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Multivariate probability distributions

Two types of distributions
Joint probability p(X,Y)
Conditional probability  p(X]|Y)

Are X and Y independent?

Independent iff p(X,Y) = p(X)p(Y)
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Establishing dependence

Weather in Cambridge and Tokyo ®

m 0 Cambridge

Xt Cambridge
Y t Tokyo
@ @ Z Month of the year

X and Y are conditionally independent iff
p(X. Y|Z) = p(X|Z)p(Y|2)
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Xt Cambridge
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Z Month of the year
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p(X1,...; Xa| Z) = p(X1|Z)-, ..., -p(Xn| Z)
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p(X1,...; Xa| Z) = p(X1|Z)-, ..., -p(Xn| Z)
since p(X1|X2, Z) = p(X1|Z) and p(X2| X1, Z) = p(X2|Z)
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Factoring the joint distribution

@,@@

p(X1, ..., Xp) = p(X1|parents(X1))-, ..., -p(Xn| parents(X,))
p(Xi, ..., Xn) = [17_1 p(Xi|parents(X;))

Factoring of the joint probability distribution is really important,
since

> log(x - y) = log(x) + log(y)
> taking the log gives an additive model
log p(X1, ..., Xp) =
log p(X1|parents(X1))+, ..., + log p(X,| parents(X,))



Bayes Nets
p(X1, -, Xn) = 17y p(Xi|parents(X;))

/@\ p(x,y,2) = p(x|z)p(y|z)p(2)
x© O

®_>®—’@ p(x,y,z) = p(zly)p(y|x)p(x)
w‘;@ p(x,y,z) = p(zly, x)p(y|x)p(x)
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Inference with Bayes Nets
p(X1, -, Xn) = 17y p(Xi|parents(X;))

@/@@

X1,X2’Z =p X1|Z (X2|Z)

posterior  likelihood x prior
p(Z|X1, X2) o p(X1, X2|Z) x p(Z)
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Inference with Bayes Nets
p(X1, -, Xn) = 17y p(Xi|parents(X;))

e

p(X1, X2|Z) = p(X1|Z)p(X2|Z)
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Formal definition

@@@

» Bayes Net (BN) is an annotated acyclic graph B that
represents the joint probability distribution over a set of
random variables V.

= <G’ @>
» G is a graph with nodes Xi, ..., X,
whose edges represent the dependencies.

» B defines a unique JPD over V

p(X1, ..., Xn) = 1721 p(Xil7i) = TT721 O
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Recap

@@@

» Bayes Net (BN) is a directed acyclic graph (DAG)
» which sets up conditional independence between variables

» resulting in a factored joint probability distribution



Vision and touch

#2©2002 Macrillan Magazines Ltd
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Humans integrate visual and haptic
information in a statistically
optimal fashion

Marc 0. Emst* & Martin S. Banks

Vision Science Program/School of Optometry, University of California, Berkeley
947202020, USA

When a person looks at an object while exploring it with their
hand, vision and touch both provide information for estimating
the properties of the object. Vision frequently dominates the
integrated visual-haptic percept, for example when judging
size, shape or position' ", but in some circumstances the percept
is clearly affected by haptics*”. Here we propose that a general
principle, which minimizes variance in the final estimate, deter-
mines the degree to which vision o
principle is realized by using maximum-likelihood estimation®**
to combine the inputs. To inve: cue combination quantita-
tively, we first measured the variances associated with visual and
haptic estimation of height. We then used these measurements to
construct a maximum-likelihood integrator. This model behaved
very similarly to humans in a visual-haptic task. Thus, the
nervous system seems to combine visual and haptic information
in a fashion that is similar to a maximum-likelihood integrator.
Visual dominance occurs when the variance associated with
visual estimation is lower than that associated with haptic
estimation.

The estimate of an environmental property by a sensory system
can be represented by

=15 m

where § s the physical property being estimated and f is the
operation by which the nervous system does the estimation. The
subscripts refer to the modality (i could also refer to different cues
within a modality). Each estimate, S, is corrupted by noise. If the
noises are independent and gaussian with variance o}, and the
bayesian prior is uniform, then the maximum-likelihood estimate

st addres M Planck Insiutefo Biologial Cybeenetics, Tbingen 72076, Germany

Stereo
glasses

Opaque
mirror

Visual and haptic
scene

Noise:
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Ernst and Banks (2002) asked subjects which of two sequentially
presented blocks was the taller. Subjects used either vision alone,
touch alone or a combination of the two.

If vision v and touch t information are
independent given an object x then we have
p(v, £, x) = p(vx)p(tIX)p(x) @ @

Bayesian fusion of sensory information then
produces a posterior density

_ p(vx)p(tlx)p(x)
pixlv.t) = 5=
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For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

A A
m = 5tmy + mq

A= Ag+ Xo

0 The two solid curves show the

o7 probability densities for the prior

§ mo =20, Ao = 1 and the likelihood

- my = 25 and Ay = 3. The dotted curve
02 shows the posterior distribution with

m = 23.75 and A = 4. The posterior is
closer to the likelihood because the
likelihood has higher precision.

23.75 = 225+ 118
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For a Gaussian likelihood with mean my and precision Ay and
a Gaussian prior with mean mg and precision Ag
the posterior is a Gaussian with

A A
m = 5tmy + mq

A=A+ N

- » Precisions add

ZZ » The posterior mean is the sum of
04 the priorand data means, each

weighted by their relative precision
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They recorded the accuracy with which discrimination could be
made and plotted this as a function of difference in block height.
This was first done for each condition alone. One can then
estimate precisions, A\, and ;.

a Within-modality discrimination
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Av
Avt

Avt = Ay + At

myt = w,m, + wym;

myt =

A
my, + )Tttmt



Vision and touch
myt = 5my, + 25 m;
Avt = AV + At

myt = w,my + wymy
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p(v|x) = N(p, 0?) /QQ\

p(t[x) :/\/’(%0—2) @ @

Bayesian fusion of sensory information produces a posterior density
p(x|v, t) oc p(v|x)p(t|x)

myt = )j\vvtmv + /\’\—Vttmt

At =M+ A

myt = w,m, + wym;
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p(v|x) = N(p, 0?)

p(tlx) = N(n,0?) @ @

Bayesian fusion of sensory information produces a posterior density

p(x|v, t) s p(v]x)p(t]x)
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@@@

» B=(G,0)
» G is a graph with nodes Xi, ..., X,
whose edges represent the dependencies.

» B defines a unique JPD over V

P(Xla --'vXn) = H?:l p(X;‘ﬂ';) = H?:l @Xi\ﬂi
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Complex inference with BN

> In many practical settings the BN is unknown and one needs
to learn it from the data.

» Problem: Given data and prior information, estimate the
graph topology G and the parameters ©.

Four cases of BN learning problems

Case Structure Observability Learning method

1 Known Full Maximum-likelihood estimation

2 Known Partial EM (or gradient descent), MCMC
3 Unknown  Full Search through model space

4 Unknown  Partial EM + Search through model space
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Complex inference with BN

Case Structure Observability Learning method

1 Known Full Maximum-likelihood estimation

> Goal: find the values of BN parameters (in each CPD) that
maximise the (log)likelihood of the dataset.

» Dataset X = xq,..., X,

> Parameter set © = 64, ..., 0,,, where 6; is the vector of parameters
for the CPD of x;

> log L(©[X) = >_, log P(xi|m;, 0i)



Complex models with BN

Mixture of Experts
Hierarchical Mixture of Experts

T ReR B
H @S - Q:_..’
Factor AnslysisPCA Mixture of FAs Factor analysis

Independent Factor Analysis

A Unifying Review of Linear Gaussian Models, Sam Roweis & Zoubin
Ghahramani. Neural Computation 11(2) (1999) pp.305-345
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