
sensor space) having removed channel noise. Themost salient feature of
Fig. 9. Predicted and observed cross-spectra for the empirical data. This figure shows the pr
empirical channels analyzed in the illustrative analyses. The auto-spectra occupy the leading
spectral density at 20 Hz, in most channels; although relatively suppressed in the cross-spec
seen in Fig. 8. The corresponding coherence and phase-delay functions are shown in the ne
these results is themarked phase-delay (more than 10ms) between the
second STN source and the remaining sources. Interestingly, the greatest
coherence between this source and the remaining sources is seen in the
gamma range (40–60 Hz in these data),whereas beta (20 Hz) coherence
appears to be restricted to exchanges between the globus pallidus and
first subthalamic source. In some cases these sources appear to have
coherence approaching one. Fig. 11 uses the same display format as in
Fig. 7 and shows the covariance, coherenceandphase-delay functions for
the connection between the first globus pallidus source and the second
subthalamic nucleus source. The asymmetry in this bidirectional
coupling has induced a profound asymmetry in the modeled cross-
covariance function, with greater covariances at lags up to about 30 ms.
edicted (solid lines) and observed (dotted lines) absolute cross-spectra among the four
diagonal and are gathered together on the lower left. In these data, we see a pronounced
tra involving the fourth channel. Again, these results show the high degree of accuracy
xt figure.



Fig. 10. Coherence and phase-delay functions for empirical data. This figure uses the same format as Fig. 6 but presents the coherence and phase-delay functions following analysis of
the real LFP data. Here, we have shown the coherences and phase-delays among sources, having removed channel noise. The most salient feature of these results is the marked
phase-delay (more than 10 ms) between the second source in the STN and the remaining sources. Interestingly, the greatest coherence between this source and the remaining
sources is seen in the high gamma range, whereas the beta coherence appears to be restricted to exchanges between the globus pallidus and the first subthalamic source.
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Themodeled phase-delay function peaks at around 12 ms and is upper-
bounded by the conditional estimate of the (forward) conduction delay
(just above 15 ms). From a linear systems perspective, the coupling here
appears to bemediated by gamma coherence (upper right panel). This is
consistent with the (asymmetrical) peaks of the cross-covariance
function, where the first peak (for positive lag) occurs around 25 ms:
this lag is not inconsistent with the high coherence at 40 Hz shown on
theupper right. However, itwould be amistake to interpret these results
as showing that signals from the GP to the STN source are delayed by
25 ms. Furthermore, the differential phase-delay (of 12 ms) in the beta
range and (5 ms) in the gamma range does not suggest that fast
frequencies are propagated with a smaller conduction delay than slow
frequencies: The conduction delay is the same for all frequencies (about
15 ms). The frequency dependency of phase-delays is a result of
interactions within and between sources, modeled here in terms of
linear differential equations.



Fig. 11. Coupling between the first and last sources. This figure uses the same display format as in Fig. 7 and shows the covariance, coherence and phase-delay functions for the
connection between the first globus pallidus source and the second subthalamic nucleus source. Despite the reciprocal coupling between the sources, its asymmetry has induced a
profound asymmetry in the covariance function, with greater covariances at lags up to about 30 ms. The resulting phase-delay function peaks at around 12 ms and is upper-bounded
by the conditional estimate of the conduction delay (just above 15 ms). Notice that this is the value assumed for the simulated data in Fig. 7. Again, as with the examples using
simulated data, there is a complicated and indirect relationship between the (estimated) conduction delay, phase-delay and peaks in the covariance function of lag.
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Summary

In this section, we have applied DCM for complex cross-spectra to
LFP recordings from subcortical sources that are constituents of the
(indirect) cortico-basal ganglia-thalamic pathways. The conditional
estimates of connection strengths suggest that the extrinsic (between-
region) coupling was asymmetrical and directed, consistently for the
two pairs of sources considered. The associated conduction delays were
fairly long (15 ms), whichmay reflect real axonal propagation delays or
the inherent slowness of population dynamics in relation to the firing of
individual neurons. The modeled responses to neuronal fluctuations
produced some interesting and complicated spectral behaviors; with
the coherence between two sources being mediated largely by gamma
coherence with a phase-delay that was substantially less than the
phase-delay at beta frequencies predominant in the source region. This
again highlights the complicated mapping between the underlying
functional architecture generating signals and classical measures based
on linear systems theory.

Discussion

In summary,wehavedescribed away to access conditional estimates
of coherence, phase-delay andcovariance functionsbetween time-series
in sensor or source space. This rests on the inversion of Dynamic Causal
Models as generative models for complex-valued data. The benefits of a
generative model include the ability to see how various model
parameters effect coherence and phase-delays in a frequency-specific
manner. Furthermore, one can reconstitute the conditional coherence
and related functions, not just between data channels but between any
hidden states that are included in themodel. In the examples above, we
were able to look at the phase-delays between specific sub-populations
comprising one of several sources of local field potential data. An
important consequence of this is that we can access conditional
coherence and phase-delay functions among sources that are observed
non-invasively with EEG and MEG.

One important conclusion of this work is that one should be careful
in interpreting estimates of phase-delays as anexpression of conduction
delays. Conduction delays are undoubtedly of major importance for
understanding large-scale neuronal dynamics (Breakspear et al., 2006;
Decoet al., 2009; Jirsa andDing, 2004; Roberts andRobinson, 2008), and
it is tempting to infer themby assuming a direct relationshipwith phase
differences in recorded signals (e.g., Brazier, 1972; Gotman, 1981).
However, as shown above, the relation between phase differences and
conduction delays is not straightforward: phase-delays can differ across
frequencies, while conduction delays are determined by axonal micro-
architecture and are fixed across all frequencies. Furthermore, as shown
in Fig. 7, conduction delays cannot be inferred from peaks in the cross-
covariance function. In summary, inference on conduction delays can
only be made with a model that parameterizes these delays. As
suggested by our analyses (Fig. 4), inference on conduction delays can
benefit from modeling the imaginary components of recorded data.

In this paper, we used invasive LFP recordings, assuming that the
signal at each channelwas provided by one source. However, exactly the
same scheme can be applied to EEG and MEG data, where there may be



454 K.J. Friston et al. / NeuroImage 59 (2012) 439–455
manymore (or less) channels than sources. In this context, the ability to
recover conditional estimates of coupling among sources (as opposed to
channels) is crucial and finesses some of the issues associated with
interpreting coherence among channels, e.g., volume conduction effects
(Schoffelen and Gross, 2009; Stam et al., 2007; Winter et al., 2007) or
correlated noise in the context of Granger causal estimates (see Valdes-
Sosa et al., 2011 for a discussion).

Phase synchronization and Granger causality

In principle, any metric that has proven fruitful for connectivity
analyses at the sensor level (such as phase-synchronization, transfer
entropy or Granger-causalmeasures; e.g., Brovelli et al., 2004; Bressler et
al., 2007; Dhamala et al., 2008; Lachaux et al., 1999; Rodriguez et al.,
1999; Vakorin et al., 2010; Varela et al., 2001) can be derived from the
conditional estimates provided by DCM. This is because conventional
measures can be derived from the transfer functions that are determined
uniquely by the parameters of a biophysical DCM. With the develop-
ments described in this paper, it is now possible to reproduce
conventional metrics of coupling by replacing the conventional model-
free (sample) estimator with a model-based (conditional) estimator.
Crucially, this can be done in either sensor or source space.

Phase-synchronization is usually used to quantify the amount of
nonlinear coupling between channels (e.g., Rosenblum et al., 1996; Tass
and Haken, 1996). The phase-synchronization index (Eq. (2)) can be
computed from the distribution of phase-differences (Eq. (4)), which is
specifiedby the conditional estimates of aDCM.However, theunderlying
DCM can be linearized (as in this paper), which provides an interesting
perspective on phase-synchronization. Many people (including our-
selves; Chawla et al., 2001) have tried to understandhowzero-lag phase-
synchronization can emerge in nonlinear coupled neuronal oscillators.
However, the linear systems perspective provides a rather trivial
explanation: the phase-delays induced by random fluctuations that are
passed between reciprocally connected sources cancel. In fact, it is rather
hard to generate non-zero lag phase synchronization unless one
introduces substantial asymmetries in the coupling (see Fig. 1).Whether
this is a useful perspective remains to be established, particularly in the
context of DCMs that model nonlinear coupling (e.g., Chen et al., 2008).

It is hoped that these developments may harmonize DCM and
conventional time-series analysis. This is meant in the sense that
conventional analyses in electrophysiology can now be complemented
with conditional estimates of spectral behavior that are informed by the
neuronal architecture generating these behaviors. This should allow
intuitions about how phase relationships and coherence arise to be
tested. Themarriage between conventional (linear systems) time-series
analysis and DCM is evident in this work at two levels. First, we use a
linearization around the fixed point of the system to enable the use of
linear systems theory to generatepredicted spectral responses. Secondly,
the data features predicted are themselves motivated by linear systems
theory. However, the estimation of these sample spectra highlights the
fundamental difference between the spectral characterizations used in
conventional analyses and those furnished by DCM. This difference rests
upon the underlying generative model. Our sample spectral data were
constructed from time series using a vector autoregressivemodel At this
point conventional approacheswould stop and report power, coherence,
and other metrics of functional connectivity and interpret these
quantities directly. However, from the point of view of DCM, this
autoregressive process (or spectral estimates derived from Fourier or
wavelet based techniques) serves as a feature selection step to provide a
compact summary of the data in terms of their sample cross spectra. The
desired spectral estimates are those that are conditioned upon a
biologically plausible DCM, which best accounts for the sample
(conventional) spectra. In short, the difference between conventional
and conditional cross-spectra (in sensor space) is that the latter are
constrained by a model that allows one to put formal constraints and
prior beliefs into the estimation. Furthermore, there is a uniquemapping
between the parameters of the underlying model and the conditional
spectra provided by DCM. Employing complex-valued data features, as
we have shown, becomes especially important when trying to establish
spectral asymmetries in reciprocal connections (e.g. between forward
and backward message-passing in the brain) and associating these
asymmetries with the laminar specificity of forward and backward
connections. To address these sorts of issues it will be necessary to
examine conditional coherence between different subpopulations (i.e.,
cortical layers), which is, in principle, possiblewith DCM.Wewill pursue
this in future work using ECoG recordings in awake-behaving monkeys
(Rubehn et al., 2009).

Conclusion

Perhaps the simplest andmost important pointmade by the analyses
in this paper is that conventional characterizations of coupling among
observed channel data are basically the starting point for Dynamic Causal
Modeling. In other words, we are interested in establishing how
particular data features like coherence and phase-delay are generated
biophysically. Once one has an explicit mapping between the underlying
biophysical parameters of a generativemodel and the predicted behavior
in terms of cross-spectral density (and associated functions) the rather
complicated relationship between conduction strengths and delays and
how theymanifest in terms of coherence and cross-correlation functions
becomes more evident. In this sense, Dynamic Causal Modeling of
observed cross-spectra may allow one to further qualify and understand
the subtleties of conventional summaries. Perhaps one of the most
important (and unforeseen) aspects of the analyses presented here was
how channel noise can influence sample covariance and coherence
functions in such a qualitative fashion. One of the key advantages of
having a generative model is that one can partition observed coherence
into those parts that are mediated neuronally and those parts which are
not. Thismay represent one step towards amorequantitative assessment
of coherenceandphase-delays andhowthey relate toasymmetries in the
strength and conduction delays of underlying neuronal connections.

Software note

All the inversion schemes and DCM analyses described in this
paper can be implemented using Matlab routines that are available as
part of our academic freeware from http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/.
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